ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry: Chapter 4: Iron
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Northshore Mining Fact Sheet
CLEVELAND-CLIFFS INC. NORTHSHORE MINING FACT SHEET Northshore Mining (NSM), which originally operated as Reserve Mining Company, was the first taconite processing facility in North America when it opened in 1956. It was purchased by Cyprus Minerals in 1989, and Cleveland-Cliffs became the sole owner of the property in 1994. Northshore Mining’s Peter Mitchell Mine is located in Babbitt and the taconite is transported 47 miles by rail to the processing facility in Silver Bay, near Lake Superior. Northshore operations consist of an open pit truck Operational Statistics and shovel mine where two stages of crushing occur before the ore is transported along a wholly owned rail • Type of Ore: Magnetite line to the plant site in Silver Bay. At the plant site, two additional stages of crushing occur before the ore is • 2018 Pellet Production: 5.6 million gross tons sent to the concentrator. The concentrator utilizes rod mills, ball mills and magnetic separation to produce a • Annual Rated Capacity (includes concentrate): magnetite concentrate, which is delivered to the pellet 6.0 million tons plant located on-site. The plant site has its own ship loading port located on Lake Superior. In 2018, Cliffs began a capital upgrade to produce Annual Economic Impact low silica DR-grade pellets on a commercial scale. Throughout the construction project, management has • Workforce: 529 employees maintained production of its standard iron ore pellets for its blast furnace customers. The upgrade project is • Payroll (including benefits) $85 million expected to be completed in mid-2019. While overall production capacity at the processing facility will remain • Local services/supplies purchased: $200 million the same, Northshore will be able to produce up to 3.5 • Minnesota, local & taconite taxes: $16 million million long tons of DR-grade pellets. -
2013 Minnesota Mining Tax Guide
Mining Tax Guide SS J. A. Campbell in Taconite Harbor, ca. 1957-1964 (2005.0038.3318), Minnesota State Representative Fred A. Cina Papers, Iron Range Research Center, Chisholm, MN November 2013 2013 Distribution of Taconite Production Tax (2012 Production Year) Total Taconite Production Tax $102,633,021* Production tax is $2.465 per taxable ton. The average taxable tonnage was 38,310,339 tons. * Includes $8,428,275 from the State General Fund (22.0 cpt) cpt = cents per taxable ton Property tax Cities and townships School districts Counties IRRRB Other relief and misc. $13,893,864 $15,799,889 $14,270,998 $29,729,364 $16,493,071 $12,445,835 32.5 cpt 36.3 cpt 41.2 cpt 37.2 cpt 43.1 cpt 77.6 cpt City and Township Taconite School Regular IRRRB Fund** Taconite Economic Mining & Conc $0.0343 Fund** County Fund** Taconite Property $3,636,468 Development Fund Fund** $1,566,247 $9,000,065 Tax Relief $1,666,971 9.5 cpt $12,231,412 $2,066,752 4.1 cpt*** 23.5 cpt 31.9 cpt 5.4 cpt 4.4 cpt Regular School County Road and IRRRB $.1572 Fund** Bridge Fund** Fixed Fund Range Association Township Fund $6,908,326 $4,486,556 Public Works $1,252,520 of Municipalities & $1,223,128 18.0 cpt*** 11.7 cpt Projects 3.2 cpt Schools** 3.2 cpt $14,826,100 $137,802 Taconite Taconite 38.7 cpt Iron Range Higher Education Acct. 0.4 cpt Taconite railroad railroad $1,915,517 5.0 cpt Municipal Aid** $1,106,935 $784,377 2.0 cpt $6,355,475 2.9 cpt *** Producer Grant Hockey 16.6 cpt & Loan Fund Hall of Fame Building $3,176,600 $76,621 Maintenance Fund 8.3 cpt 0.2 cpt Taconite railroad $1,506,072 $591,142 3.9 cpt IRR Educational 1.5 cpt Revenue Bonds Taconite $1,411,925 Referendum** 3.7 cpt Mining effects** $3,091,236 $1,758,238 8.1 cpt Taconite Env. -
A History of Tailings1
A HISTORY OF MINERAL CONCENTRATION: A HISTORY OF TAILINGS1 by Timothy c. Richmond2 Abstract: The extraction of mineral values from the earth for beneficial use has been a human activity- since long before recorded history. Methodologies were little changed until the late 19th century. The nearly simultaneous developments of a method to produce steel of a uniform carbon content and the means to generate electrical power gave man the ability to process huge volumes of ores of ever decreasing purity. The tailings or waste products of mineral processing were traditionally discharged into adjacent streams, lakes, the sea or in piles on dry land. Their confinement apparently began in the early 20th century as a means for possible future mineral recovery, for the recycling of water in arid regions and/or in response to growing concerns for water pollution control. Additional Key Words: Mineral Beneficiation " ... for since Nature usually creates metals in an impure state, mixed with earth, stones, and solidified juices, it is necessary to separate most of these impurities from the ores as far as can be, and therefore I will now describe the methods by which the ores are sorted, broken with hammers, burnt, crushed with stamps, ground into powder, sifted, washed ..•. " Agricola, 1550 Introduction identifying mining wastes. It is frequently used mistakenly The term "tailings" is to identify all mineral wastes often misapplied when including the piles of waste rock located at the mouth of 1Presented at the 1.991. National mine shafts and adi ts, over- American. Society for Surface burden materials removed in Mining and Reclamation Meeting surface mining, wastes from in Durango, co, May 1.4-17, 1.991 concentrating activities and sometimes the wastes from 2Timothy c. -
! 1! ! ! FINAL REPORT to the LEGISLATURE MINNESOTA TACONITE WORKERS HEALTH STUDY DATE: November 24, 2014 TO: FROM: COPIES
! ! FINAL REPORT TO THE LEGISLATURE MINNESOTA TACONITE WORKERS HEALTH STUDY DATE: November 24, 2014 TO: Sen. David Tomassoni, chair Senate Jobs and Economic Growth Committee 317 Capitol Sen. Tony Lourey, chair Senate Health and Human Services Finance Division 120 Capitol Sen. Kathy Sheran, chair Senate Health, Human Services and Housing Committee 120 Capitol Rep. Tim Mahoney, chair House Jobs and Economic Development Finance & Policy Committee 591 State Office Building Rep. Sheldon Johnson, chair House Labor, Workplace and Regulated Industries 549 State Office Building Rep. Tom Huntley, chair Health and Human Services Finance Committee 585 State Office Building Rep. Tina Liebling, chair House Health and Human Services Policy Committee 367 State Office Building FROM: John R. Finnegan, Jr., dean and professor (E-mail: [email protected]; Phone: 612 625 1179) Jeffrey Mandel, associate professor, principal investigator (E-mail: [email protected]; Phone: 612 626 9308) COPIES: Iron Range Legislative Delegation Rep. David Dill Rep. Mary Murphy Sen. Tom Bakk Rep. John Persell Rep. Tom Anzelc Sen. Tom Saxhaug Rep. Carly Melin Rep. Jason Metsa 1! ! ! November 24, 2014 Dear Legislators: We are pleased to present the final report on our research regarding the health status of taconite workers. This report covers the assessments made by the University of Minnesota School of Public Health (SPH). The Natural Resources Research Institute will be submitting a separate report on the environmental characterization work that they have been doing. This report contains the SPH’s efforts in occupational exposure, mortality and cancer incidence, case-control studies and the respiratory health survey of taconite workers and spouses. -
The Efficient Improvement of Original Magnetite in Iron Ore Reduction
minerals Article The Efficient Improvement of Original Magnetite in Iron Ore Reduction Reaction in Magnetization Roasting Process and Mechanism Analysis by In Situ and Continuous Image Capture Bing Zhao 1,2, Peng Gao 1,2,*, Zhidong Tang 1,2 and Wuzhi Zhang 1,2 1 School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; [email protected] (B.Z.); [email protected] (Z.T.); [email protected] (W.Z.) 2 National-Local Joint Engineering Research Center of High-Efficient Exploitation Technology for Refractory Iron Ore Resources, Shenyang 110819, China * Correspondence: [email protected]; Tel.: +86-024-8368-8920 Abstract: Magnetization roasting followed by magnetic separation is considered an effective method for recovering iron minerals. As hematite and magnetite are the main concomitant constituents in iron ores, the separation index after the magnetization roasting will be more optimized than with only hematite. In this research, the mechanism of the original magnetite improving iron ore reduction during the magnetization roasting process was explored using ore fines and lump ore samples. Under optimum roasting conditions, the iron grade increased from 62.17% to 65.22%, and iron recovery increased from 84.02% to 92.02% after separation, when Fe in the original magnetite content increased from 0.31% to 8.09%, although the Fe masses in each sample were equal. For lump ores with magnetite and hematite intergrowth, the method of in situ and continuous image capture Citation: Zhao, B.; Gao, P.; Tang, Z.; for microcrack generation and the evolution of the magnetization roasting process was innovatively Zhang, W. -
Recovery of Magnetite-Hematite Concentrate from Iron Ore Tailings
E3S Web of Conferences 247, 01042 (2021) https://doi.org/10.1051/e3sconf/202124701042 ICEPP-2021 Recovery of magnetite-hematite concentrate from iron ore tailings Mikhail Khokhulya1,*, Alexander Fomin1, and Svetlana Alekseeva1 1Mining Institute of Kola Science Center of Russian Academy of Sciences, Apatity, 184209, Russia Abstract. The research is aimed at study of the probable recovery of iron from the tailings of the Olcon mining company located in the north-western Arctic zone of Russia. Material composition of a sample from a tailings dump was analysed. The authors have developed a separation production technology to recover magnetite-hematite concentrate from the tailings. A processing flowsheet includes magnetic separation, milling and gravity concentration methods. The separation technology provides for production of iron ore concentrate with total iron content of 65.9% and recovers 91.0% of magnetite and 80.5% of hematite from the tailings containing 20.4% of total iron. The proposed technology will increase production of the concentrate at a dressing plant and reduce environmental impact. 1 Introduction The mineral processing plant of the Olcon JSC, located at the Murmansk region, produces magnetite- At present, there is an important problem worldwide in hematite concentrate. The processing technology the disposal of waste generated during the mineral includes several magnetic separation stages to produce production and processing. Tailings dumps occupy huge magnetite concentrate and two jigging stages to produce areas and pollute the environment. However, waste hematite concentrate from a non-magnetic fraction of material contains some valuable components that can be magnetic separation [13]. used in various industries. In the initial period of plant operation (since 1955) In Russia, mining-induced waste occupies more than iron ore tailings were stored in the Southern Bay of 300 thousand hectares of lands. -
Banded Iron Formations
Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron. -
Smelting Iron from Laterite: Technical Possibility Or Ethnographic Aberration?
Smelting Iron from Laterite: Technical Possibility or Ethnographic Aberration? T. O. PRYCE AND S. NATAPINTU introduction Laterites deposits (orlateriticsoilsastheyarealsocalled)arefrequently reported in Southeast Asia, and are ethnographically attested to have been used for the smelting of iron in the region (Abendanon 1917 in Bronson 1992:73; Bronson and Charoenwongsa 1986), as well as in Africa (Gordon and Killick 1993; Miller and Van Der Merwe 1994). The present authors do not dispute this evidence; we merely wish to counsel cautioninitsextrapolation.Modifyingour understanding of a population’s potential to locally produce their own iron has immediate ramifications for how we reconstruct ancient metal distribution net- works, and the social exchanges that have facilitated them since iron’s generally agreed appearance in Southeast Asian archaeological contexts during the mid-first millennium b.c. (e.g., Bellwood 2007:268; Higham 1989:190). We present this paper as a wholly constructive critique of what appears to be a prevailingperspectiveonpre-modernSoutheastAsianironmetallurgy.Wehave tried to avoid technical language and jargon wherever possible, as our aim is to motivate scholars working within the regiontogivefurtherconsiderationtoiron as a metal, as a technology, and as a socially significant medium (e.g., Appadurai 1998; Binsbergen 2005; Gosden and Marshall 1999). When writing a critique it is of course necessary to cite researchers with whom one disagrees, and we have done this with full acknowledgment that in modern archaeology no one person can encompass the entire knowledge spectrum of the discipline.1 The archaeome- tallurgy of iron is probably on the periphery of most of our colleagues’ interests, but sometimes, within the technical, lies the pivotal, and in sharing some of our insights we hope to illuminate issues of benefit to all researchers in Metal Age Southeast Asia. -
Chapter 11 Applications of Ore Microscopy in Mineral Technology
CHAPTER 11 APPLICATIONS OF ORE MICROSCOPY IN MINERAL TECHNOLOGY 11.1 INTRODUCTION The extraction of specific valuable minerals from their naturally occurring ores is variously termed "ore dressing," "mineral dressing," and "mineral beneficiation." For most metalliferous ores produced by mining operations, this extraction process is an important intermediatestep in the transformation of natural ore to pure metal. Although a few mined ores contain sufficient metal concentrations to require no beneficiation (e.g., some iron ores), most contain relatively small amounts of the valuable metal, from perhaps a few percent in the case ofbase metals to a few parts per million in the case ofpre cious metals. As Chapters 7, 9, and 10ofthis book have amply illustrated, the minerals containing valuable metals are commonly intergrown with eco nomically unimportant (gangue) minerals on a microscopic scale. It is important to note that the grain size of the ore and associated gangue minerals can also have a dramatic, and sometimes even limiting, effect on ore beneficiation. Figure 11.1 illustrates two rich base-metal ores, only one of which (11.1b) has been profitably extracted and processed. The McArthur River Deposit (Figure I 1.1 a) is large (>200 million tons) and rich (>9% Zn), but it contains much ore that is so fine grained that conventional processing cannot effectively separate the ore and gangue minerals. Consequently, the deposit remains unmined until some other technology is available that would make processing profitable. In contrast, the Ruttan Mine sample (Fig. 11.1 b), which has undergone metamorphism, is relativelycoarsegrained and is easily and economically separated into high-quality concentrates. -
Conservation and Systematic Development of Iron
1 PART : II INTRODUCTION CONSERVATION (PRESERVATION) AND SYSTEMATIC DEVELOPMENT OF IRON ORE One of the species of National Wealth is iron ore. Conservation of this mineral is of prime importance for industrial development. Indian legislature has recognized it in Section: 18 of the Mines & Minerals (Development & Regulation) Act, 1957. Section : 18, inter-alia, directs the Central Government to take all such steps as may be necessary for: (a) the conservation (Preservation) (b) and systematic development of minerals in India Systematic development of minerals in India would require: (a) exact estimate of reserves available (b) reasonable estimate of resources from where probable reserves can be estimated. This, inter–alia, would require opening of new mines. For that purpose, exploration is necessary. 2 For this, it would be worthwhile to refer to: A (REPORTS FOR EXPLORATION) (i) DOCUMENT ON STRATEGY FOR EXPLORATION, EXPLOITATION AND DEVELOPMENT FOR IRON ORE IN INDIA, PUBLISHED BY THE SUB–GROUP ON IRON ORE in India (January, 2006) (ii) MINERAL POLICY ISSUES IN THE CONTEXT OF EXPORT AND DOMESTIC USE OF IRON ORE IN INDIA - REPORT - FEBRUARY 2008 (INDIAN COUNCIL FOR RESEARCH ON INTERNATIONAL ECONOMIC RELATIONS) (iii) ECONOMICS OF SPONGE IRON AND STEEL PRODUCTION (SEPTEMBER, 2008) BY STEEL AND NATURAL RESOURCES STRATEGY RESEARCH, VASANT KUNJ, NEW DELHI (iv) IRON ORE – STATUS AND FUTURE PROSPECTS” by M. S. Jairam, Director, Geological Survey of India (v) IBM REPORT, 2009, AND PROVISIONAL FIGURES, AS ON 1-4-2010, SUPPLIED BY IBM, FOR IRON ORE 3 B (ILLEGAL MINING) (vi) 19TH REPORT OF STANDING COMMITTEE ON COAL & STEEL which highlights menace of illegal mining. -
Mining on the Mesabi Iron Range?
What’s Happening in Mining on the Mesabi Iron Range? Dan Jordan Mining & Minerals Program Supervisor Iron Range Resources Projects that must go through Environmental Review lvpmn.org 23 Project locations 13 Developers $6 billion dollars = Approximate total value of all projects Large Scale Developments 2005 - 2011 The Iron Range has a history of large scale projects that can transform the landscape. But, not since the 1960’s and early 1970’s has the region seen so many large scale projects under consideration all at the same time • Excelsior Energy Project $2,000,000,000 • Minnesota Steel Industries project in Nashwauk $1,650,000,000 • Machine #7 at the UPM paper mill in Grand Rapids $650,000,000 • Franconia Minerals – Birch Lake & Maturi Extension $616,000,000 • PolyMet’s NorthMet Project $380,000,000 • Keetac Plant Expansion $300,000,000 • Mesabi Nugget Production Scale Plant in Hoyt Lakes $235,000,000 • Taconite Plant Capacity Expansion $275,000,000 & Alternate Energy Improvements • MP Allete Clay Boswell Unit 3 Retrofit $200,000,000 • Laurentian Energy Project for Hibbing and Virginia $80,000,000 Total $6,386,000,000 Currently 6 Taconite Mines are in operation in Minnesota 2004 Foreign ownership: Stelco 14.7% of HibTac Today: Global ownership & competition United States Steel 2007 Name Production Employees Ownership Million Tons Minntac 12.751 1210 US Steel Corp. Keewatin Taconite 5.220 385 US Steel Corp. Managed by Cleveland Cliffs Mining Co. 2007 Name Production Emp. Ownership Million Tons ArcelorMittal 62.3% Hibbing 7.266 689 U S Steel Corp. 14.7% Taconite Cleveland-Cliffs 25% Northshore 4.975 511 Cleveland-Cliffs 100% Mining United Cleveland-Cliffs 70% 5.279 431 Taconite Laiwu Steel Group 30% 2007 Name Production Emp Ownership Million Tons ArcelorMittal 2.708 533 ArcelorMittal 100% Minorca Mine Inc. -
Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route
metals Review Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route Ender Keskinkilic Department of Metallurgical and Materials Engineering, Atilim University, 06830 Ankara, Turkey; [email protected]; Tel.: +90-533-302-9510 Received: 16 July 2019; Accepted: 1 September 2019; Published: 3 September 2019 Abstract: The treatment of laterites has been a research hotspot in extractive metallurgy over the past decades. Industrially, the pyrometallurgical treatment of laterites is mostly accomplished with a well-established method, namely, the rotary kiln–electric arc furnace (RKEF) process, which includes three main operations—calcination, prereduction, and smelting—followed by further refining for the removal of impurities from the raw ferro-nickel. As indicated in many studies of the RKEF process, the major downside of this method is its high energy consumption. Efforts have been made to lower this consumption. Furthermore, several new processes have been proposed. Among these, low-grade ferro-nickel production is regarded as the most widely and industrially used process after traditional RKEF operation. Although not widespread, other alternative processes of industrial scale have been generated since the start of the millennium. Recently, certain innovative processes have been tested either in the laboratory or at pilot-scale. In this paper, a literature review related to the smelting of laterites is made, and an emphasis on new processes and some examples of new developments in the RKEF process are presented. Keywords: laterite; smelting; RKEF process; low-grade ferro-nickel 1. Introduction According to a review published by Diaz et al., oxide-type nickel ores accounted for 64% of land-based nickel ores, but more than 60% of nickel production was based on the matte smelting of sulfide ores in 1988 [1].