ATOMIC and IONIC RADIUS for Otpn

Total Page:16

File Type:pdf, Size:1020Kb

ATOMIC and IONIC RADIUS for Otpn ATOMIC AND IONIC RADIUS Mr. Nderitu This page explains the various measures of atomic radius, and then looks at the way it varies around the Periodic Table - across periods and down groups. It assumes that you understand electronic structures for simple atoms written in s, p, d notation. ATOMIC RADIUS Measures of atomic radius Unlike a ball, an atom doesn't have a fixed radius. The radius of an atom can only be found by measuring the distance between the nuclei of two touching atoms, and then halving that distance. As you can see from the diagrams, the same atom could be found to have a different radius depending on what was around it. The left hand diagram shows bonded atoms. The atoms 1 are pulled closely together and so the measured radius is less than if they are just touching. This is what you would get if you had metal atoms in a metallic structure, or atoms covalently bonded to each other. The type of atomic radius being measured here is called the metallic radius or the covalent radius depending on the bonding. The right hand diagram shows what happens if the atoms are just touching. The attractive forces are much less, and the atoms are essentially "unsquashed". This measure of atomic radius is called the van der Waals radius after the weak attractions present in this situation. Trends in atomic radius in the Periodic Table The exact pattern you get depends on which measure of atomic radius you use - but the trends are still valid. The following diagram uses metallic radii for metallic elements, covalent radii for elements that form covalent bonds, and van der Waals radii for those (like the noble gases) which don't form bonds. Trends in atomic radius in Periods 2 and 3 2 Trends in atomic radius down a group It is fairly obvious that the atoms get bigger as you go down groups. The reason is equally obvious - you are adding extra layers of electrons. Trends in atomic radius across periods You have to ignore the noble gas at the end of each period. Because neon and argon don't form bonds, you can only measure their van der Waals radius - a case where the atom is pretty well "unsquashed". All the other atoms are being measured where their atomic radius is being lessened by strong attractions. You aren't comparing like with like if you include the noble gases. Leaving the noble gases out, atoms get smaller as you go across a period. If you think about it, the metallic or covalent radius is going to be a measure of the distance from the nucleus to the electrons which make up the bond. (Look back to the left-hand side of the first diagram on this page if you aren't sure, and picture the bonding electrons as being half way between the two nuclei.) From lithium to fluorine, those electrons are all in the 2- 3 level, being screened by the 1s 2 electrons. The increasing number of protons in the nucleus as you go across the period pulls the electrons in more tightly. The amount of screening is constant for all of these elements. Note: You might possibly wonder why you don't get extra screening from the 2s 2 electrons in the cases of the elements from boron to fluorine where the bonding involves the p electrons. In each of these cases, before bonding happens, the existing s and p orbitals are reorganised (hybridised) into new orbitals of equal energy. When these atoms are bonded, there aren't any 2s electrons as such. In the period from sodium to chlorine, the same thing happens. The size of the atom is controlled by the 3-level bonding electrons being pulled closer to the nucleus by increasing numbers of protons - in each case, screened by the 1- and 2-level electrons. Trends in the transition elements 4 Although there is a slight contraction at the beginning of the series, the atoms are all much the same size. The size is determined by the 4s electrons. The pull of the increasing number of protons in the nucleus is more or less offset by the extra screening due to the increasing number of 3d electrons. Note: The 4s orbital has a higher energy than the 3d in the transition elements. That means that it is a 4s electron which is lost from the atom when it forms an ion. It also means that the 3d orbitals are slightly closer to the nucleus than the 4s - and so offer some screening. Confusingly, this is inconsistent with what we say when we use the Aufbau Principle to work out the electronic structures of atoms. I have discussed this in detail in the page about the order of filling 3d and 4s orbitals . IONIC RADIUS A warning! 5 Ionic radii are difficult to measure with any degree of certainty, and vary according to the environment of the ion. For example, it matters what the co-ordination of the ion is (how many oppositely charged ions are touching it), and what those ions are. There are several different measures of ionic radii in use, and these all differ from each other by varying amounts. It means that if you are going to make reliable comparisons using ionic radii, they have to come from the same source. What you have to remember is that there are quite big uncertainties in the use of ionic radii, and that trying to explain things in fine detail is made difficult by those uncertainties. Trends in ionic radius in the Periodic Table Trends in ionic radius down a group This is the easy bit! As you add extra layers of electrons as you go down a group, the ions are bound to get bigger. The two tables below show this effect in Groups 1 and 7. electronic structure ionic radius (nm) of ion 6 Li + 2 0.076 Na + 2, 8 0.102 K+ 2, 8, 8 0.138 Rb + 2, 8, 18, 8 0.152 Cs + 2, 8, 18, 18, 8 0.167 electronic structure ionic radius (nm) of ion F- 2, 8 0.133 Cl - 2, 8, 8 0.181 Br - 2, 8, 18, 8 0.196 I- 2, 8, 18, 18, 8 0.220 Note: These figures all come from the Database of Ionic Radii from Imperial College London. I have converted them from Angstroms to nm (nanometres), which are more often used in the data tables that you are likely to come across. 7 If you are interested, 1 Angstrom is 10 -10 m; 1 nm = 10 -9 m. To convert from Angstroms to nm, you have to divide by 10, so that 1.02 Angstroms becomes 0.102 nm. You may also come across tables listing values in pm (picometres) which are 10 -12 m. A value in pm will look like, for example, for chlorine, 181 pm rather than 0.181 nm. Don't worry if you find this confusing. Just use the values you are given in whatever units you are given. For comparison purposes, all the values relate to 6- co-ordinated ions (the same arrangement as in NaCl, for example). CsCl actually crystallises in an 8:8-co- ordinated structure - so you couldn't accurately use these values for CsCl. The 8-co-ordinated ionic radius for Cs is 0.174 nm rather than 0.167 for the 6-co- ordinated version. Trends in ionic radius across a period Let's look at the radii of the simple ions formed by elements as you go across Period 3 of the Periodic Table - the elements from Na to Cl. 8 Mg 2 Na + Al 3+ P3- S2- Cl - + no of 11 12 13 15 16 17 protons electron ic 2,8, 2,8, 2,8 2,8 2,8 2,8,8 structur 8 8 e of ion ionic 0.10 0.07 0.05 (0.21 0.18 0.18 radius 2 2 4 2) 4 1 (nm) Note: The table misses out silicon which doesn't form a simple ion. The phosphide ion radius is in brackets because it comes from a different data source, and I am not sure whether it is safe to compare it. The values for the oxide and chloride ions agree in the different source, so it is probably OK. The values are again for 6-co-ordination, although I can't guarantee that for the phosphide figure. First of all, notice the big jump in ionic radius as soon as 9 you get into the negative ions. Is this surprising? Not at all - you have just added a whole extra layer of electrons. Notice that, within the series of positive ions, and the series of negative ions, that the ionic radii fall as you go across the period. We need to look at the positive and negative ions separately. The positive ions In each case, the ions have exactly the same electronic structure - they are said to be isoelectronic . However, the number o f protons in the nucleus of the ions is increasing. That will tend to pull the electrons more and more towards the centre of the ion - causing the ionic radii to fall. That is pretty obvious! The negative ions Exactly the same thing is happening here, except that you have an extra layer of electrons. What needs commenting on, though is how similar in size the sulphide ion and the chloride ion are. The additional proton here is making hardly any difference.
Recommended publications
  • ATOMIC RADII of the ELEMENTS References
    ATOMIC RADII OF THE ElEMENTS The simple model of an atom as a hard sphere that can approach The Cambridge Crystallographic Data Center also makes use only to a fixed distance from another atom to which it is not bond- of a set of “covalent radii” to determine which atoms in a crystal ed has proved useful in interpreting crystal structures and other are bonded to each other . Thus two atoms A and B are judged to molecular properties . The term van der Waals radius, rvdw, was be connected by a covalent bond if their separation falls within a originally introduced by Pauling as a measure of this atomic size . tolerance of ±0 .4 Å of the sum rcov (A) + rcov (B) . The covalent radii Thus in a closely packed structure two non-bonded atoms A and are given in the fourth column of the table . B will be separated by the sum of their van der Waals radii rvdw (A) and rvdw (B) . The set of van der Waals radii proposed by Pauling References was refined by Bondi (Reference 1) based on crystallographic data, gas kinetic collision cross sections, and liquid state properties . The 1 . Bondi, A ., J. Phys. Chem. 68, 441, 1964 . non-bonded contact distances predicted from the recommended 2 . Rowland, R . S . and Taylor, R ., J. Phys. Chem. 100, 7384, 1996 . 3 . Cambridge Crystallographic Data Center, www .ccdc .cam .ac .uk/prod- r of Bondi have been compared with actual data in the collec- vdw ucts/csd/radii/ tion of the Cambridge Crystallographic Data Center by Rowland and Taylor (Reference 2) and modified slightly .
    [Show full text]
  • Atomic and Ionic Radii of Elements 1–96 Martinrahm,*[A] Roald Hoffmann,*[A] and N
    DOI:10.1002/chem.201602949 Full Paper & Elemental Radii Atomic and Ionic Radii of Elements 1–96 MartinRahm,*[a] Roald Hoffmann,*[a] and N. W. Ashcroft[b] Abstract: Atomic and cationic radii have been calculated for tive measureofthe sizes of non-interacting atoms, common- the first 96 elements, together with selected anionicradii. ly invoked in the rationalization of chemicalbonding, struc- The metric adopted is the average distance from the nucleus ture, and different properties. Remarkably,the atomic radii where the electron density falls to 0.001 electrons per bohr3, as defined in this way correlate well with van der Waals radii following earlier work by Boyd. Our radii are derived using derived from crystal structures. Arationalizationfor trends relativistic all-electron density functional theory calculations, and exceptionsinthose correlations is provided. close to the basis set limit. They offer asystematic quantita- Introduction cule,[2] but we prefer to follow through with aconsistent pic- ture, one of gauging the density in the atomic groundstate. What is the size of an atom or an ion?This question has been The attractivenessofdefining radii from the electron density anatural one to ask over the centurythat we have had good is that a) the electron density is, at least in principle, an experi- experimental metricinformation on atoms in every form of mental observable,and b) it is the electron density at the out- matter,and (more recently) reliable theory for thesesame ermost regionsofasystem that determines Pauli/exchange/ atoms. And the momentone asks this question one knows same-spinrepulsions, or attractive bondinginteractions, with that there is no unique answer.Anatom or ion coursing down achemical surrounding.
    [Show full text]
  • ARC: an Open-Source Library for Calculating Properties of Alkali Rydberg Atoms
    ARC: An open-source library for calculating properties of alkali Rydberg atoms N. Šibalic´a,∗, J. D. Pritchardb, C. S. Adamsa, K. J. Weatherilla aJoint Quantum Center (JQC) Durham-Newcastle, Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom bDepartment of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, United Kingdom Abstract We present an object-oriented Python library for computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Keywords: Alkali atom, Matrix elements, Dipole-dipole interactions, Stark shift, Förster resonances PROGRAM SUMMARY They are a flourishing field for quantum information process- Program Title: ARC: Alkali Rydberg Calculator ing [1, 2] and quantum optics [3, 4, 5] in the few to single exci- Licensing provisions: BSD-3-Clause tation regime, as well as many-body physics [6, 7, 8, 9, 10, 11], Programming language: Python 2.7 or 3.5, with C extension in the many-excitations limit.
    [Show full text]
  • Chalcogen-Nitrogen Bond: Insights Into a Key Chemical Motif
    Proceedings Chalcogen-nitrogen Bond: Insights into A Key Chemical Motif Marco Bortoli,1 Andrea Madabeni,1 Pablo Andrei Nogara,2 Folorunsho B. Omage,2 Giovanni Ribaudo,3 Davide Zeppilli,1 Joao Batista Teixeira Rocha,2* Laura Orian1* 1 Dipartimento di Scienze Chimiche Università degli Studi di Padova Via Marzolo 1 35131 Padova, Italy; [email protected] (M.B.); [email protected] (A.M..); [email protected] (D.Z.) 2 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS Brazil; [email protected] (P.A.N.); [email protected] (F.B.O.) 3 Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy; [email protected] (G.R.) * Correspondence: : [email protected] (J.B.T.R), [email protected] (L.O.); † Presented at the 1st International Electronic Conference on Catalysis Sciences, 10–30 November 2020; Available online: https://eccs2020.sciforum.net/ Published: 10 November 2020 Abstract: Chalcogen-nitrogen chemistry deals with systems in which sulfur, selenium or tellurium is linked to a nitrogen nucleus. This chemical motif is a key component of different functional structures, ranging from inorganic materials and polymers to rationally designed catalysts, to bioinspired molecules and enzymes. The formation of a selenium-nitrogen bond, and its disruption, are rather common events in organic Se-catalyzed processes. In nature, along the mechanistic path of glutathione peroxidase, evidence of the formation of a Se-N bond in highly oxidizing conditions has been reported and interpreted as a strategy to protect the selenoenzyme from overoxidation.
    [Show full text]
  • Van Der Waals Radii of Elements S
    Inorganic Materials, Vol. 37, No. 9, 2001, pp. 871–885. Translated from Neorganicheskie Materialy, Vol. 37, No. 9, 2001, pp. 1031–1046. Original Russian Text Copyright © 2001 by Batsanov. Van der Waals Radii of Elements S. S. Batsanov Center for High Dynamic Pressures, Mendeleevo, Solnechnogorskii raion, Moscow oblast, 141570 Russia Received February 14, 2001 Abstract—The available data on the van der Waals radii of atoms in molecules and crystals are summarized. The nature of the continuous variation in interatomic distances from van der Waals to covalent values and the mechanisms of transformations between these types of chemical bonding are discussed. INTRODUCTION der Waals radius with the quantum-mechanical require- ment that the electron density vary continuously at the The notion that an interatomic distance can be periphery of atoms. thought of as the sum of atomic radii was among the most important generalizations in structural chemistry, In this review, the van der Waals radii of atoms eval- treating crystals and molecules as systems of interact- uated from XRD data, molar volumes, physical proper- ing atoms (Bragg, 1920). The next step forward in this ties, and crystal-chemical considerations are used to area was taken by Mack [1] and Magat [2], who intro- develop a universal system of van der Waals radii. duced the concept of nonvalent radius (R) for an atom situated at the periphery of a molecule and called it the atomic domain radius [1] or Wirkungsradius [2], ISOTROPIC CRYSTALLOGRAPHIC implying that this radius determines intermolecular dis- VAN DER WAALS RADII tances. Later, Pauling [3] proposed to call it the van der Kitaigorodskii [4, 5] was the first to formulate the Waals radius, because it characterizes van der Waals principle of close packing of molecules in crystalline interactions between atoms.
    [Show full text]
  • Quantum-Mechanical Relation Between Atomic Dipole Polarizability and the Van Der Waals Radius (Supplemental Material)
    Quantum-Mechanical Relation between Atomic Dipole Polarizability and the van der Waals Radius Dmitry V. Fedorov,1, ∗ Mainak Sadhukhan,1 Martin St¨ohr,1 and Alexandre Tkatchenko1 1Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg The atomic dipole polarizability, α, and the van der Waals (vdW) radius, RvdW, are two key quantities to describe vdW interactions between atoms in molecules and materials. Until now, they have been determined independently and separately from each other. Here, we derive the quantum- 1/7 mechanical relation RvdW = const. × α which is markedly different from the common assumption 1/3 RvdW ∝ α based on a classical picture of hard-sphere atoms. As shown for 72 chemical elements between hydrogen and uranium, the obtained formula can be used as a unified definition of the vdW radius solely in terms of the atomic polarizability. For vdW-bonded heteronuclear dimers consisting of atoms A and B, the combination rule α = (αA + αB )/2 provides a remarkably accurate way to calculate their equilibrium interatomic distance. The revealed scaling law allows to reduce the empiricism and improve the accuracy of interatomic vdW potentials, at the same time suggesting the existence of a non-trivial relation between length and volume in quantum systems. The idea to use a specific radius, describing a distance by Bondi [8] has been extensively used. However, it is an atom maintains from other atoms in non-covalent in- based on a restricted amount of experimental informa- teractions, was introduced by Mack [1] and Magat [2]. tion available at that time. With the improvement of Subsequently, it was employed by Kitaigorodskii in his experimental techniques and increase of available data, theory of close packing of molecules in crystals [3, 4].
    [Show full text]
  • Recent Developments in Chalcogen Chemistry
    RECENT DEVELOPMENTS IN CHALCOGEN CHEMISTRY Tristram Chivers Department of Chemistry, University of Calgary, Calgary, Alberta, Canada WHERE IS CALGARY? Lecture 1: Background / Introduction Outline • Chalcogens (O, S, Se, Te, Po) • Elemental Forms: Allotropes • Uses • Trends in Atomic Properties • Spin-active Nuclei; NMR Spectra • Halides as Reagents • Cation Formation and Stabilisation • Anions: Structures • Solutions of Chalcogens in Ionic Liquids • Oxides and Imides: Multiple Bonding 3 Elemental Forms: Sulfur Allotropes Sulfur S6 S7 S8 S10 S12 S20 4 Elemental Forms: Selenium and Tellurium Allotropes Selenium • Grey form - thermodynamically stable: helical structure cf. plastic sulfur. R. Keller, et al., Phys. Rev. B. 1977, 4404. • Red form - cyclic Cyclo-Se8 (cyclo-Se7 and -Se6 also known). Tellurium • Silvery-white, metallic lustre; helical structure, cf. grey Se. • Cyclic allotropes only known entrapped in solid-state structures e.g. Ru(Ten)Cl3 (n = 6, 8, 9) M. Ruck, Chem. Eur. J. 2011, 17, 6382 5 Uses – Sulfur Sulfur : Occurs naturally in underground deposits. • Recovered by Frasch process (superheated water). • H2S in sour gas (> 70%): Recovered by Klaus process: Klaus Process: 2 H S + SO 3/8 S + 2 H O 2 2 8 2 • Primary industrial use (70 %): H2SO4 in phosphate fertilizers 6 Uses – Selenium and Tellurium Selenium and Tellurium : Recovered during the refining of copper sulfide ores Selenium: • Photoreceptive properties – used in photocopiers (As2Se3) • Imparts red color in glasses Tellurium: • As an alloy with Cu, Fe, Pb and to harden
    [Show full text]
  • Monte Carlo Simulations of Polonium Drift from Radon Progeny in an Electrostatic Counter
    Monte Carlo Simulations of Polonium Drift from Radon Progeny in an Electrostatic Counter Devon Seymour Advised by Richard Gaitskell Brown University, Dept. of Physics, Providence RI 02912, USA May 4, 2017 1 Physics Motivation During the past two decades, a standard cosmological picture of the universe (the Lambda Cold Dark Matter or LCDM model) has emerged, which includes a detailed breakdown of the main constituents of the energy density of the universe. This theoretical framework is now on a firm empirical footing, given the remarkable agreement of a diverse set of astrophysical data. Recent results by Planck largely confirm the earlier Wilkinson Microwave Anisotropy Probe (WMAP) conclusions and confirm that the universe is spatially flat, with an acceleration in the rate of expansion and an energy budget comprising approximately 5% baryonic matter, 26% cold dark matter (CDM), and 69% dark energy[1]. Astrophysical measurements on mul- tiple length scales show that dark matter is consistent with like a particle model and not a modification of gravity. Grav- itational lensing of distant galaxies by foreground galactic clusters can provide a map of the total gravitational mass, showing that this mass far exceeds that Figure 1: LZ sensitivity projections. The of ordinary baryonic matter. baseline LZ assumptions give the solid black curve. LUX and ZEPLIN results The LUX-ZEPLIN (LZ) experiment are shown in broken blue lines. If LZ achieves its design goals (e.g., reducing the will attempt to establish the existence of radon background), the sensitivity would a type of dark matter known as WIMPs improve, resulting in the magenta sensi- tivity curve.
    [Show full text]
  • Python Module Index 79
    mendeleev Documentation Release 0.9.0 Lukasz Mentel Sep 04, 2021 CONTENTS 1 Getting started 3 1.1 Overview.................................................3 1.2 Contributing...............................................3 1.3 Citing...................................................3 1.4 Related projects.............................................4 1.5 Funding..................................................4 2 Installation 5 3 Tutorials 7 3.1 Quick start................................................7 3.2 Bulk data access............................................. 14 3.3 Electronic configuration......................................... 21 3.4 Ions.................................................... 23 3.5 Visualizing custom periodic tables.................................... 25 3.6 Advanced visulization tutorial...................................... 27 3.7 Jupyter notebooks............................................ 30 4 Data 31 4.1 Elements................................................. 31 4.2 Isotopes.................................................. 35 5 Electronegativities 37 5.1 Allen................................................... 37 5.2 Allred and Rochow............................................ 38 5.3 Cottrell and Sutton............................................ 38 5.4 Ghosh................................................... 38 5.5 Gordy................................................... 39 5.6 Li and Xue................................................ 39 5.7 Martynov and Batsanov........................................
    [Show full text]
  • Thorium Periodic Table of Elements
    Periodic Table of Elements https://periodic-table.pro/Element/Th/enView online at https://periodic-table.pro Thorium This foil is what remains after useful shapes were stamped out, but what those shapes were useful for remains a mystery. Pure thorium metal like this is quite rare, and not easily obtained. 01. OVERVIEW Symbol Th Atomic number 90 Atomic weight 232.0381 Density 11.724 g/cm³ Melting point 1750 °C Boiling point 4820 °C 02. THERMAL PROPERTIES Phase Solid Melting point 1750 °C Boiling point 4820 °C Absolute melting point 2023 K Absolute boiling point 5093 K Critical pressure N/A Critical temperature N/A Heat of fusion 16 kJ/mol Heat of vaporization 530 kJ/mol Heat of combustion N/A Specific heat 118 J/(kg K) Adiabatic index N/A Neel point N/A Thermal conductivity 54 W/(m K) Thermal expansion 0.000011 K¹ 03. PHYSICAL PROPERTIES Density 11.724 g/cm³ Density (liquid) N/A Molar volume 0.0000197917 Molar mass 232.03806 u Brinell hardness 400 MPa Mohs hardness 3 MPa Vickers hardness 350 MPa Bulk modulus 54 GPa Shear modulus 31 GPa Young modulus 79 GPa Poisson ratio 0.27 Refractive index N/A Speed of sound 2490 m/s Thermal conductivity 54 W/(m K) Thermal expansion 0.000011 K¹ 04. REACTIVITY Valence 4 Electronegativity 1.3 Electron affinity N/A Ionization energies 587, 1110, 1930, 2780 kJ/mol 05. SAFETY Autoignition point 130 °C Flashpoint N/A Heat of combustion N/A 06. CLASSIFICATIONS Alternate names N/A Names of allotropes N/A Block, Group, Period f, N/A, 7 Electron configuration [Rn]6d²7s² Color Silver Discovery 1829 in Sweden Gas phase N/A 07.
    [Show full text]
  • Does Oxygen Feature Chalcogen Bonding?
    molecules Article Does Oxygen Feature Chalcogen Bonding? Pradeep R. Varadwaj 1,2 1 Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan; [email protected] or [email protected] 2 The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan Received: 20 July 2019; Accepted: 28 August 2019; Published: 30 August 2019 Abstract: Using the second-order Møller–Plesset perturbation theory (MP2), together with Dunning’s all-electron correlation consistent basis set aug-cc-pVTZ, we show that the covalently bound oxygen atom present in a series of 21 prototypical monomer molecules examined does conceive a positive (or a negative) σ-hole. A σ-hole, in general, is an electron density-deficient region on a bound atom M along the outer extension of the R–M covalent bond, where R is the reminder part of the molecule, and M is the main group atom covalently bonded to R. We have also examined some exemplar 1:1 binary complexes that are formed between five randomly chosen monomers of the above series and the nitrogen- and oxygen-containing Lewis bases in N2, PN, NH3, and OH2. We show that the O-centered positive σ-hole in the selected monomers has the ability to form the chalcogen bonding interaction, and this is when the σ-hole on O is placed in the close proximity of the negative site in the partner molecule. Although the interaction energy and the various other 12 characteristics revealed from this study indicate the presence of any weakly bound interaction between the monomers in the six complexes, our result is strongly inconsistent with the general view that oxygen does not form a chalcogen-bonded interaction.
    [Show full text]
  • Theoretical Study of Xenon Adsorption in Uo2nanoporous Matrices Mehdi Colbert, Guy Treglia, Fabienne Ribeiro
    Theoretical study of xenon adsorption in UO2nanoporous matrices Mehdi Colbert, Guy Treglia, Fabienne Ribeiro To cite this version: Mehdi Colbert, Guy Treglia, Fabienne Ribeiro. Theoretical study of xenon adsorption in UO2nanoporous matrices. Journal of Physics: Condensed Matter, IOP Publishing, 2014, 26, 10.1088/0953-8984/26/48/485015. hal-03040139 HAL Id: hal-03040139 https://hal.archives-ouvertes.fr/hal-03040139 Submitted on 4 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Home Search Collections Journals About Contact us My IOPscience Theoretical study of xenon adsorption in UO2 nanoporous matrices This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 J. Phys.: Condens. Matter 26 485015 (http://iopscience.iop.org/0953-8984/26/48/485015) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 139.124.20.101 This content was downloaded on 27/11/2014 at 12:59 Please note that terms and conditions apply. Journal of Physics: Condensed Matter
    [Show full text]