<<

New Physics and the Gap

Samuel D. McDermott, Fermilab (6th Floor)

Work with Djuna Croon + Jeremy Sakstein: 2007.00650 [hep-ph], 2007.07889 [gr-qc] (&/+ Maria Straight and Eric Baxter): 2009.01213 [gr-qc] LIGO Observations: O1+O2 LIGO Observations: O1+O2

“lower” mass gap LIGO Observations: O1+O2

“Black hole mass ceiling”

“lower” mass gap LIGO Observations: O1+O2

“upper” mass gap “Black hole mass ceiling”

“lower” mass gap LIGO Observations: O1+O2

“upper” mass gap “Black hole mass ceiling”

“lower” mass gap Phys.Rev. (2020). Le.101102 125, Fromet Abbo Scienfic (LIGO al. R. Collaboraon Virgo and Collaboraon), GW190521 From R. Abbo et al. (LIGO Scienfic Collaboraon and Virgo Collaboraon), Phys. Rev. Le. 125, 101102 (2020). https://www.ligo.caltech.edu/news/ligo20200902 GW190521 Croon, McDermott, Sakstein 2007.07889

60

40

power law increase 20

0 40 50 60 70 80 90 Croon, McDermott, Sakstein 2007.07889

60

40 “flattens” MBH power law (pulsations) increase 20

0 40 50 60 70 80 90 Croon, McDermott, Sakstein 2007.07889

60

40 M “flattens” M BH BH power law (pulsations) decreases increase 20

0 40 50 60 70 80 90 Croon, McDermott, Sakstein 2007.07889

60

40 M “flattens” M BH BH power law (pulsations) decreases increase 20

0 no remnant! 40 50 60 70 80 90 Croon, McDermott, Sakstein 2007.07889

60 maximum black hole mass 40 M “flattens” M BH BH power law (pulsations) decreases increase 20

0 no remnant! 40 50 60 70 80 90 Outline

1. Physics of the pair instability mechanism

2. Beyond-the-Standard-Model explanations of GW190521

3. Standard Model explanations of GW190521

4. Future prospects Outline

1. Physics of the pair instability mechanism

2. Beyond-the-Standard-Model explanations of GW190521

3. Standard Model explanations of GW190521

4. Future prospects Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Evolution of Pop III Stars

• Simulate stars with MESA v12778* starting from the zero-age helium branch 109 through pulsations

• Final BH mass is the material gravitationally → time bound to the core after hydostratic equil- Lower ibrium is regained (following pulsations) mass 108 102 stars 103 104 105 106 107

*Paxton et al, arXiv:1710.08424 [astro-ph.SR] Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Evolution* of Pop III Stars

109

→ time

108 102 103 104 105 106 107

*MESA v12778 Paxton et al, arXiv:1710.08424 [astro-ph.SR] Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Evolution* of Pop III Stars

109 Main nuclear{ reaction:

→ time

108 102 103 104 105 106 107

*MESA v12778 Paxton et al, arXiv:1710.08424 [astro-ph.SR] Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Evolution* of Pop III Stars

109 Main nuclear{ reaction: Subdominant but important: → γ time

16O 108 102 103 104 105 106 107

*MESA v12778 Paxton et al, arXiv:1710.08424 [astro-ph.SR] Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Evolution* of Pop III Stars

time The 40M⊙ star 109 collapses directly

108 102 103 104 105 106 107

*MESA v12778 Paxton et al, arXiv:1710.08424 [astro-ph.SR] Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Evolution* of Pop III Stars

The more massive of time these stars “pulse”: ←

109

108 102 103 104 105 106 107

*MESA v12778 Paxton et al, arXiv:1710.08424 [astro-ph.SR] Croon, McDermott, Sakstein 2007.00650 + 2007.07889 (Pulsational) Pair Instability

←time

9 10 more massive stars prematurely collapse because of the e+e− pair instability

• the process γγ → e+e− destabilizes the star if the e+e− are nonrelativistic

• me ≈ 6×109 K — instability appears in the 108 range Tc ≈ me/10 up to Tc ≈ me/2 102 103 104 105 106 107 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Outcome of Pulsations

Pulsations:

109 ↪︎ time return to hydrostatic “Intermediate” mass stars lose equilibrium some mass to pulsations but eventually burn all of their fuel

108 102 103 104 105 106 107 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Outcome of Pulsations

Pulsations: “Very massive” stars unbind entirely

←time violent explosion! 109

108 102 103 104 105 106 107 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Outcome of Pulsations

no remnant

9 10 remnant (despite some mass loss)

108 102 103 104 105 106 107 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Outcome of Pulsations

no remnant

9 10 remnant (despite some mass loss)

108 — pulsational pair instability (PPISN) 70M⊙ ≲ M10in 2≲ 100M⊙103 104 105 106 107 vs

100M⊙ ≲ Min ≲ 250M⊙ — pair instability supernova (PISN) Croon, McDermott, Sakstein 2007.07889

maximum 60 black hole mass 40 Pulsational pair instability power law supernovae 20 increase

0 pair instability

40 50 60 70 80 90 Black Hole Mass Gap (BHMG) supernova Outline

1. Physics of the pair instability mechanism

2. Beyond-the-Standard-Model explanations of GW190521

3. Standard Model explanations of GW190521

4. Future prospects Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Recipe for Changing the BHMG

• New light degree(s) of freedom are produced in the core of a massive star during helium burning

• This additional loss channel causes the star to consume fuel more quickly and end helium burning earlier

• This reduces the amount of 16O available during pulsations

• Explosions are less violent ⟹ mass loss is less pronounced ⟹ a heavier black hole Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Models of Light BSM Physics

AAACYnicbZHBbhMxEIa9WwolQJu2RziMiJA4wLIbJU1yQKrgwoFDkUhbKU5Ws46TWLV3HduLFK3Sh+TGiQsPgjcJUBAjWfr9z4zH/pxpKayL429BuHdv//6Dg4eNR4+fHB41j08ubVEaxoeskIW5ztByKXI+dMJJfq0NR5VJfpXdvK/zV1+4saLIP7uV5mOF81zMBEPnrbS5iibLW7gFqtAtGEr4mFbI10BtqS138FrMd0aGBqi2IuVA56gUpt1fe3wFdLkscQoUpV5gWrXP1vAWkniyUdsjJu03HaoF1OP81LTZiqPBYNDvn0ESxZuArdOJfzstsouLtPmVTgtWKp47JtHaURJrN67QOMEkXzdoablGdoNzPvIyR8XtuNogWsML70xhVhi/cgcb925Hhcralcp8ZU3C/purzf/lRqWb9ceVyHXpeM62g2alBFdAzRumwnDm5MoLZEb4uwJboEHm/K80PIQ7b+/0u91Bz4vEU+j9gXDZjpJuFH/qtM7f7XAckKfkOXlJEtIj5+QDuSBDwsj3YD84DI6CH2EjPA5Pt6VhsOs5JX9F+OwnxxG0hQ== q 26 2 q • Electrophilic axion:. ig ¯ a, ↵ = 10 g /4⇡ . Lae ae e 5 e 26 ae

aAAACmnicbVFNa9tAEF0p/Ujdj7jpoYf2MNQUemiNVOTaPgRCCk5Le0ghdgJeW4xWK2fJrqRoVwUjlP/Uv9Jb/01Xtkmd0IGF4b15zNs3US6FNp73x3F37t1/8HD3Uevxk6fP9trP9yc6KwvGxyyTWXEeoeZSpHxshJH8PC84qkjys+jyc8Of/eSFFll6apY5nylcpCIRDI2FwvYvmhTIKn+OdRWEUX0N10AVmguGEr6HFQJdoFJYA9VlrrmBDyuFH8Bim0UYhRVVJdC0tLNGyJjDaH4DvQd6dVVi3Kh8r4aD23IrUFyD781XbEULBcd8Ujdu7hgM2x2vOxwOB4NP4He9VcEaCbwbpEM2dRK2f9M4Y6XiqWEStZ76Xm5mFRZGMMnrFi01z5Fd4oJPbZuidTKrVtHW8NYiMSRZYV9qYIVuKypUWi9VZCeb1PRdrgH/x01LkwxmlUjz0vCUrRclpQSTQXMniEXBmZFL2yArhPUK7AJtFMZes2VD2Pp7MOj1hn3b+DaF/r8QJh+7fq/r/Qg6h0ebOHbJK/KGvCM+6ZND8oWckDFhzkvnwBk5x+5r98j96n5bj7rORvOC3Cr39C+S18ng a 1 1 µ⌫ 10 1 • Photophilic axion: a ga aFµ⌫ F˜ ,g10 = ga 10 GeV 4b L 4 ⇥ 4b

aAAACp3icbVFdi9NAFJ3Er7V+VX305WKVKmpJSmvbB2GrsIoIrrjtFjpNuJlOu8POJNnMRCgh+9P8Eb75b5ykxV0XLwxzOOfeuXfOjVIptPG834577fqNm7f2bjfu3L13/0Hz4aOpTvKM8QlLZJLNItRciphPjDCSz9KMo4okP45OP1T68Q+eaZHER2aT8oXCdSxWgqGxVNj8SVcZssIPsCx6YVSewzlQheaEoYQvYTFul0B1nmpu4E2dS3mqhUziLhy0w4KqHGicl3AQXOBXsH1V1fVBt+zCuB1W8rgd2Os10LOzHJewDgvfK+FdBRDoGpVC288IxTX4XlCrBc0UfOTTshrtyrRhs+V1RqPRcPgW/I5XB2yZnveXaZFdHIbNX3SZsFzx2DCJWs99LzWLAjMjmORlg+aap8hOcc3nFsZoJ1kUtc8lPLfMElZJZk9soGYvVxSotN6oyGZWFuqrWkX+T5vnZjVcFCJOc8Njtm20yiWYBKqlwVJknBm5sQBZJuyswE7QWmHsahvWhEt/7w37/dHAAt+6MLgwYdrt+P2O963X2n+/s2OPPCFPyQvikwHZJ5/IIZkQ5jxzPjvfnSP3pfvVnbqzbarr7Goek3/CxT/1Q835 2 a 1 ✏ µ⌫ mA µ 10 1 • 0 Dark photon: A0 Fµ0 ⌫ F + Aµ0 A0 ,g10 = ga 10 GeV 4b L 2 2 ⇥ 4b Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Models of Light BSM Physics

AAACYnicbZHBbhMxEIa9WwolQJu2RziMiJA4wLIbJU1yQKrgwoFDkUhbKU5Ws46TWLV3HduLFK3Sh+TGiQsPgjcJUBAjWfr9z4zH/pxpKayL429BuHdv//6Dg4eNR4+fHB41j08ubVEaxoeskIW5ztByKXI+dMJJfq0NR5VJfpXdvK/zV1+4saLIP7uV5mOF81zMBEPnrbS5iibLW7gFqtAtGEr4mFbI10BtqS138FrMd0aGBqi2IuVA56gUpt1fe3wFdLkscQoUpV5gWrXP1vAWkniyUdsjJu03HaoF1OP81LTZiqPBYNDvn0ESxZuArdOJfzstsouLtPmVTgtWKp47JtHaURJrN67QOMEkXzdoablGdoNzPvIyR8XtuNogWsML70xhVhi/cgcb925Hhcralcp8ZU3C/purzf/lRqWb9ceVyHXpeM62g2alBFdAzRumwnDm5MoLZEb4uwJboEHm/K80PIQ7b+/0u91Bz4vEU+j9gXDZjpJuFH/qtM7f7XAckKfkOXlJEtIj5+QDuSBDwsj3YD84DI6CH2EjPA5Pt6VhsOs5JX9F+OwnxxG0hQ== q 26 2 q • Electrophilic axion:. ig ¯ a, ↵ = 10 g /4⇡ . Lae ae e 5 e 26 ae Sakstein, Croon, McDermott, Straight, Baxter additional models: 2009.01213 aAAACZ3icbZFLaxsxFIU107RN3UfcppRAN2pNoSszE+za3oUUShdZJFAnAcsZ7sgaW0TSDHoUzDD+kdlln03/RTUek6SmFwSX75zLlY7SQnBjo+g2CJ/sPH32fPdF6+Wr12/22m/fnZvcacrGNBe5vkzBMMEVG1tuBbssNAOZCnaRXn+v9YvfTBueq192WbCphLniGadgPUraK5JpoGV8BVXZS9JqhVeYSLALCgKfJEQ5TIwrDLO4cRLpalodYpKCxo2BzyUkJQFRLMBzZqFaKz+utiDeWpe0O1F3NBoNh99w3I3WhRvSi+5JB23qNGnfkFlOnWTKUgHGTOKosNMStOVUsKpFnGEF0GuYs4lvFUhmpuU6pwp/8WSGs1z7oyxe08cTJUhjljL1zjoCs63V8H/axNlsOC25KpxlijaLMiewzXEdOp5xzagVS98A1dzfFdMF+CSs/5qWD+HR23vDfn808E3sUxg8hHB+2I373eis1zk63sSxiz6iz+gritEAHaGf6BSNEUV3QSvYD94Hf8K98EN40FjDYDOzj/6p8NNfu8m52Q== a aAAACmnicbVFNa9tAEF0p/Ujdj7jpoYf2MNQUemiNVOTaPgRCCk5Le0ghdgJeW4xWK2fJrqRoVwUjlP/Uv9Jb/01Xtkmd0IGF4b15zNs3US6FNp73x3F37t1/8HD3Uevxk6fP9trP9yc6KwvGxyyTWXEeoeZSpHxshJH8PC84qkjys+jyc8Of/eSFFll6apY5nylcpCIRDI2FwvYvmhTIKn+OdRWEUX0N10AVmguGEr6HFQJdoFJYA9VlrrmBDyuFH8Bim0UYhRVVJdC0tLNGyJjDaH4DvQd6dVVi3Kh8r4aD23IrUFyD781XbEULBcd8Ujdu7hgM2x2vOxwOB4NP4He9VcEaCbwbpEM2dRK2f9M4Y6XiqWEStZ76Xm5mFRZGMMnrFi01z5Fd4oJPbZuidTKrVtHW8NYiMSRZYV9qYIVuKypUWi9VZCeb1PRdrgH/x01LkwxmlUjz0vCUrRclpQSTQXMniEXBmZFL2yArhPUK7AJtFMZes2VD2Pp7MOj1hn3b+DaF/r8QJh+7fq/r/Qg6h0ebOHbJK/KGvCM+6ZND8oWckDFhzkvnwBk5x+5r98j96n5bj7rORvOC3Cr39C+S18ng 1 µ⌫ ↵ 1 a Neutrino dipole1 moment: ⌫1 ⌫¯ ↵µ⌫⌫F 10 1 • AAACXnicbVFdaxNBFJ1dta2ptdG+CL5cDEKFNuyWjUneilbwoUKEpi1kkmV2MtsMnZld50Malu2P9E364k9x8qFW8cLAmXPOZe49k5WCGxtF34PwwcNHG5tbjxvbT3ae7jafPT83hdOUDWkhCn2ZEcMEV2xouRXsstSMyEywi+z6/UK/+Mq04YU6s/OSjSW5UjznlFhPpU2Hc01oFU9IXSVpVt/CLWBJ7IwSAadphbWE0w8nNWDjSsMsHB55+EVbXHL4tNIHop5Uh7H3cGVhOkngBvABzCYVlg6wcgf76k0NZ+mve502W1G73+/3em8hbkfLghWTRL+ZFlrXIG1+w9OCOsmUpYIYM4qj0o4roi2ngtUN7AwrCb0mV2zkoSKSmXG1jKeG156ZQl5of/yAS/Z+R0WkMXOZeedic/OvtiD/p42czXvjiqvSWabo6qHcCbAFLLKGKdeMWjH3gFDN/axAZ8Tnbf2PNHwI93ZPep1Ov+tB7FPo/gnh/Kgdd9rR56R1/G4dxxZ6iV6hfRSjLjpGH9EADRFFd0EQNILt4Ee4Ee6EuytrGKx79tBfFb74CY1Hs64= ˜ Photophilic axion: a4ab L ga aF2 µ⌫ F ,g4b 10 = ga 10 GeV 4b L 1 4 1 4 µ⌫,(n)⇥ 4b Large extra dimensions: LED 2p⇡MPl d xh Tµ⌫ aAAACW3icbZFfaxNBFMVnt2pjrBorPvlyMQgpStyVpEkeCkWF+KJUME0hG5e7k9l2yOzsdmZWWJbdD+mTPvhVxMkfay1eGDj8zr3cmTNRJrg2nvfDcXdu3b6z27jbvLd3/8HD1qP9U53mirIJTUWqziLUTHDJJoYbwc4yxTCJBJtGy7crf/qVKc1T+dkUGZsneC55zCkai8KWCmKFtPS/YFX2wqiqoYYxHME4LAOVwMcKOv4LCN4xYRDGr67wwUsILi9zXEDnj3nkrbyay/oDF8uinmJRHdQ13NwQttpedzQaDYeH4He9dcGG9Lwr0ibbOglb34JFSvOESUMFaj3zvczMS1SGU8GqZpBrliFd4jmbWSkxYXperrOp4LklC4hTZY80sKbXJ0pMtC6SyHYmaC70TW8F/+fNchMP5yWXWW6YpJtFcS7ApLAKGhZcMWpEYQVSxe1dgV6gjcLY72jaEK69vTfs90cDK3ybwuBvCKevu36/633qtY/fbONokKfkGekQnwzIMXlPTsiEUPKd/HJ2nYbz091xm+7eptV1tjOPyT/lPvkNe/OzXg== 4b L a 1 “Dramatic violationsZ of the equivalence 1 Modified gravity*:AAACp3icbVFdi9NAFJ3Er7V+VX305WKVKmpJSmvbB2GrsIoIrrjtFjpNuJlOu8POJNnMRCgh+9P8Eb75b5ykxV0XLwxzOOfeuXfOjVIptPG834577fqNm7f2bjfu3L13/0Hz4aOpTvKM8QlLZJLNItRciphPjDCSz9KMo4okP45OP1T68Q+eaZHER2aT8oXCdSxWgqGxVNj8SVcZssIPsCx6YVSewzlQheaEoYQvYTFul0B1nmpu4E2dS3mqhUziLhy0w4KqHGicl3AQXOBXsH1V1fVBt+zCuB1W8rgd2Os10LOzHJewDgvfK+FdBRDoGpVC288IxTX4XlCrBc0UfOTTshrtyrRhs+V1RqPRcPgW/I5XB2yZnveXaZFdHIbNX3SZsFzx2DCJWs99LzWLAjMjmORlg+aap8hOcc3nFsZoJ1kUtc8lPLfMElZJZk9soGYvVxSotN6oyGZWFuqrWkX+T5vnZjVcFCJOc8Njtm20yiWYBKqlwVJknBm5sQBZJuyswE7QWmHsahvWhEt/7w37/dHAAt+6MLgwYdrt+P2O963X2n+/s2OPPCFPyQvikwHZJ5/IIZkQ5jxzPjvfnSP3pfvVnbqzbarr7Goek3/CxT/1Q835 G = G (1 + G/G ), (G =0inMilkyWay) 4a N N principle2 outside of the Milky Way” 4 a 1 b ✏ µ⌫ mA µ b 10 1 • 0 Dark photon: A0 Fµ0 ⌫ F + Aµ0 A0 ,g10 = ga 10 GeV 4b L 2 2 ⇥ 4b

*see also Straight, Sakstein, Baxter 2009.10716 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Losses to Light Particles

40 ζ α g2 Y T6 erg • Electrophilic axion: � = 6 EM ae e F ≃ 33 α Y T6 F sC 2 4 deg 26 e 8 deg T π m m g⋅s T ≡ N e 8 108K 2 7 2 2 gaγT k k erg • Photophilic axion: � = S f S ≃ 283.16 g2 T4 aγ 2 10 8 k 2 ρ 4π ρ ( 2T ) [( 2T ) ] g ⋅ s S = 0.166 3 Y Z2 ( ) 3 ∑ j j 2T T8 j 2 2 3 2 ϵ m ωp erg Z ϵ m • Dark photon: A′ A′ �A′ = ≃ 1800 T8 4π ρ ωp/T g⋅s A ( 10−7 meV ) 2 4παEMne 2 Z e − 1 ωp ≃ ≃ (654eV) ρ3 me A 3. Croon, McDermott, Sakstein 2007.00650 + 2007.07889 2.5

Implications2. for Oxygen Production 3. 0.17 0.16 shorter time to He 0.152.5 0.14 depletion… 0.132. 0.12 0.11 0 20 40 60 80 100 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0 20 40 60 80 100 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Oxygen Production

3. shorter time to He 2.5 depletion… 2.

0.17 0.16 0.15 …less oxygen 0.14 0.13 available during pulsations 0.12 0.11 0 20 40 60 80 100 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Pulsations

time t=0 60

63

50

62.7 2× 108 3× 108 4× 108 40 108 109 1010 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Pulsations

time t=0 time 60

63

50

62.7 2× 108 3× 108 4× 108 40 108 109 1010 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Pulsations

time t=0 time 60

O(~%) less mass 63 lost to winds 50

62.7 2× 108 3× 108 4× 108 40 108 109 1010 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Pulsations

t=0 60

O(~%) less mass 63 much less mass lost to winds 50 lost to pulsation

62.7 2× 108 3× 108 4× 108 40 108 109 1010 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Black Hole

60 60 t=0 6 50 50 � ∝ T ae 40 40 30 30 20 20 10 10 0 0 20 30 40 50 60 70 GW150914 GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170818 GW170823 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Black Hole Masses

60 60 t=0 6 50 50 � ∝ T ae 40 40 30 30 20 20 XENON1T 10 “preferred” 10 value 0 0 20 30 40 50 60 70 GW150914 GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170818 GW170823 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Black Hole Masses

50 50 t=0 40 40 30 30 4 �aγ ∝ T 20 20

10 10 0 0 20 30 40 50 60 70 GW150914 GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170818 GW170823 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Black Hole Masses

70 70 t=0 60 60 � ∝ T A′ 50 50 40 40 30 30 20 20

10 10 0 0 30 40 50 60 70 GW150914 GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170818 GW170823 Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Black Hole Masses

160 160 160 160 160 160

140 140 140 140 140 140 120 t=0 120 120 120 120 120 100 100 100 100 100 100 80 80 80 80 80 80 60 60 60 60 60 60 40 40 40 40 40 40

20 20 20 20 20 20

0 20 40 60 80 100 0 1 2 3 4 5 0 1 2 3 4 5

larger coupling to new physics ⟹ larger black hole mass Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Implications for Black Hole Masses

160 160 160 160 160 160

140 140 140 140 140 140 120 t=0 120 120 120 120 120 100 100 100 100 100 100 80 80 80 80 80 80 60 60 60 60 60 60 40 40 40 40 40 40

20 20 20 20 20 20

0 20 40 60 80 100 0 1 2 3 4 5 0 1 2 3 4 5

||||

||||

||| |

| | ||

||

| | | Sakstein, Croon, SDM, Straight, Baxter | || 2009.01213 50 60 70 80 90 But… Limits!

Claimed constraints from other stellar systems are in “tension”

Capozzi & Raffelt 2007.03694: “The evolution of a low-mass star as it ascends the red-giant branch (RGB) is driven by the growing mass and shrinking size of its dege- nerate core until helium ignites and the core quickly expands” ⟹ α26 ≤ 0.2

CAST excludes up to eV, weakening linearly at larger ; g10 ≤ 0.7 ma ∼ 0.02 ma helioseismology requires (Vinyoles et al., 1501.01639) g10 ≤ 4

Exceeding the of photons from the sun unacceptably changes the 8B neutrino flux, limiting −9 (An et al., 1302.3884; Redondo and Raffelt ϵmA′ /meV ≲ 10 1305.2920) But… Limits!

Claimed constraints from other stellar systems are in “tension”

Capozzi & Raffelt 2007.03694: “The evolution of a low-mass star as it ascends the red-giant branch (RGB) is driven by the growing mass and shrinking size of its dege- nerate core until helium ignites and the core quickly expands” ⟹ α26 ≤ 0.2

CAST excludes up to eV, weakening linearly at larger ; g10 ≤ 0.7 ma ∼ 0.02 ma helioseismology requires (Vinyoles et al., 1501.01639) g10 ≤ 4

Exceeding the luminosity of photons from the sun unacceptably changes the 8B neutrino flux, limiting −9 (An et al., 1302.3884; Redondo and Raffelt ϵmA′ /meV ≲ 10 1305.2920) the Sun is pretty well (though as yet imperfectly) understood But… Limits!

Claimed constraintsthese stars from have other uncertainties stellar systems (mixing, are in structure) “tension” and unexplored parameter degeneracies (age, metallicity; distance, reddening) Capozzi & Raffelt 2007.03694: “The evolution of a low-mass star as it ascends the red-giant branch (RGB) is driven by the growing mass and shrinking size of its dege- nerate core until helium ignites and the core quickly expands” ⟹ α26 ≤ 0.2

CAST excludes up to eV, weakening linearly at larger ; g10 ≤ 0.7 ma ∼ 0.02 ma helioseismology requires (Vinyoles et al., 1501.01639) g10 ≤ 4

Exceeding the luminosity of photons from the sun unacceptably changes the 8B neutrino flux, limiting −9 (An et al., 1302.3884; Redondo and Raffelt ϵmA′ /meV ≲ 10 1305.2920) the Sun is pretty well (though as yet imperfectly) understood But… Limits!

Claimed constraintsthese stars from have other uncertainties stellar systems (mixing, are in structure) “tension” and unexplored parameter degeneracies (age, metallicity; distance, reddening) Capozzi & Raffelt 2007.03694: “The evolution of a low-mass star as it ascends the red-giant branch (RGB) is driven by the growing mass and shrinking size of its dege- nerate core until helium ignites and the core quickly expands” ⟹ α26 ≤ 0.2 Solar bound only (Redondo 1310.0823) α26 ≤ 4200 CAST excludes up to eV, weakening linearly at larger ; g10 ≤ 0.7 ma ∼ 0.02 ma helioseismology requires (Vinyoles et al., 1501.01639) g10 ≤ 4

Exceeding the luminosity of photons from the sun unacceptably changes the 8B neutrino flux, limiting −9 (An et al., 1302.3884; Redondo and Raffelt ϵmA′ /meV ≲ 10 1305.2920) the Sun is pretty well (though as yet imperfectly) understood Also: different characteristic Tc 63 Bremss. M⊙ Compton track 2 102 10 HB RGB tip ~ 10 keV 1 1 10-2 WD 10-2

10-4 Sun WDV -6 10 MS 10-4

8 New Physics: Summary

• New light particles can shorten helium burning, reduce the amount of oxygen, and increase the black hole mass

• The picture (including effects on other stars) is not perfectly tidy as degeneracies / observational uncertainties are underexplored

• Constraints on hidden photon, photophilic axion, and neutrino dipole moment seem robust; electrophilic axion potentially less so

• Model building routes to skirt bounds? New Physics: Summary

• New light particles can shorten helium burning, reduce the amount of oxygen, and increaseLots the black of holeroom mass • The picture (includingremains effects on forother better stars) is not perfectly tidy as degeneracies / observationalunderstanding! uncertainties are underexplored • Constraints on hidden photon, photophilic axion, and neutrino dipole moment seem robust; electrophilic axion potentially less so

• Model building routes to skirt bounds? Outline

1. Physics of the pair instability mechanism

2. Beyond-the-Standard-Model explanations of GW190521

3. Standard Model explanations of GW190521

4. Future prospects Three Routes for SM Explanations

1. Increase the mass before PPISN Three Routes for SM Explanations

1. Increase the mass before PPISN

2. Increase the mass during PPISN Three Routes for SM Explanations

1. Increase the mass before PPISN

2. Increase the mass during PPISN

3. Increase the mass after PPISN Three Routes for SM Explanations

Stellar merger, no mass loss, 1. Increase the mass before PPISN retention of H envelope 2. Increase the mass during PPISN

3. Increase the mass after PPISN Three Routes for SM Explanations

Stellar merger, no mass loss, 1. Increase the mass before PPISN retention of H envelope 2. Increase the mass during PPISN

3. Increase the mass after PPISN 2010.00705 Three Routes for SM Explanations

1. Increase the mass before PPISN

2. Increase the mass during PPISN make pulsations less effective

3. Increase the mass after PPISN Three Routes for SM Explanations

Z Environment 1. Increase the mass before PPISN Rates Winds (2σ errors) f ov Physics 2. Increase the mass during PPISN ÆMLT ∫r Farmer et al., 2 3. Increase the mass after PPISN sin µw 1910.12874 ¢s ¢t Numerics Net 40 50 60 Maximum BH mass (MBH,max [M ]) Ø Three Routes for SM Explanations

“rates” error bar dominated by rate of 12C(α, γ)16O Z Environment 1. Increase the mass before PPISN Rates Winds (2σ errors) f ov Physics 2. Increase the mass during PPISN ÆMLT ∫r Farmer et al., 2 3. Increase the mass after PPISN sin µw 1910.12874 ¢s ¢t Numerics Net 40 50 60 Maximum BH mass (MBH,max [M ]) Ø Three Routes for SM Explanations

175 Farmer et al., 2006.06678 BHs 150 1. Increase the mass before PPISN Mass Gap 125 ] Ø

2. Increase the mass during PPISN [M 100 BH M 75 3. Increase the mass after PPISN Mass Gap 50 BHs 25 3 2 1 0 1 2 3 ° ° ° æC12 GW150914 GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170817 GW170818 GW170823 Three Routes for SM Explanations

Update: deBoer et al. 2017 175 Farmer et al., 2006.06678 BHs 150 1. Increase the mass before PPISN Mass Gap 125 ] Ø

2. Increase the mass during PPISN [M 100 BH M , 035007 – Published 7 September 2017

89 75 3. Increase the mass after PPISN Mass Gap 50

J. deBoer, J. Görres, M. Wiescher, R. E. Azuma, A. Best, C. Görres, M. Wiescher, J. deBoer, R. J. K. Sayre, C. E. Fields, S. Jones, M. Pignatari, D. R. Brune, X. Timmes, and E. Uberseder Smith, F. Mod. Phys. Rev. BHs 25 +3.6 +7 3 2 1 0 1 2 3 we find (vs. ) ° ° ° 48−1 M⊙ 48−2M⊙ æC12 (STARLIB) GW150914 GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170817 GW170818 GW170823 Three Routes for SM Explanations

Update: deBoer et al. 2017 175 Farmer et al., 2006.06678 BHs 150 1. Increase the mass before PPISN Mass Gap 125 ] Ø

2. Increase the mass during PPISN [M 100 BH M , 035007 – Published 7 September 2017

89 75 3. Increase the mass after PPISN Mass Gap 50

J. deBoer, J. Görres, M. Wiescher, R. E. Azuma, A. Best, C. Görres, M. Wiescher, J. deBoer, R. J. K. Sayre, C. E. Fields, S. Jones, M. Pignatari, D. R. Brune, X. Timmes, and E. Uberseder Smith, F. Mod. Phys. Rev. BHs 25 +3.6 +7 3 2 1 0 1 2 3 we find (vs. ) °-6 °-4 °-2 2 4 6 48−1 M⊙ 48−2M⊙ æC12

deBoer et al. GW150914 GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170817 GW170818 GW170823 Three Routes for SM Explanations

approximate deBoer et al. error bar for 12C(α, γ)16O Z Environment 1. Increase the mass before PPISN Rates Winds (2σ errors) f ov Physics 2. Increase the mass during PPISN ÆMLT ∫r Farmer et al., 2 3. Increase the mass after PPISN sin µw 1910.12874 ¢s ¢t Numerics Net 40 50 60 Maximum BH mass (MBH,max [M ]) Ø Three Routes for SM Explanations

1. Increase the mass before PPISN

2. Increase the mass during PPISN Nth gen - Nth gen mergers, 3. Increase the mass after PPISN accretion in nuclear , … Three Routes for SM Explanations van Son et al., 2004.05187

1. Increase the mass before PPISN

2. Increase the mass during PPISN Nth gen - Nth gen 3. Increase the mass after PPISN mergers SM Explanations: Summary

• There “definitely may be” paths to making BHs with masses through SM mechanisms alone M ≳ 50M⊙ SM Explanations: Summary

• There “definitely may be” paths to making BHs with masses through SM mechanisms alone M ≳ 50M⊙

• Reliant on very uncertain SM ((g)astro)physics: nonequilibrium stellar dynamics: how do stars merge / mix? what happens to the new core and envelope? stellar populations: how do binary systems evolve? what are viable pathways for multiple mergers? nuclear physics: how does 12C capture 4He? SM Explanations: Summary

• There “definitely may be” paths to making BHs with masses through SM mechanisms alone M ≳ 50M⊙

• Reliant on very uncertain SM ((g)astro)physics: If these are responsible for GW190521, we nonequilibrium stellar dynamics: how do stars merge / mix? have witnessed a rare event (not every what happens to the new core and envelope? star or black hole experiences a merger) stellar populations: how do binary systems evolve? what are viable pathways for multiple mergers? nuclear physics: how does 12C capture 4He? Outline

1. Physics of the pair instability mechanism

2. Beyond-the-Standard-Model explanations of GW190521

3. Standard Model explanations of GW190521

4. Future prospects GW190521: BSM vs SM explanations

SM physics

• “Location” of the mass gap is the SM-only calculation prediction*

*unless ~5σ deviations from nuclear rates GW190521: BSM vs SM explanations

SM physics

• “Location” of the mass gap is the SM-only calculation prediction*

*unless ~5σ deviations from nuclear rates

• Systems with no mergers give a continuous distribution of up MBH to expected value of the gap plus rare excursions to higher masses that “pollute” the gap GW190521: BSM vs SM explanations

SM physics BSM physics

• “Location” of the mass gap is the • “Location” of the mass gap is not SM-only calculation prediction* as expected from SM-only

*unless ~5σ deviations from nuclear rates calculation: objects “in the (SM) mass gap” form from isolated • Systems with no mergers give a evolution, no mergers required continuous distribution of up MBH to expected value of the gap plus rare excursions to higher masses that “pollute” the gap GW190521: BSM vs SM explanations

SM physics BSM physics

• “Location” of the mass gap is the • “Location” of the mass gap is not SM-only calculation prediction* as expected from SM-only

*unless ~5σ deviations from nuclear rates calculation: objects “in the (SM) mass gap” form from isolated • Systems with no mergers give a evolution, no mergers required continuous distribution of up MBH to expected value of the gap plus • Implies a continuous† distribution rare excursions to higher masses of BH masses up to a new, higher value of that “pollute” the gap MBH † caveat to be discussed shortly LIGO Observations: O1+O2 Black Hole Population Statistics 4 26 actual events from 3 LIGO O1+O2 + “exceptional events”

BH 2 N

1

0 0 20 40 60 80 100

MBH [M] Black Hole Population Statistics 4 −2 NBH ∝ MBH 3

rising sensitivitystrain BH 2 N −1 1 NBH ∝ MBH

0 0 20 40 60 80 100

MBH [M] Black Hole Population Statistics 4 −2 NBH ∝ M BH inherited from 3 a stellar IMF

rising sensitivitystrain BH 2 N −1 1 NBH ∝ MBH

0 0 20 40 60 80 100

MBH [M] Black Hole Population Statistics

4 −2 NBH ∝ MBH[Θ(50M⊙ − MBH)+ +0.1Θ(MBH − 50M⊙)] 3

BH 2 N −1 NBH ∝ MBH[Θ(50M⊙ − MBH)+ +0.1Θ(M − 50M )] 1 BH ⊙

0 0 20 40 60 80 100

MBH [M] Black Hole Population Statistics 40 −2 NBH ∝ MBH[Θ(50M⊙ − MBH)+ 30 +0.1Θ(MBH − 50M⊙)]

BH 20 N −1 NBH ∝ MBH[Θ(50M⊙ − MBH)+ 10 +0.1Θ(MBH − 50M⊙)]

0 20 40 60 80 100

MBH [M] Black Hole Population Statistics 40 −2 NBH ∝ MBH 30

BH 20 N −1 10 NBH ∝ MBH

0 20 40 60 80 100

MBH [M] Black Hole Population Statistics

−α m1 ℋ(Mmax − m1) p (m1, m2 ∣ α, Mmax) ∝ min(m1, Mtot,max − m1) − Mmin 0.6 70 0.030 fixed Mmax = 100 M Ø 65 Assumed sensitivity: Mtot,max = 100 M 0.5 Ø 60 0.4

) 55 Ø 0.024 ) M ( Æ 0.3 50 ( p First four LIGO max M 45 0.2 detections: 40 0.1 35 0.018

0.0 30 2 1 0 1 2 3 4 5 2 1 0 1 2 3 4 5 ° ° ° ° Æ Æ 70 0.10

Mtot,max = 200 M Ø 65 Assumed sensitivity: Mtot,max = 200 M 0.012 Ø Mtot,max = 100 M 0.08 Ø Fishbach & Holz, 60

1709.08584 ) 55

Ø 0.06 ) M ( 50 max M (

max 0.006 p 0.04 M 45

40 0.02 35

30 0.00 0.000 2 1 0 1 2 3 4 5 20 30 40 50 60 70 80 90 100 ° ° xkcd.com/2059/ Æ Mmax (M ) Ø LIGO Observations: O1+O2+O3a Black Hole Population Statistics

8 peak (true location of the BHMG) + 6 pollutant? BH

N 4

2

0 0 20 40 60 80

MBH [M] Conclusions

xkcd.com/1022/ Conclusions

• LIGO is in the middle of its “discovery bump” — we are learning so much more about the Universe all the time!

• GW190521 provides rich fodder for new ideas and tests of both SM and BSM physics

• The future is exciting!

xkcd.com/1022/ Thanks!

[email protected] home.fnal.gov/~sammcd00/ Environmental Variation

100 Core Pulsations Pair 50 Collapse Instability MHe Farmer et al., Mpre pulses ) 1910.12874 ] 80

Ø MBH,max ApJ 887 53F 40 [M

] 60 Winds BH Ø

M Pulses ( 30 M [M 40

20 metallicity 20 Black Holes 5 3 10° 10° 5 3 Black hole mass 10 5 10° 2 10° 0 5.0 4.5 4.0 3.5 3.0 2.5 £4 £ 3 10° 3 10° ° ° ° log10 Z° ° ° 4 £ 5 10° £ 0 30 40 50 60 70 SM prediction: MBH < 48 M CO core mass (MCO [M ]) ☉ Ø GW150914 GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170817 GW170818 GW170823 Three Routes for SM Explanations

200

1. Increase the mass before PPISN 175 CC Farmer et al., 150 ]

2. Increase the mass during PPISN Ø 2006.06678

[M 125 Intial

, PISN

3. Increase the mass after PPISN He 100 M 75

50 CC PPISN

3 2 1 0 1 2 3 ° ° ° æC12 R. J. deBoer, J. Görres, M. Wiescher, R. E. Azuma, A. Best, C. R. Brune, C. E. Fields, S. Jones, M. Pignatari, D. Sayre, K. Smith, F. X. Timmes, and E. Uberseder Rev. Mod. Phys. 89, 035007 – Published 7 September 2017 12C(α,γ)16O rates

Kunz(1±1σ)

deBoer(1±1σ) deBoer(–2.7σ) 10 Kunz(–1.6σ) AR rate NACRE / Rate

deBoer(–4.5σ) 1 Kunz(–2.5σ) 10 Temperature [GK] Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Losses to Light Particles

40 ζ α g2 Y T6 erg • Electrophilic axion: � = 6 EM ae e F ≃ 33 α Y T6 F sC 2 4 deg 26 e 8 deg T π m m g⋅s T ≡ N e 8 108K 2 7 2 2 gaγT k k erg • Photophilic axion: � = S f S ≃ 283.16 g2 T4 aγ 2 10 8 k 2 ρ 4π ρ ( 2T ) [( 2T ) ] g ⋅ s S = 0.166 3 Y Z2 ( ) 3 ∑ j j 2T T8 j 2 2 3 2 ϵ m ωp erg Z ϵ m • Dark photon: A′ A′ �A′ = ≃ 1800 T8 4π ρ ωp/T g⋅s A ( 10−7 meV ) 2 4παEMne 2 Z e − 1 ωp ≃ ≃ (654eV) ρ3 me A Croon, McDermott, Sakstein 2007.00650 + 2007.07889 Losses to Light Particles

1010 9 8 • Electrophilic axion: 10 10 106 104 108 102 108 109 106 • Photophilic axion: 104 108 �/�ν = 1 102 109 106

• Dark photon: 108 105 100 101 102 103 104 105 106 107