<<

~FIND THE GAP~ New Physics and the Gap

Samuel D. McDermott work with Djuna Croon + Jeremy Sakstein: PotDU & 2007.00650 [hep-ph], PRD & 2007.07889 [gr-qc] &/+ Maria Straight and Eric Baxter: PRL & 2009.01213 [gr-qc] &/+ Eric Baxter: @ApJL & 2104.02685 [astro-ph.CO] + code development in progress (email me for updates/release info)

1 [email protected] Sam McDermott “Find the Gap” 2104.02685/@ApJL 60 Black Hole Mass Gap (BHMG) 40 dN(1g) dN 1 ∼ dθ * 20 dMBH ∫ dM* dMBH(θ)/dM*

0 (1g) (2g) 40 50 60 70 80 90 ⃗ dN dN p (m1, m2 ∣ θ ) ∝ + λ dMBH dMBH with GW190521 47.7 without GW190521 0.20

2 10° 0.15 ) M ( 0.10 n 3 10° + LVC GWTC-2 = 0.05 0.00 4 10° 20 30 40 50 60 70 80 90 0 20 40 60 80 100 M Ø Sam McDermott “Find the Gap” 2104.02685/@ApJL 60 Black Hole Mass Gap (BHMG) 40 dN(1g) dN 1 ∼ dθ * ∫ 20 Part 1 dMBH dM* dMBH(θ)/dM* 0 (1g) (2g) 40 50 60 70 80 90 ⃗ dN dN p (m1, m2 ∣ θ ) ∝ + λ dMBH dMBH with GW190521 47.7 without GW190521 0.20

2 10° 0.15 ) M ( 0.10 n 3 10° + LVC GWTC-2 = 0.05 0.00 4 10° 20 30 40 50 60 70 80 90 0 20 40 60 80 100 M Ø Sam McDermott “Find the Gap” 2104.02685/@ApJL 60 Black Hole Mass Gap (BHMG) 40 dN(1g) dN 1 ∼ dθ * ∫ 20 Part 1 dMBH dM* dMBH(θ)/dM* 0 (1g) (2g) 40 50 60 70 80 90 ⃗ dN dN p (m1, m2 ∣ θ ) ∝ + λ dMBH dMBH with GW190521 47.7 without GW190521 0.20

2 10° 0.15 ) M ( 0.10 n 3 10° + LVC GWTC-2 = 0.05 0.00 4 20 30 40 50 60 70 80 90 10° Part 2 0 20 40 60 80 100 M Ø Croon, McDermott, Sakstein PRD & 2007.07889

60

40

power law increase 20

calculated with MESA 0 40 50 60 70 80 90 Croon, McDermott, Sakstein PRD & 2007.07889

60

40 “flattens” MBH power law (pulsations) increase 20

calculated with MESA 0 40 50 60 70 80 90 Croon, McDermott, Sakstein PRD & 2007.07889

60

40 M “flattens” M BH BH power law (pulsations) decreases increase 20

calculated with MESA 0 40 50 60 70 80 90 Croon, McDermott, Sakstein PRD & 2007.07889

60

40 M “flattens” M BH BH power law (pulsations) decreases increase 20

calculated with MESA 0 no remnant! 40 50 60 70 80 90 Croon, McDermott, Sakstein PRD & 2007.07889

60 maximum black hole mass MBHMG 40 M “flattens” M BH BH power law (pulsations) decreases increase 20

calculated with MESA 0 no remnant! 40 50 60 70 80 90 Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Evolution* of Pop III Stars

109

→ time

108 102 103 104 105 106 107

10 *MESA v12778 Paxton et al, arXiv:1710.08424 [astro-ph.SR] Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Outcome of Pulsations

no remnant

9 10 remnant (despite some mass loss)

108 — pulsational pair instability (PPISN) 70M⊙ ≲ M10in 2≲ 100M⊙103 104 105 106 107 vs

100M⊙ ≲ Min ≲ 250M⊙ — pair instability supernova (PISN) Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Can we Change the BHMG?

• New light degree(s) of freedom are produced in the core of a massive star during helium burning

• This additional loss channel causes the star to consume fuel more quickly and end helium burning earlier

• This reduces the amount of 16O available during pulsations

• Explosions are less violent ⟹ mass loss is less pronounced ⟹ a heavier black hole

12 Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Reactions in Pop III Stars

109 Main nuclear{ reaction:

→ time

108 102 103 104 105 106 107

13 *MESA v12778 Paxton et al, arXiv:1710.08424 [astro-ph.SR] Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Reactions in Pop III Stars

109 Main nuclear{ reaction: Subdominant but important: → γ time

16O 108 102 103 104 105 106 107

14 *MESA v12778 Paxton et al, arXiv:1710.08424 [astro-ph.SR] Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Losses to Light Particles

40 ζ α g2 Y T6 erg • Electrophilic axion: � = 6 EM ae e F ≃ 33 α Y T6 F sC 2 4 deg 26 e 8 deg T π m m g⋅s T ≡ N e 8 108K 2 7 2 2 gaγT k k erg • Photophilic axion: � = S f S ≃ 283.16 g2 T4 aγ 2 10 8 k 2 ρ 4π ρ ( 2T ) [( 2T ) ] g ⋅ s S = 0.166 3 Y Z2 ( ) 3 ∑ j j 2T T8 j 2 2 3 2 ϵ m ωp erg Z ϵ m • Dark photon: A′ A′ �A′ = ≃ 1800 T8 4π ρ ωp/T g⋅s A ( 10−7 meV ) 2 4παEMne 2 Z e − 1 ωp ≃ ≃ (654eV) ρ3 me A 3. Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 2.5

Implications2. for Oxygen Production 3. 0.17 0.16 shorter time to He 0.152.5 0.14 depletion… 0.132. 0.12 0.11 0 20 40 60 80 100 0.17 New particle coupling strength (big) 0.16 0.15 0.14 0.13 0.12 0.11 0 20 40 60 80 100 Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Implications for Oxygen Production

3. shorter time to He 2.5 depletion… 2.

0.17 0.16 0.15 …less oxygen 0.14 0.13 available during pulsations 0.12 0.11 0 20 New particle40 coupling60 strength 80 (big)100 Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Implications for Black Hole

60 60 max BSM coupling t=0 50 50 SM only increasing coupling 40 40 30 30 20 20 10 10 0 0 20 30 40 50 60 70 initial stellar mass GW150914 GW151012 GW151226 GW170104 GW170608 GW170729 GW170809 GW170814 GW170818 GW170823 Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Losses to Light Particles

1010 9 8 • Electrophilic axion: 10 10 106 104 108 102 108 109 106 • Photophilic axion: 104 108 �/�ν = 1 102 109 106

• Dark photon: 108 105 100 101 102 103 104 105 106 107 Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Implications for Black Hole Masses

160 160 160 160 160 160

140 140 140 140 140 140 120 t=0 120 120 120 120 120 100 100 100 100 100 100 80 80 80 80 80 80 BHMG BHMG BHMG M M M 60 60 60 60 60 60 40 40 40 40 40 40

20 20 20 20 20 20

0 20 40 60 80 100 0 1 2 3 4 5 0 1 2 3 4 5 increasing increasing increasing coupling coupling coupling

larger coupling to new physics ⟹ larger black hole mass

20 Croon, McDermott, Sakstein PotDU & 2007.00650 + PRD & 2007.07889 Implications for Black Hole Masses

160 160 160 160 160 160

140 140 140 140 140 140 120 t=0 120 120 120 120 120 100 100 100 100 100 100 80 80 80 80 80 80 BHMG BHMG BHMG M M M 60 60 60 60 60 60 40 40 40 40 40 40

20 20 20 20 20 20

0 20 40 60 80 100 0 1 2 3 4 5 0 1 2 3 4 5 0 35 g13 larger coupling to new physics ⟹ larger black hole mass

21 But… Limits!

Claimed constraints from other stellar systems are in “tension”

Capozzi & Raffelt 2007.03694: “The evolution of a low-mass star as it ascends the red-giant branch (RGB) is driven by the growing mass and shrinking size of its dege- nerate core until helium ignites and the core quickly expands” ⟹ α26 ≤ 0.2

CAST excludes up to eV, weakening linearly at larger ; g10 ≤ 0.7 ma ∼ 0.02 ma helioseismology requires (Vinyoles et al., 1501.01639) g10 ≤ 4

Exceeding the of photons from the sun unacceptably changes the 8B neutrino flux, limiting −9 (An et al., 1302.3884; Redondo and Raffelt ϵmA′ /meV ≲ 10 1305.2920) But… Limits!

Claimed constraints from other stellar systems are in “tension”

Capozzi & Raffelt 2007.03694: “The evolution of a low-mass star as it ascends the red-giant branch (RGB) is driven by the growing mass and shrinking size of its dege- nerate core until helium ignites and the core quickly expands” ⟹ α26 ≤ 0.2

CAST excludes up to eV, weakening linearly at larger ; g10 ≤ 0.7 ma ∼ 0.02 ma helioseismology requires (Vinyoles et al., 1501.01639) g10 ≤ 4

Exceeding the luminosity of photons from the sun unacceptably changes the 8B neutrino flux, limiting −9 (An et al., 1302.3884; Redondo and Raffelt ϵmA′ /meV ≲ 10 1305.2920) the Sun is pretty well (though as yet imperfectly) understood But… Limits!

Claimed constraintsthese stars from have other uncertainties stellar systems (mixing, are in structure) “tension” and unexplored parameter degeneracies (age, metallicity; distance, reddening) Capozzi & Raffelt 2007.03694: “The evolution of a low-mass star as it ascends the red-giant branch (RGB) is driven by the growing mass and shrinking size of its dege- nerate core until helium ignites and the core quickly expands” ⟹ α26 ≤ 0.2

CAST excludes up to eV, weakening linearly at larger ; g10 ≤ 0.7 ma ∼ 0.02 ma helioseismology requires (Vinyoles et al., 1501.01639) g10 ≤ 4

Exceeding the luminosity of photons from the sun unacceptably changes the 8B neutrino flux, limiting −9 (An et al., 1302.3884; Redondo and Raffelt ϵmA′ /meV ≲ 10 1305.2920) the Sun is pretty well (though as yet imperfectly) understood But… Limits!

Claimed constraintsthese stars from have other uncertainties stellar systems (mixing, are in structure) “tension” and unexplored parameter degeneracies (age, metallicity; distance, reddening) Capozzi & Raffelt 2007.03694: “The evolution of a low-mass star as it ascends the red-giant branch (RGB) is driven by the growing mass and shrinking size of its dege- nerate core until helium ignites and the core quickly expands” ⟹ α26 ≤ 0.2 Solar bound only (Redondo 1310.0823) α26 ≤ 4200 CAST excludes up to eV, weakening linearly at larger ; g10 ≤ 0.7 ma ∼ 0.02 ma helioseismology requires (Vinyoles et al., 1501.01639) g10 ≤ 4

Exceeding the luminosity of photons from the sun unacceptably changes the 8B neutrino flux, limiting −9 (An et al., 1302.3884; Redondo and Raffelt ϵmA′ /meV ≲ 10 1305.2920) the Sun is pretty well (though as yet imperfectly) understood But… Limits! Di Luzio, et al., 2006.12487 & PRL Also… Claimed constraintsthese stars from have other uncertainties stellar systems (mixing, are in structure) “tension” and unexplored parameter degeneracies (age, metallicity; distance, reddening) Capozzi & Raffelt 2007.03694: “The evolution of a low-mass star as it ascends the red-giant branch (RGB) is driven by the growing mass and shrinking size of its dege- nerate core until helium ignites and the core quickly expands” ⟹ α26 ≤ 0.2 Solar bound only (Redondo 1310.0823) α26 ≤ 4200 CAST excludes up to eV, weakening linearly at larger ; g10 ≤ 0.7 ma ∼ 0.02 ma helioseismology requires (Vinyoles et al., 1501.01639) g10 ≤ 4

Exceeding the luminosity of photons from the sun unacceptably changes the 8B neutrino flux, limiting −9 (An et al., 1302.3884; Redondo and Raffelt ϵmA′ /meV ≲ 10 1305.2920) the Sun is pretty well (though as yet imperfectly) understood But… Limits! Di Luzio, et al., 2006.12487 & PRL Also… Claimed constraintsthese stars from have other uncertainties stellar systems (mixing, are in structure) “tension” and unexplored parameter degeneracies (age, metallicity; distance, reddening) Capozzi & Raffelt 2007.03694: “The evolution of a low-mass star as it ascends the red-giant branch (RGB) is driven by the growing mass and shrinking size of its dege- nerate core until helium ignites and the core quickly expands” ⟹ α26 ≤ 0.2 Solar bound only (Redondo 1310.0823) α26 ≤ 4200 CAST excludes up to eV, weakening linearly at larger ; g10 ≤ 0.7 ma ∼ 0.02 ma helioseismology requires (Vinyoles et al., 1501.01639) g10 ≤ 4

Exceeding the luminosity of photons from the sun unacceptably changes the 8B neutrino flux, limiting −9 (An et al., 1302.3884; Redondo and Raffelt ϵmA′ /meV ≲ 10 Not true! (we simulated this) 1305.2920) the Sun is pretty well (though as yet imperfectly) understood SM Uncertainties Z Environment Rates also rare events: Winds (2σ errors) • pre-/post-collapse merger f • accretion after formation ov Physics ÆMLT • retention of H envelope ∫r • binarity 2 • rotation sin µw • … ¢s ¢t Numerics Net 40 50 60 Farmer et al., Maximum BHM mass (MBH,max [M ]) 1910.12874 BHMG Ø Surprisingly Massive: SM vs BSM

SM physics BSM physics

• is at the value predicted by • is not as expected from MBHMG MBHMG the SM-only calculation* SM-only calculation: objects “in the

*unless ~5σ deviations from nuclear rates or major differences in (SM) mass gap” form from isolated stellar physics wrt to MESA evolution, no rare process required

• Continuous distribution of up to MBH • Implies a continuous distribution of expected value of due to MBHMG BH masses up to a new, higher isolated stars, plus rare excursions value of MBHMG to (“pollutants”) MBH > MBHMG

29 LIGO Observations: Oct 2020 Black Hole Population Statistics

0.030 with GW190521 with GW190521 without GW190521 without GW190521 0.025 2 10°

0.020 ) )

M 0.015 M ( ( n n 10 3 0.010 °

0.005

0.000 4 10° 0 20 40 60 80 100 0 20 40 60 80 100 M M Ø Ø Black Hole Population Statistics

with GW190521 Baxter, Croon, SDM, Sakstein @ApJL & 2104.02685 without GW190521 dN(1g) dN(2g) 2 ⃗ 10° p (m1, m2 ∣ θ ) ∝ + λ dMBH dMBH ) M ( n 3 10° BHs formed from “pollutants” (λ<1) isolated stellar evolution

4 xkcd.com/2059/ 10° 0 20 40 60 80 100 M Ø

32 Black Hole Population Statistics

with GW190521 Baxter, Croon, SDM, Sakstein @ApJL & 2104.02685 without GW190521 dN(1g) dN(2g) 2 ⃗ 10° p (m1, m2 ∣ θ ) ∝ + λ dMBH dMBH ) M ( n 3 10° BHs formed from “pollutants” (λ<1) isolated stellar evolution

4 xkcd.com/2059/ 10° 0 20 40 60 80 100 M Ø dN(1g) dN 1 ∼ d α ⃗ * dMBH ∫ dM* dMBH( α )⃗ /dM* this is exactly what we get from MESA! 33 Croon, McDermott, Sakstein PRD & 2007.07889 &/+ Baxter @ApJL & 2104.02685 dMBH/dM*

60

MBHMG 40

20

0 40 50 60 70 80 90

34 Croon, McDermott, Sakstein PRD & 2007.07889 &/+ Baxter @ApJL & 2104.02685 dMBH/dM*

60

MBHMG 40 wide range of stellar masses 20

0 40 50 60 70 80 90

35 Croon, McDermott, Sakstein PRD & 2007.07889 &/+ Baxter @ApJL & 2104.02685 dMBH/dM*

60

MBHMG narrow range of 40 BH masses wide range of stellar masses 20

0 40 50 60 70 80 90

36 Croon, McDermott, Sakstein PRD & 2007.07889 &/+ Baxter @ApJL & 2104.02685 dMBH/dM*

60

MBHMG narrow range of 40 BH masses wide range of stellar masses … followed 20 immediately by the mass gap! 0 40 50 60 70 80 90

37 Black Hole Population Statistics (1g) (2g) ⃗ dN dN after GWTC-2 p m1, m2 ∣ θ ∝ + λ ( ) Baxter, Croon, SDM, Sakstein dMBH dMBH @ApJL + 2104.02685

flexible fitting function with a sharp peak followed by a gap:

a−1 (1g) dNBH 2 MBH MBH ∝ 1 + 2a 1 − Θ(MBHMG − MBH) dMBH MBHMG ( MBHMG )

38 Black Hole Population Statistics (1g) (2g) ⃗ dN dN after GWTC-2 p m1, m2 ∣ θ ∝ + λ ( ) Baxter, Croon, SDM, Sakstein dMBH dMBH @ApJL + 2104.02685

flexible fitting function with a sharp peak followed by a gap:

a−1 (1g) dNBH 2 MBH MBH ∝ 1 + 2a 1 − Θ(MBHMG − MBH) dMBH MBHMG ( MBHMG )

(2g) (1g) (1g) dN dN (Ma) dN (MBH − Ma) ∼ dMa dMBH ∫ dMa dMa Black Hole Population Statistics (1g) (2g) ⃗ dN dN after GWTC-2 p m1, m2 ∣ θ ∝ + λ ( ) Baxter, Croon, SDM, Sakstein dMBH dMBH @ApJL + 2104.02685v2

1010--11 1010--11

1010--22 1010--22

1010--33 1010--33

1010--44 1010--44

2020 40 6060 8080 100100 2020 40 60 8080 100100

40 Black Hole Population Statistics (1g) (2g) ⃗ dN dN after GWTC-2 p m1, m2 ∣ θ ∝ + λ ( ) Baxter, Croon, SDM, Sakstein dMBH dMBH @ApJL + 2104.02685v2

47.7

0.20

0.15

0.10

0.05

0.00 20 30 40 50 60 70 80 90

41 Conclusions

42 xkcd.com/1022/ Conclusions

• LIGO is in the middle of its “discovery bump” — we are learning so much more about the Universe all the time!

• Physically motivated mass functions will soon reveal intimate details of the black hole creation mechanism

• The future is exciting!

43 xkcd.com/1022/ Thanks!

[email protected] samueldmcdermott.github.io/