<<

www..caltech.edu/page/press-release-gw170104 Four Formation of the first three gravitational-wave observations through isolated binary evolution Simon Stevenson, Alejandro Vigna-Gómez, Ilya Mandel, Jim W. Barrett, Coenraad J. Neijssel, David Perkins, Selma E. de Mink

me arXiv:1701.07032 dynamical isolated binary formation VS evolution

1 dynamical isolated binary formation VS evolution

1 1 chemically homogeneous evolution stellar rotation, mixing, no RLOF

2 chemically homogeneous evolution stellar rotation, mixing, no RLOF

“classical” evolution RLOF, common envelope 2 C MPAS Compact Object Mergers: Population Astrophysics and Statistics www.sr.bham.ac.uk/compas

Team: Supervisor Dr. I. Mandel, S.Stevenson, J.Barrett, A.Vigna-Gomez, C.J.Neijssel, + others

2 Pop synth in a nutshell

Create large samples for better statistics

3 Steps Input

create -2.3 binary pdf P(m) ∝m

5 m1 100 [Msun] (Kroupa 2001)

pdf flat

0.0 q 1 [m2/m1] (Sana et al, 2012)

pdf flat

10-1 log a 103[Au] (Öpik 1924) 4 We assume assume zero eccentricity at ZAMS Steps Input

evolve stars time , Lum, Teff, Radius etc

Pols et al 1998, 5 Hurley, Pols, and Tout 2000/2002 Steps Input

time Mass, Lum, Teff, Radius etc

binary interaction examples

6 Steps Input

Accreting star can only time Mass, Lum, Teff, Radius etc accrete on thermal binary interaction timescale examples m↓ m↑ Hurley, Pols, and Tout 2002 Schneider et al 2015

RLOF

7 Steps Input

250 km/s time Mass, Lum, Teff, Radius etc

binary interaction examples m↓ pdf m↑

V [km/s]

RLOF supernovae Hobbs et al. 2005

8 Steps Input

time Mass, Lum, Teff, Radius etc

binary interaction α=1.0 λ=0.1 examples m↓ Webbink et al. 1984 Hurley et al. 2002 m↑

RLOF supernovae common-envelope

9 Steps Output

time Mass, Lum, Teff, Radius etc Rapid population synthesis

On average less than m↓ 0.3 seconds per binary m↑

10 Mtot [M⊙] M2/M1 +3.8

GW150914 = 65.3 -3.4 q>0.65

+5.7

GW170104 = 50.7-4.6 q>0.46

+13.0

LVT151012 = 37.0 -4.0 q>0.24

+5.9

GW151226 = 21.8 -1.7 q>0.28

PB Abott et al. 2016 (O1 BBH), PB Abott et al. 2017 (GW170104)

11 Mtot [M⊙] M2/M1 +3.8

GW150914 = 65.3 -3.4 q>0.65

+5.7

GW170104 = 50.7-4.6 q>0.46

+13.0

LVT151012 = 37.0 -4.0 q>0.24

+5.9

GW151226 = 21.8 -1.7 q>0.28

PB Abott et al. 2016 (O1 BBH), PB Abott et al. 2017 (GW170104)

11 Mtot [M⊙] M2/M1 +3.8

GW150914 = 65.3 -3.4 q>0.65

+5.7

GW170104 = 50.7-4.6 q>0.46

+13.0

LVT151012 = 37.0 -4.0 q>0.24

+5.9

GW151226 = 21.8 -1.7 q>0.28

PB Abott et al. 2016 (O1 BBH), PB Abott et al. 2017 (GW170104)

an event!

11 Mtot [M⊙] M2/M1 +3.8

GW150914 = 65.3 -3.4 q>0.65

+5.7

GW170104 = 50.7-4.6 q>0.46

+13.0

LVT151012 = 37.0 -4.0 q>0.24

+5.9

GW151226 = 21.8 -1.7 q>0.28

PB Abott et al. 2016 (O1 BBH), PB Abott et al. 2017 (GW170104)

11 Mtot [M⊙] M2/M1 +3.8

GW150914 = 65.3 -3.4 q>0.65

+5.7

GW170104 = 50.7-4.6 q>0.46

+13.0

LVT151012 = 37.0 -4.0 q>0.24

+5.9

GW151226 = 21.8 -1.7 q>0.28

PB Abott et al. 2016 (O1 BBH), PB Abott et al. 2017 (GW170104)

11 Mtot [M⊙] M2/M1 +3.8

GW150914 = 65.3 -3.4 q>0.65

+5.7

GW170104 = 50.7-4.6 q>0.46

+13.0

LVT151012 = 37.0 -4.0 q>0.24

+5.9

GW151226 = 21.8 -1.7 q>0.28

PB Abott et al. 2016 (O1 BBH), PB Abott et al. 2017 (GW170104)

11 Mtot [M⊙] M2/M1 +3.8

GW150914 = 65.3 -3.4 q>0.65

+5.7

GW170104 = 50.7-4.6 q>0.46

+13.0

LVT151012 = 37.0 -4.0 q>0.24

+5.9

GW151226 = 21.8 -1.7 q>0.28

PB Abbott et al. 2016, PB Abbott et al. 2017

11 +5.9

GW151226 Mtot= 21.8 -1.7 q>0.28

12 GW151226

13 GW151226

13 GW151226

13 GW151226

13 GW151226

13 GW151226

13 GW151226

14 Ligo estimated rate Binaries = 9-240 Gpc−3 yr−1 Abbott et al. 2016 (O1 Results)

From Z=0.002 run COMPAS estimate ~300 per Gpc−3 yr−1

15 Ligo estimated rate Black Hole Binaries = 9-240 Gpc−3 yr−1 Abbott et al. 2016 (O1 Results)

COMPAS estimate ~70 per Gpc−3 yr−1 Neijssel et al. in prep

15 C MPAS www.sr.bham.ac.uk/compas

Yes binaries can create the LIGO events arXiv:1701.07032

Our current prediction ~70 per Gpc−3 yr−1 at z=0.0 Neijssel et al in prep. 15

COMPAS estimates ~70 events per Gpc−3 yr−1 arXiv:1701.07032 Neijssel et al in prep. Rate estimates/normalization depends on metallicities, multiplicity, and IMF of all stars. COMPAS estimates −3 −1 Possible unification~70 events of all stellar per Gpcdistributions yr arXiv:1701.07032 Neijssel et al in prep.

Rotation/tides: How many would be in population synthesis? chemically homo- geneous instead?

Stability/efficiency Mass Transfer Nr of Blue Stragglers, in binaries/ mergers and their parameters

Cores/HeMS : Identify binary products and constrain masses/cores? 5Msun Wolf Rayet stars/Asteroseismology? There are a lot more channels in Be/HM Xray-Binaries the simulations!!!!! Progenitors of events? Orbital parameters? Common Envelope: Possible Eccentricities/kicks? Universal physics? If so channel for what? And can planetary Rates: triple+ binary + WD-WD? nebulae/ Luminous red novae dynamical help to constrain? within LIGO estimates? SFR -> Madau & Dickinson 2014 metallicty fraction -> Norman & Langer 2005 Common envelope prescriptions, HMXB, Giant Stars mass transfer stabilities. Luminous red novae Single star uncertainties

Parameter ~70 per Gpc−3 yr−1 correlations at redshift z=0.0 Methods of sampling distributions

Formation Channels

Integrating rates over Bayesian Inference on metallicities, , model assumptions from and SFR LIGO O2 results.

15 Common envelope prescriptions, HMXB, Giant Stars mass transfer stabilities. Luminous red novae

~70 per Gpc−3 yr−1 at redshift z=0.0

Integrating rates over Bayesian Inference on metallicities, redshifts, model assumptions from and SFR LIGO O2 results.

15