Advanced Organic Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Organic Chemistry Advanced Organic • t FOURTH CheffilS fY EDITION Part B: Reactions and Synthesis Advanced Organic Chemistry PART A: Structure and Mechanisms PART B: Reactions and Synthesis Advanced Organic • t FOURTH ChemlS ry EDITION Part B: Reactions and Synthesis FRANCIS A. CAREY and RICHARD J. SUNDBERG University of Virginia Charlottesville, Virginia ~Springer Library of Congress Cataloging-in-Publication Data Carey, Francis A., 1937- Advanced organic chemistry/Francis A. Carey and Richard J. Sundberg.-4th ed. p. em. Includes bibliographical references and index. Contents: pt. B. Reactions and synthesis I. Sundberg, Richard J., 1938- II. Title. QD251.2 .C36 2000 547-dc21 00-059652 Library of Congress Cataloging-in-Publication Data Carey, Francis A., 1937- Advanced organic chemistry/Francis A. Carey and Richard ). Sundberg.-4th ed. p.cm. Includes bibliographical references and index. Contents: pt. B. Reactions and synthesis I. Sundberg, Richard)., 1938- II. Title. QD251.2 .C36 2000 547-dc21 00-059652 A C.I.P. record for this book is available from the Library of Congress ISBN 978-3-662-38652-1 ISBN 978-3-662-39510-3 (eBook) DOI 10.1007/978-3-662-39510-3 © 2001,1990,1984,1977 Springer Science+ Business Media New York Originally published by Springer Science Business Media, Inc. in 2001 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmit­ ted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher. (Springer Science+Business Media, LLC). The front cover shows the key orbital interactions in the Diels-Alder reaction. The highest-occupied molecular orbital (HOMO) of 1,3-butadiene and the lowest-unoccupied molecular orbital (LUMO) of ethylene overlap in phase with one another allowing the reaction to occur in a single step. 10 9 8 7 6 5 4 3 springeronline.com Preface to the Fourth Edition Part B emphasizes the most important reactions used in organic synthesis. The material is organized by reaction type. Chapters 1 and 2 discuss the alkylation, conjugate addition and carbonyl addition/condensation reactions of enolates and other carbon nucleophiles. Chapter 3 covers the use of nucleophilic substitution, both at saturated carbon and at carbonyl groups, in functional group of interconversions. Chapter 4 discusses electrophilic additions to alkenes and alkynes, including hydroboration. Chapter 5 discusses reduction reactions, emphasizing alkene and carbonyl-group reductions. Concerted reactions, especially Diels-Alder and other cycloadditions and sigmatropic rearrangements, are considered in Chapter 6. Chapters 7, 8, and 9 cover organometallic reagents and intermediates in synthesis. The main-group elements lithium and magnesium as well as zinc are covered in Chapter 7. Chapter 8 deals with the transition metals, especially copper, palladium, and nickel. Chapter 9 discusses synthetic reactions involving boranes, silanes, and stannanes. Synthetic reactions which involve highly reactive intermediates-carboca­ tions, carbenes, and radicals-are discussed in Chapter 10. Aromatic substitution by both e1ectrophilic and nucleophilic reagents is the topic of Chapter 11. Chapter 12 discusses the most important synthetic procedures for oxidizing organic compounds. In each of these chapters, the most widely used reactions are illustrated by a number of specific examples of typical procedures. Chapter 13 introduces the concept of synthetic planning, including the use of protective groups and synthetic equivalents. Multistep syntheses are illustrated with several syntheses of juvabione, longifolene, Prelog-Djerassi lactone, Taxol, and epothilone. The chapter concludes with a discussion of solid-phase synthesis and its application in the synthesis of polypeptides and oligonucleotides, as well as to combina­ torial synthesis. The control of reactivity to achieve specific syntheses is one of the overarching goals of organic chemistry. In the decade since the publication of the third edition, major advances have been made in the development of efficient new methods, particularly catalytic processes, and in means for control of reaction stereochemistry. For example, the scope and efficiency of palladium- catalyzed cross coupling have been greatly improved by optimization of catalysts by ligand modification. Among the developments in stereocontrol are catalysts for enantioselective reduction of ketones, improved methods for control of the v Vl stereoselectivity of Diels-Alder reactions, and improved catalysts for enantioselective hydroxylation and epoxidation of alkenes. PREFACE TO THE FOURTH EDmON This volume assumes a level of familiarity with structural and mechanistic concepts comparable to that in the companion volume, Part A, Structure and Mechanisms. Together, the two volumes are intended to provide the advanced undergraduate or beginning graduate student in chemistry a sufficient foundation to comprehend and use the research literature in organic chemistry. Contents of Part B Chapter 1. Alkylation of Nucleophilic Carbon Intermediates .......... 1.1. Generation of Carbanions by Deprotonation .................... 1.2. Regioselectivity and Stereoselectivity in Enolate Formation .......... 5 1.3. Other Means of Generating Enolates . 10 1.4. Alkylation of Enolates .................................. 11 1.5. Generation and Alkylation of Dianions ....................... 20 1.6. Medium Effects in the Alkylation of Enolates ................... 20 1.7. Oxygen versus Carbon as the Site of Alkylation ................. 23 1.8. Alkylation of Aldehydes, Esters, Amides, and Nitriles ............. 28 1.9. The Nitrogen Analogs of Enols and Enolates-Enamines and Imine Anions ............................................. 31 1.10. Alkylation of Carbon Nucleophiles by Conjugate Addition .......... 39 General References ................................... 47 Problems 47 Chapter 2. Reaction of Carbon Nucleophiles with Carbonyl Groups . 57 2.1. Aldol Addition and Condensation Reactions. 57 2.1.1. The General Mechanism . 57 2.1.2. Mixed Aldol Condensations with Aromatic Aldehydes . 60 2.1.3. Control of Regiochemistry and Stereochemistry of Mixed Aldol Reactions of Aliphatic Aldehydes and Ketones . 62 2.1.4. Intramolecular Aldol Reactions and the Robinson Annulation . 89 2.2. Addition Reactions of !mines and Iminium Ions . 96 2.2.1. The Mannich Reaction. 96 2.2.2. Amine-Catalyzed Condensation Reactions. 100 2.3. Acylation of Carbanions. 101 Vll viii 2.4. The Wittig and Related Reactions of Phosphorus-Stabilized Carbon Nucleophiles . Ill CONTENTS OF PART B 2.5. Reactions of Carbonyl Compounds with oc-Trimethylsilylcarbanions. 120 2.6. Sulfur Ylides and Related Nucleophiles . 122 2.7. Nucleophilic Addition--Cyclization. 127 General References . 128 Problems . 128 Chapter 3. Functional Group Interconversion by Nucleophilic Substitution . 141 3.1. Conversion of Alcohols to Alkylating Agents . 141 3 .1.1. Sulfonate Esters . 141 3.1.2. Halides. 142 3.2. Introduction of Functional Groups by Nucleophilic Substitution at Saturated Carbon . 147 3.2.1. General Solvent Effects ............................. 147 3.2.2. Nitrites ........................................ 150 3.2.3. Azides ........................................ 150 3.2.4. Oxygen Nucleophiles .............................. 152 3.2.5. Nitrogen Nucleophiles .............................. 155 3.2.6. Sulfur Nucleophiles ............................... 158 3.2.7. Phosphorus Nucleophiles ............................ 158 3.2.8. Summary of Nucleophilic Substitution at Saturated Carbon ..... 159 3.3. Nucleophilic Cleavage of Carbon-Oxygen Bonds in Ethers and Esters ... 159 3.4. Interconversion of Carboxylic Acid Derivatives .................. 164 3.4.1. Preparation of Reactive Reagents for Acylation ............. 166 3.4.2. Preparation of Esters .......................... : . ... 172 3.4.3. Preparation of Amides.............................. 172 Problems 180 Chapter 4. Electrophilic Additions to Carbon-Carbon Multiple Bonds . 191 4.1. Addition of Hydrogen Halides.. 191 4.2. Hydration and Other Acid-Catalyzed Additions of Oxygen Nucleophiles . 195 4.3. Oxymercuration . 196 4.4. Addition of Halogens to Alkenes. 200 4.5. Electrophilic Sulfur and Selenium Reagents. 209 4.6. Addition of Other Electrophilic Reagents . 216 4.7. Electrophilic Substitution Alpha to Carbonyl Groups. 216 4.8. Additions to Allenes and Alkynes . 222 4.9. Addition at Double Bonds via Organoborane Intermediates . 226 4.9.1. Hydroboration. 226 4.9.2. Reactions of Organoboranes. 232 4.9.3. Enantioselective Hydroboration. 236 4.9.4. Hydroboration of Alkynes . 239 General References . 240 IX Problems .......................................... 241 CONTENTS OF PART B Chapter 5. Reduction of Carbonyl and Other Functional Groups ....... 249 5.1. Addition of Hydrogen .................................. 249 5.1.1. Catalytic Hydrogenation. 249 5.1.2. Other Hydrogen-Transfer Reagents .................... 262 5.2. Group III Hydride-Donor Reagents .......................... 262 5.2.1. Reduction of Carbonyl Compounds .................... 262 5.2.2. Stereoselectivity of Hydride Reduction .................. 273 5.2.3. Reduction of Other Functional Groups by Hydride Donors .... 280 5.3. Group IV Hydride Donors ................................ 286 5.4. Hydrogen-Atom Donors ................................. 288 5.5. Dissolving-Metal Reductions .............................. 290 5.5 .1. Addition of Hydrogen ............................. 292 5.5.2.
Recommended publications
  • Pearson-CV-15.Pdf
    A. J. Pearson/C.V. January 2016 Curriculum Vitae Anthony J. Pearson Academic Rank: Rudolph & Susan Rense Professor of Chemistry Birthplace: Kingswinford, England. Citizenship: British; U.S. Naturalized Citizen. Education: University of Leeds, England, B.Sc. Hons. Class 1, 1971, Chemistry. Aston University, England, Ph.D., 1974, Organic Chemistry. Awards & Honors: Akroyd Scholarship (1969), Whytlaw-Gray Prize for Chemistry (1971), and Dawson Prize for Physical Chemistry (1971), University of Leeds. Sir Gilbert Morgan Medal (1973), Society for Chemical Industry, U.K. Science and Engineering Research Council (U.K.) Advanced Fellowship (1977-82). Sigma Xi Research Award (1984), Case Western Reserve University. John S. Diekhoff Award for Distinguished Graduate Teaching (1994), Case Western Reserve University. Visiting Scientist, Chemistry Research Promotion Center, Taipei, Taiwan, R.O.C., May 1990. Visiting Professor, University of Auckland, New Zealand, July/August, 1995. Chairman-Elect, American Chemical Society, Cleveland Section, 1999. Chairman, 2000. Finalist (one of three) for Northern Ohio Live 2001 Award of Achievement in Architecture, with R. Bostwick, N. Distad, K. Kutina, and N. Rushforth, for design of Agnar Pytte Science Center at CWRU. Case Alumni Association, Recognition of Meritorious Service, 2003. Experience: 1963-66 Chemist. Industrial research and analytical laboratories. Albright & Wilson; British Steel; West Midlands Gas Board. Semi-professional musician. 1974-77 Postdoctoral Research Fellow, with Arthur J. Birch. Research School of Chemistry, Australian National University, Canberra, Australia. 1977-82 SERC Advanced Fellow. Cambridge University Chemical Laboratory. 1978-81 Pauline Merz Official Fellow and Lecturer in Chemistry. Girton College, Cambridge University. 1979-81 Tutor. Girton College, Cambridge University. 1982-84 Associate Professor of Chemistry.
    [Show full text]
  • The Direct Electrochemical Synthesis of Selected Group-Iib Organometallic Compounds
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-1979 THE DIRECT ELECTROCHEMICAL SYNTHESIS OF SELECTED GROUP-IIB ORGANOMETALLIC COMPOUNDS. AKHTAR OSMAN University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation OSMAN, AKHTAR, "THE DIRECT ELECTROCHEMICAL SYNTHESIS OF SELECTED GROUP-IIB ORGANOMETALLIC COMPOUNDS." (1979). Electronic Theses and Dissertations. 7187. https://scholar.uwindsor.ca/etd/7187 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. 492-33 National Library Bibliothfeque nationale CANADIAN THESES THESES CANADtENNES f l * .of Canada ~ du Canada ON MICROFICHE SUB UJCBOFICHE NAME OF AUTHOR/NOM O f L’AUTEUR. A khtar Osman TITLE OF THEStS/7777?£ O f LA THESE- The direct electrochemical synthesis of selected grouo IIB organonetallic compounds. UNIVERSITY/LW/ VERS/ TE. U niversity of ~Windsor. Windsor ..Ontario DEGREE FOR WHICH THESIS WAS PRESENTED/.
    [Show full text]
  • The Synthesis of 2-Methyl Butanal by Reaction of N-Butyl Isocyanide with Secondary-Butylcadmium Bromide, Pt
    The synthesis of 2-methyl butanal by reaction of n-butyl isocyanide with secondary-butylcadmium bromide, pt. 1 : a study of the reactions between carbon monoxide and the sodium salt of nitroethane, pt. 2 by John M Bruce Jr A THESIS Submitted to the Graduate Committee in partial fulfillment of the requirements for the degree of Master of Science in Chemsitry at Montana State College Montana State University © Copyright by John M Bruce Jr (1949) Abstract: Part I. 2-methyl butanal was prepared by the following sequence of reactions: [Formulas not Captured by OCR] A light yellow liquid was obtained as product. Confirmatory tests were run using small portions of the final product, and close agreement was found to exist between these results and the actual data pertaining to 2-methyl butanal. The 2,4-dinitrophenylhydrazone derivative was prepared from the final product, and its melting point determined. Experimental details of the above procedure ere presented, along with an explanation of the experimental results. Part II A reaction mixture consisting of the sodium salt of nitroethane and nickel carbonyl in a solvent of cyclohexane, was subjected to high pressures of carbon monoxide. This reaction mixture yielded, upon hydrolysis, a substance possessing a solubility which could not readily be accounted for. This substance is not obtained in the absence of nickel carbonyl, or when cyclohexane itself is subjected to carbon monoxide under pressure in the presence of nickel carbonyl. The unidentified substance is decomposed by steam distillation, simple distillation, and vacuum distillation, and cannot be crystallised satisfactorily even at low temperatures.
    [Show full text]
  • Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds
    Molecules 2011, 16, 4191-4230; doi:10.3390/molecules16054191 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds Jingfei Luan *, Lingyan Zhang and Zhitian Hu State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China; E-Mails: [email protected] (L.Z.), [email protected] (Z.H.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-135-8520-6718; Fax: +86-25-8370-7304. Received: 15 April 2011; in revised form: 9 May 2011 / Accepted: 12 May 2011 / Published: 20 May 2011 Abstract: Organobismuth chemistry was emphasized in this review article due to the low price, low toxicity and low radioactivity characteristics of bismuth. As an environmentally- friendly class of organometallic compounds, different types of organobismuth compounds have been used in organic synthesis, catalysis, materials, etc. The synthesis and property characterization of many organobismuth compounds had been summarized. This review article also presented a survey of various applications of organobismuth compounds in organic transformations, as reagents or catalysts. The reactivity, reaction pathways and mechanisms of reactions with organobismuths were discussed. Less common and limiting aspects of organobismuth compounds were also briefly mentioned. Keywords: organobismuth compounds; synthesis; properties; reagent; catalyst 1. Introduction Organometallic compounds such as organoboron, organotin, organosilicon, organoantimony, organolead, etc. have been widely applied in organic synthesis in the past several decades [1-3]. A number of reports [4-8] on these compounds have mentioned their positive role in a variety of synthetic transformations or polymerizations, acting as reagents or catalysts.
    [Show full text]
  • REGIOCHEMISTRY of DIALKYL CADMIUM ADDITION to Cis- AND
    REGIOCHEMISTRY OF DIALKYL CADMIUM ADDITION TO cis- AND trans-HEXAHYDROPHTHALIC ANHYDRIDES By VASUDHA BALASUBRAMANIAN h Master of Science Pune University Pune,India 1982 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December,l987 Tk~\o() \9~1 'B\1 \ r (.op. d REGIOCHEMISTRY OF DIALKYL CADMIUM ADDITION TO cis- AND trans-HEXAHYDROPHTHALIC ANHYDRIDES Dean of the Graduate College ii 129086"/ ACKNOWLEDGEMENTS I wish to express my gratitude to Dr.E.J.Eisenbraun for his guidance,understanding and encouragement throughout this study. Many thanks also go to Dr.J.P.Devlin and Dr.I.D.Eubanks for serving on my graduate committee. I also wish to thank the members of the faculty and the staff of the Chemistry Department for their assistance during the course of this work. I would also like to thank Mr.Stan Sigle for his help in obtaining NMR spectra. My deepest gratitude to my parents,-for their constant and unstinting love,understanding and support. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION AND HISTORICAL 1 II. RESULTS AND DISCUSSION 16 III. EXPERIMENTAL ..... 33 cis-2-Acetylcyclohexanecarboxylic Acid (3a). 34 a. Grignard Reaction • . • • . • . 34 b. Methyl Lithium Reaction . 35 c. Synthesis of the Dimethyl Cadmium Reagent . • . • . 37 d. Reaction with Dimethyl Cadmium . 37 trans-2-Acetylcyclohexanecarboxylic Acid (3b). 39 a. Reaction with Dimethyl Cadmium • . • 39 b. Epimerization Reaction . 40 cis-2-Trimethylacetylcyclohexanecarboxylic- .h::::id (~ • • • • • • • • • • • • • • • 41 a. synthesis of the Di-tert-butyl Cadmium Reagent . 42 b. Reaction with Di-tert-butyl Cadmium .
    [Show full text]
  • Advanced Organic Chemistry PART A: Structure and Mechanisms PART B: Reactions and Synthesis Advanced Organic FIFTH Chemistry EDITION
    Advanced Organic FIFTH Chemistry EDITION Part B: Reactions and Synthesis Advanced Organic Chemistry PART A: Structure and Mechanisms PART B: Reactions and Synthesis Advanced Organic FIFTH Chemistry EDITION Part B: Reactions and Synthesis FRANCIS A. CAREY and RICHARD J. SUNDBERG University of Virginia Charlottesville, Virginia 123 Francis A. Carey Richard J. Sundberg Department of Chemistry Department of Chemistry University of Virginia University of Virginia Charlottesville, VA 22904 Charlottesville, VA 22904 Library of Congress Control Number: 2006939782 ISBN-13: 978-0-387-68350-8 (hard cover) e-ISBN-13: 978-0-387-44899-2 ISBN-13: 978-0-387-68354-6 (soft cover) Printed on acid-free paper. ©2007 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 98765432(corrected 2nd printing, 2008) springer.com Preface The methods of organic synthesis have continued to advance rapidly and we have made an effort to reflect those advances in this Fifth Edition.
    [Show full text]
  • Download (6MB)
    STUDIES ON THE GENERATION AND REACTIVITY OF METAL CARBENOIDS A Thesis Presented by Rehan Aqil In Partial Fulfilment of the Requirements for the Award of the Degree of DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF LONDON Christopher Ingold Laboratories Department of Chemistry University of London London WCIH OAJ September 2002 ProQuest Number: U643094 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643094 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract ABSTRACT This thesis concerns the generation of metal carbenoids, in particular organozinc carbenoids, and their subsequent reactions, such as C-H insertion reactions or cyclopropanation with alkenes. The thesis is divided into three major sections. The introductory chapter presents a comparative review covering metal carbenoid species. The review focuses on how their reactivity is controlled by the metal, the leaving group and by the nature of electron-donating and -withdrawing groups on the carbenoid and finally which type of alkenes give the highest reactivity and yields as a function of these parameters. The results and discussion chapter opens with a brief overview of the organozinc carbenoid chemistry which has been developed within our group.
    [Show full text]
  • University Department of Chemistry B.R.A. Bihar University, Muzaffarpur. Question Bank Subject: Chemistry, Course: B.Sc.(H), Year: Part 1 Paper: II
    University Department of Chemistry B.R.A. Bihar University, Muzaffarpur. Question Bank Subject: Chemistry, Course: B.Sc.(H), Year: Part 1 Paper: II 1.Atomic Structure : 1.What is a blackbody? (a) A body that absorbs all the electromagnetic radiation that falls on it. (b) A body that absorbs only infrared part of the electromagnetic radiation. (c) A body that absorbs only visible part of the electromagnetic radiation. (d) A body that absorbs only microwave part of the electromagnetic radiation. 2.The rate of radiation emitted per unit surface area of a blackbody depends: (a) Only on temperature of materials. (b) Only on the nature of materials. (c) Both (a) & (b) (d)Neither on the temperature nor on the nature of materials. 3.The value of Planck’s constant is: -33 (a)6.626 ×10 J.S (b) 6.626×10-35J.S (c) 6.626×10-34 J.S (d) 6.626×10-23 J.S 4.The relation between energy (E) and frequency (ʋ) of the electromagnetic radiation is: (a)E=hʋ (b)E= ʋ/h (c) E=h/ʋ (d) E=1/hʋ Q 5. The particle nature of the electromagnetic radiation is given by: (a) Planck’s Quantum Theory (b) Heisenberg Uncertainty Principle (c) The De Broglie Hypothesis (d) None Q 6. Heisenberg Uncertainty Principle is applicable to: (a) Macroscopic particles (b) Ideal Gases (c) Real Gases (d) Microscopic particles Q 7. According to Heisenberg Uncertainty Principle: (a) Δx.Δpx ≥ h/4л (b) Δx.Δpx = h/2л (c) Δx.Δpx ≤ h/4л (d) Δx.Δpx = 1/h 8.
    [Show full text]
  • The Reactions of Aliphatic Acid Chlorides Norman 0
    THE REACTIONS OF ALIPHATIC ACID CHLORIDES NORMAN 0 . V . SONNTAG Colgate-Palmolive-Peet Company. Jersey City. New Jersey Received November 16. 1962 CONTENTS I . Introduction .................. ......................................... 238 I1. Scope of the revieL1. ....................................................... 239 I11 . Nomenclature ............................................. IV . Reduction of aliphatic acid chlorides ...................... A . The Rosenmund reduction., ............................................ 245 B . Catalytic hydrogenation .............................................. 247 C . Chemical methods of reduction ....................................... 248 1. With sodium amalgam .......................................... 2 . With metal hydrides ................................................ 249 3 . With other reducing agents ........................................ 251 V . Hydrolysis of aliphatic acid chlorides ....................................... 251 VI . Reaction of aliphatic acid chlorides with ammonia, hydroxylamine, and hy- drazine ................................................................... 258 A . Reaction with ammonia .............................................. 258 1. At low temperatures............................................... 258 2 . At high temperatures ................................................ 265 B . Reaction with hydroxylamine and hydrazine.,........................... 266 VI1. Reaction of aliphatic acid chlorides with amines, substituted amines, and re- lated compounds
    [Show full text]
  • Organometallic Compounds in the Environment
    Organometallic Compounds in the Environment Seco n d ed it io n EditedbyP.J.Craig School of Molecular Sciences, D e Mont f o rt Un iversit y , L eicest er, UK Organometallic Compounds in the Environment Organometallic Compounds in the Environment Seco n d ed it io n EditedbyP.J.Craig School of Molecular Sciences, D e Mont f o rt Un iversit y , L eicest er, UK First Edition published by Longman, 1986. ISBN:0582 46361 0 Copyright © 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,887,736 B2 Nause Et Al
    USOO6887736 B2 (12) United States Patent (10) Patent No.: US 6,887,736 B2 Nause et al. (45) Date of Patent: May 3, 2005 (54) METHOD OF FORMING A P-TYPE GROUP 5,413.959 A 5/1995 Yamamoto et al. I-V SEMCONDUCTOR CRYSTAL LAYER 5,458,085 A * 10/1995 Kondo et al. .............. 148/33.6 ON A SUBSTRATE 5,468,678 A 11/1995 Nakamura et al. 5,603,778 A 2/1997 Sonoda 5,668,395 A * 9/1997 Razeghi...................... 257/441 (75) Inventors: Jeffrey E. Nause, Mableton, GA (US); 5,769,963 A * 6/1998 Fujioka et al. .............. 136/258 Joseph Owen Maciejewski, Mableton, 5,804.4662Y- - -2 A 9f1998 Arao et al. GA (US); Vincente Munne, Norcross, 5863326 A 1/1999 Nause et al. GA (US); Shanthi Ganesan, Smyrna, 5,882,805 A * 3/1999 Higa et al. ..... ... 428/689 GA (US) 5,897,332 A * 4/1999 Hori et al. .................... 438/61 5,900,060 A 5/1999 Nause et al. (73) Assignee: Cermet, Inc., Atlanta, GA (US) (Continued) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 10 days. Minegishi et al, Growth of p-type Zinc Oxide Films by Chemical Vapor Depositions Article, Nov. 1, 1997, L 1453– (21) Appl. No.: 10/422,568 L 1455, vol. 36, Department of Electrical Engineering and (22) Filed: Apr. 23, 2003 Computer Science, Yamanashi University, 4 Takeda, Kofu. 400, Japan. (65) Prior Publication Data Yamamoto et al, Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO, Article, Feb.
    [Show full text]
  • LEZ047.Pdf (354.4Kb)
    The solid phase synthesis of tertiary hydroxyesters from symmetrical diacid chlorides using organomanganese reagents l'2 Cltrrono C. LezNopp eNo Vanon Yeorore Department of Chemistry, York Uniuersity, Downsuiew, Ont., Canada M3J I P3 CLtRpono C. Lezuorr and Vnnoa Yeolore. Can. J. Chem. 58, 287 (1980). A l7o crosslinked divinylbenzene-styrene copolymer, incorporating benzyl alcohol groups, was used to monoblock the symme- trical diacid chlorides, CIOC(CHz)oCOCl (where n : 4 and 8). Furtherreaction ofthe polymer-bound monoester monoacid chloride with phenylmanganese iodide or butylmanganese iodide gave their respective polymer-bound tertiary hydroxyesters. Subsequent base cleavage and esterification yielded methyl 6-hydroxy-6,6-diphenylhexanoate, methyl l0-hydroxy-10,10-diphenyldecanoate, methyl 6-butyl-6-hydroxydecanoate, and methyl 10-butyl- l0-hydroxytetradecanoate and some recovered dimethylalkanoates. The reactions ofsome polymer-bound monoester monoacid chlorides with phenylcadmium chloride were also studied. Cunnono C. LezNorr et VARDA YEDIDrn. Can. J. Chem. 58,287 (1980). Onautilis6uncopolymbrestyrbne-divinylbenzbnereticul6i l7oetcontenantdesgroupesalcoolbenzyliquepourbloquerunedes fonctions des dichlorures de diacides sym6triques CIOC(CHu ),COCl (oi n = 4 et 8). La r6action de I'esterainsi obtenu avec I'iodure de phdnylmanganEse ou I'iodure de butylmangandse conduit ir leurs hydroxy-esters tertiaires respectifs fix6s surla 16sine. Le clivage subs6quent par une base suivi d'une est6rification conduit aux compos6s: hydroxy-6 diph6nyl-6,6 hexanoate de m6thyle, hydroxy- l0diph€nyl-10,10 d6canoate de m6thyle, butyl-6 hydroxy-6d6canoate de m6thyle et Ie butyl-10 hydroxy-l0tdtraddcanoate de m6thyle et 6galement ir la r6cupdration de quelques alkanoates de mdthyle. On a dgalement €tudi6 les rdactions de quelques monochlorures d'acideS fix€s sur la 16sine par une liaison ester avec le chlorure de ph6nylcadmium.
    [Show full text]