An Inquiry Into the Nature and Mechanism of Addition of Organocadmium Reagents to Simple Carbonyl Compounds

Total Page:16

File Type:pdf, Size:1020Kb

An Inquiry Into the Nature and Mechanism of Addition of Organocadmium Reagents to Simple Carbonyl Compounds University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1969 AN INQUIRY INTO THE NATURE AND MECHANISM OF ADDITION OF ORGANOCADMIUM REAGENTS TO SIMPLE CARBONYL COMPOUNDS WILLIAM J. KAUFFMAN Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation KAUFFMAN, WILLIAM J., "AN INQUIRY INTO THE NATURE AND MECHANISM OF ADDITION OF ORGANOCADMIUM REAGENTS TO SIMPLE CARBONYL COMPOUNDS" (1969). Doctoral Dissertations. 901. https://scholars.unh.edu/dissertation/901 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been 70-2082 microfilmed exactly as received KAUFFMAN, William J., 1945- AN INQUIRY INTO THE NATURE AND MECHANISM OF ADDITION OF ORGANO- CADMIUM REAGENTS TO SIMPLE CARBONYL COMPOUNDS. University of New Hampshire, Ph.D., 1969 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. AN INQUIRY INTO THE NATURE AND MECHANISM OF ADDITION OF ORGANOCADMIUM REAGENTS TO SIMPLE CARBONYL COMPOUNDS by WILLIAM J . KAUFFMAN B.S., Juniata College, 1966 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Chemistry May, 1969 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This thesis has been examined and approved. (JQ a aX' Dr. Paul R. JoneGs, T hesis D irecto r Professor of Chemistry ^9 -- W aatyyw x*— DrV. James D. Morrison Associate Professor of Chemistry fC- ___________ Dr. Kenneth K. Andersen Associate Professor of Chemistry f b Dr. Jafiies H. Weber Associate Professor of Chemistry Dr. Philip J K & £w yex v Associate Professor of Zoology T f W , . 3 ^ D ate ff Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGMENT The author wishes to express his sincere apprecia­ tion to Dr. Paul R. Jones for his assistance, patience and understanding during the course of this investigation and the preparation of this manuscript. Special recognition is due Edwin J. Goller, whose valuable comments and collaboration have been most beneficial. Final appreciation is due to the National Science Foundation for the financial support given during this investigation. 111• • • Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS LIST OF TABLES . ......................... v i i i ABSTRACT........................................................................................................... i x INTRODUCTION................................................................................................. 1 HISTORICAL BACKGROUND......................................................................... 2 EXPERIMENTAL............................... ................................................................. 20 Instrumentation ....................................................... ..... 20 M a t e r i a l s ............................................................................................ 20 Experimental Apparatus .......................................................... 21 Reaction of Filtered, in situ, Diethylcadmium (Br,Cl) with Benzoyl Chloride ............................................ 22 Reaction of in situ Diethylcadmium (prepared from Diethylmagnesium) with Benzoyl Chloride . 23 Reaction of Filtered, in situ Diethylcadmium with Benzoyl Chloride in Ether ....................................... 24 Reaction of Diethylcadmium (one step) with Benzaldehyde in E ther ............................................................... 25 Reaction of Diethylcadmium (one step) with Benzaldehyde in THF ....................... 26 Reaction of Centrifuged, in situ Diethylcadmium (Br,Cl) with Benzaldehyde in E th e r ............................. 26 A. S u p e r n a t a n t ............................................................... 26 B. R e s i d u e ......................................................................... 27 Reaction of in situ Diethylcadmium (Br,Cl) with Benzaldehyde in Ether ............................................................... 28 Reaction of in situ Dimethylcadmium (I,Cl) with £-Nitroacetophenone in E th e r .................................. 28 iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reaction of in situ Diethylcadmium (Br,Cl) with m-Nitrobenzaldehyde in Ether ................................................. 29 Reaction of in situ Diethylcadmium (Br,Cl) with Cyclohexanone .................................................................................. 30 Reaction of in situ Diethylcadmium (I, Cl) with Cyclohexanone .................................................................................. 31 Reaction of Ethylcadmium Halide (I,Cl) with Cyclohexanone .................................................................................. 31 Reaction of in situ Dimethyl cadmium (I, Cl) with Cyclohexanone ......................................................................... 32 Reaction of Methylcyclohexoxycadmium (I,Cl) with Cyclohexanone ................................................•........................ 33 Reaction of in situ Dimethylcadmium (I,Cl) with Acetophenone ....................... 34 Reaction of In situ Di-n-propylcadmium (Br,Br) with H eptanal.................................................................... 34 Reaction of n-Propylcadmium Bromide with H ep tan al .................................................................... ...... 35 Reaction of Phenylmagnesium Bromide with 2-Phenylpropanal ....................................................................35 Reaction of in situ Diphenylcadmium (Br,Cl) with 2-Phenylpropanal............................................................... 3fa Preparation of Anhydrous Magnesium Iodide .... 44 Preparation of Anhydrous Magnesium Bromide .... 44 Reaction of Methylmagnesium Bromide and Iodide with 4-t:-Butylcyclohexanone ................................... 44 Preparation and Analysis of "Purified" Dimethylcadmium ........................................................... 45 Reaction of "Reconstituted" Dimethylcadmium with 4-jt-Butylclohexanone ........................ 45 Reaction of 4-JL-Butylcyclohexanone*MgX 2 w ith "Purified" Dimethylcadmium ..................................................... 46 Reaction of in situ Dimethylcadmium with 4-_t- Butylcyclohexanone in Ether .................... 47 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reaction of in situ Dimethylcadmium (Br,I) with 4-t:-B utylcyclohexanone in T H F ............................................ 48 GLPC Analysis of the Reaction Mixtures from in situ Dimethylcadmium with 4-t-Butylcyclo- h e x a n o n e ............................................................................................ 49 Control Experiments for the in situ Dimethylcadmium reactions with 4-t:- Butylcyclohexanone ..... ............................................ 50 Reaction of in situ Di-n-propylcadmium with 4-_t-Butylcyclohexanone in E th e r ....................................... 51 Reaction of n-Propylmagnesium Iodide with 4-_t- Butylcyclohexanone in Ether ..... ........................ 52 Trimethylamine Borane Reduction of 4-1:- Butylcyclohexanone .................................................................... 52 Separation of cis-(axial)-and trans-(equatorial)- 4-t^-Butylcyclohexanols .......................................................... 53 GLPC Analysis of the Reaction Mixture from Di-n-propylcadmium and 4-t^-Butylcyclohexanone . 53 Attempted Equilibration of cis-(axial)-4-t- Butylcyclohexanol ......................................................................... 55 Attempted Equilibration of trans-(equatorial)-4- t-Butylcyclohexanol .................................................................... 57 Reaction of in situ Dimethylcadmium with 2-Phenylpropanal .............................................................. 57 Reaction of Methylmagnesium Iodide with 2-Phenylpropanal 58 GLPC Analysis of the Reaction Mixture from Dimethylcadmium and 2-Phenylpropanal ........................ 60 Isolation of three-3-Phenyl-2-butanol ........................ 61 Isolation of erythro-3-Phenyl-2-butanol .................... 62 Attempted Equilibration of erythro-3-Phenyl-2- b u tan o l ............................................................................................ 63 Attempted Equilibration of threo-3-Phenyl-2- b u t a n o l .............................................................. 64 Preparation of 2-Phenylbutyryl Chloride .................... _ 65 Preparation of Imidazolide of 2-Phenylbutyric a c id ....................... 65 v i Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Preparation of 2-Phenylbutanal ............................................ 66 Reaction of Methylmagnesium Bromide with 2-Phenylbutanal .............................................................................
Recommended publications
  • Pearson-CV-15.Pdf
    A. J. Pearson/C.V. January 2016 Curriculum Vitae Anthony J. Pearson Academic Rank: Rudolph & Susan Rense Professor of Chemistry Birthplace: Kingswinford, England. Citizenship: British; U.S. Naturalized Citizen. Education: University of Leeds, England, B.Sc. Hons. Class 1, 1971, Chemistry. Aston University, England, Ph.D., 1974, Organic Chemistry. Awards & Honors: Akroyd Scholarship (1969), Whytlaw-Gray Prize for Chemistry (1971), and Dawson Prize for Physical Chemistry (1971), University of Leeds. Sir Gilbert Morgan Medal (1973), Society for Chemical Industry, U.K. Science and Engineering Research Council (U.K.) Advanced Fellowship (1977-82). Sigma Xi Research Award (1984), Case Western Reserve University. John S. Diekhoff Award for Distinguished Graduate Teaching (1994), Case Western Reserve University. Visiting Scientist, Chemistry Research Promotion Center, Taipei, Taiwan, R.O.C., May 1990. Visiting Professor, University of Auckland, New Zealand, July/August, 1995. Chairman-Elect, American Chemical Society, Cleveland Section, 1999. Chairman, 2000. Finalist (one of three) for Northern Ohio Live 2001 Award of Achievement in Architecture, with R. Bostwick, N. Distad, K. Kutina, and N. Rushforth, for design of Agnar Pytte Science Center at CWRU. Case Alumni Association, Recognition of Meritorious Service, 2003. Experience: 1963-66 Chemist. Industrial research and analytical laboratories. Albright & Wilson; British Steel; West Midlands Gas Board. Semi-professional musician. 1974-77 Postdoctoral Research Fellow, with Arthur J. Birch. Research School of Chemistry, Australian National University, Canberra, Australia. 1977-82 SERC Advanced Fellow. Cambridge University Chemical Laboratory. 1978-81 Pauline Merz Official Fellow and Lecturer in Chemistry. Girton College, Cambridge University. 1979-81 Tutor. Girton College, Cambridge University. 1982-84 Associate Professor of Chemistry.
    [Show full text]
  • Alfa Laval Black and Grey List, Rev 14.Pdf 2021-02-17 1678 Kb
    Alfa Laval Group Black and Grey List M-0710-075E (Revision 14) Black and Grey list – Chemical substances which are subject to restrictions First edition date. 2007-10-29 Revision date 2021-02-10 1. Introduction The Alfa Laval Black and Grey List is divided into three different categories: Banned, Restricted and Substances of Concern. It provides information about restrictions on the use of Chemical substances in Alfa Laval Group’s production processes, materials and parts of our products as well as packaging. Unless stated otherwise, the restrictions on a substance in this list affect the use of the substance in pure form, mixtures and purchased articles. - Banned substances are substances which are prohibited1. - Restricted substances are prohibited in certain applications relevant to the Alfa Laval group. A restricted substance may be used if the application is unmistakably outside the scope of the legislation in question. - Substances of Concern are substances of which the use shall be monitored. This includes substances currently being evaluated for regulations applicable to the Banned or Restricted categories, or substances with legal demands for monitoring. Product owners shall be aware of the risks associated with the continued use of a Substance of Concern. 2. Legislation in the Black and Grey List Alfa Laval Group’s Black and Grey list is based on EU legislations and global agreements. The black and grey list does not correspond to national laws. For more information about chemical regulation please visit: • REACH Candidate list, Substances of Very High Concern (SVHC) • REACH Authorisation list, SVHCs subject to authorization • Protocol on persistent organic pollutants (POPs) o Aarhus protocol o Stockholm convention • Euratom • IMO adopted 2015 GUIDELINES FOR THE DEVELOPMENT OF THE INVENTORY OF HAZARDOUS MATERIALS” (MEPC 269 (68)) • The Hong Kong Convention • Conflict minerals: Dodd-Frank Act 1 Prohibited to use, or put on the market, regardless of application.
    [Show full text]
  • The East African Sub-Regional Project
    UNEPIUNDP/DUTCH Joint Project on Environmental Law UNEP and Institutions in Africa THE EAST AFRICAN SUB-REGIONAL PROJECT DEVELOPMENT AND HARMONISATION OF ENVIRONMENTAL LAWS VOLUME 4 DECEMBER 1999 ,44 UNEP/UNDP/DUTCH Joint Project on Environmental Law and Institutions in Africa UNEP UWD TILE EAST AFRICAN SUB-REGIONAL PROJECT DEVELOPMENT AND HARMONISATION OF ENVIRONMENTAL LAWS VOLUME 4 REPORT ON THE DEVELOPMENT AND HARMONISATION OF LAWS ON HAZARDOUS AND NON-HAZARDOUS WASTES 7$ ? 4 + December 1999 ISBN: 92-807-1887-8 PREFACE Environmental law is an essential tool for the governance East African countries are focused on issues which are and management of the environment and natural resources. essentially of sub-regional character. The management of the It is the foundation of national and regional policies and Joint Project is based at UNEP within its environmental law actions to ensure that the use of natural resources is done activities and is directed by a Task Manager, who works under equitably and sustainably. guidance of a Steering Committee. Members of the Steering Committee are UNEP, UNDP, FAO, The World Bank, IUCN In the East African sub-regional countries of Kenya, Tanzania Environmental Law Centre and The Dutch Government. and Uganda have, since 1995, been developing and harmoning various environmental laws in selected sectors THE PROCESS FOR DEVELOPMENT AND within their region. The process of developing and HARMONiZATION OF THE LAWS harmonizing environmental laws is intended to lead to the enactment or amendment of the internal legislative, regulatory Representatives of the three governments met in February and administrative framework of each country. Such change 1995 to work out general principles and modalities for their has been harmonized at a sub-regional level where the three cooperation.
    [Show full text]
  • Open MYO THEIN-Phd Dissertation
    The Pennsylvania State University The Graduate School Department of Engineering Science and Mechanics BIOCHIPS EMPLOYING MICROELECTRODES AND MICROTRANSDUCERS FOR CHARACTERIZATION AND PERMEABILIZATION OF CELL MEMBRANE AT THE WHOLE–CELL AND CELLULAR LEVEL A Dissertation in Engineering Science and Mechanics by Myo Min Thein © 2010 Myo Min Thein Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2010 The dissertation of Myo Min Thein was reviewed and approved* by the following: Jian Xu Associate Professor of Engineering Science and Mechanics and Adjunct Professor of Electrical Engineering Thesis Advisor and Chair of Committee Bernhard R. Tittmann Schell Professor of Engineering Science and Mechanics Yinong Yang Associate Professor of Plant Pathology Sulin Zhang Assistant Professor of Engineering Science and Mechanics Judith A. Todd P. B. Breneman Department Head Chair Head of the Department of Engineering Science and Mechanics * Signatures are on file in the Graduate School. ii Abstract In this study, two types of biochips, Integrated Microelectrode Array (IMA) chip and Ultrasonic Micro–Transducer Array (UMTA) biochip, were designed and micro– fabricated. The IMA chip employs cell–size microelectrode array architecture in order to electrically characterize cellular components, especially the properties of cell membrane, at the single–cell level. The UMTA biochip consists of arrays of high–aspect–ratio piezoelectric micro–transducers that are employed to efficiently permeabilize the cell membrane
    [Show full text]
  • The Direct Electrochemical Synthesis of Selected Group-Iib Organometallic Compounds
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-1979 THE DIRECT ELECTROCHEMICAL SYNTHESIS OF SELECTED GROUP-IIB ORGANOMETALLIC COMPOUNDS. AKHTAR OSMAN University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation OSMAN, AKHTAR, "THE DIRECT ELECTROCHEMICAL SYNTHESIS OF SELECTED GROUP-IIB ORGANOMETALLIC COMPOUNDS." (1979). Electronic Theses and Dissertations. 7187. https://scholar.uwindsor.ca/etd/7187 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. 492-33 National Library Bibliothfeque nationale CANADIAN THESES THESES CANADtENNES f l * .of Canada ~ du Canada ON MICROFICHE SUB UJCBOFICHE NAME OF AUTHOR/NOM O f L’AUTEUR. A khtar Osman TITLE OF THEStS/7777?£ O f LA THESE- The direct electrochemical synthesis of selected grouo IIB organonetallic compounds. UNIVERSITY/LW/ VERS/ TE. U niversity of ~Windsor. Windsor ..Ontario DEGREE FOR WHICH THESIS WAS PRESENTED/.
    [Show full text]
  • The Synthesis of 2-Methyl Butanal by Reaction of N-Butyl Isocyanide with Secondary-Butylcadmium Bromide, Pt
    The synthesis of 2-methyl butanal by reaction of n-butyl isocyanide with secondary-butylcadmium bromide, pt. 1 : a study of the reactions between carbon monoxide and the sodium salt of nitroethane, pt. 2 by John M Bruce Jr A THESIS Submitted to the Graduate Committee in partial fulfillment of the requirements for the degree of Master of Science in Chemsitry at Montana State College Montana State University © Copyright by John M Bruce Jr (1949) Abstract: Part I. 2-methyl butanal was prepared by the following sequence of reactions: [Formulas not Captured by OCR] A light yellow liquid was obtained as product. Confirmatory tests were run using small portions of the final product, and close agreement was found to exist between these results and the actual data pertaining to 2-methyl butanal. The 2,4-dinitrophenylhydrazone derivative was prepared from the final product, and its melting point determined. Experimental details of the above procedure ere presented, along with an explanation of the experimental results. Part II A reaction mixture consisting of the sodium salt of nitroethane and nickel carbonyl in a solvent of cyclohexane, was subjected to high pressures of carbon monoxide. This reaction mixture yielded, upon hydrolysis, a substance possessing a solubility which could not readily be accounted for. This substance is not obtained in the absence of nickel carbonyl, or when cyclohexane itself is subjected to carbon monoxide under pressure in the presence of nickel carbonyl. The unidentified substance is decomposed by steam distillation, simple distillation, and vacuum distillation, and cannot be crystallised satisfactorily even at low temperatures.
    [Show full text]
  • Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds
    Molecules 2011, 16, 4191-4230; doi:10.3390/molecules16054191 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds Jingfei Luan *, Lingyan Zhang and Zhitian Hu State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China; E-Mails: [email protected] (L.Z.), [email protected] (Z.H.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-135-8520-6718; Fax: +86-25-8370-7304. Received: 15 April 2011; in revised form: 9 May 2011 / Accepted: 12 May 2011 / Published: 20 May 2011 Abstract: Organobismuth chemistry was emphasized in this review article due to the low price, low toxicity and low radioactivity characteristics of bismuth. As an environmentally- friendly class of organometallic compounds, different types of organobismuth compounds have been used in organic synthesis, catalysis, materials, etc. The synthesis and property characterization of many organobismuth compounds had been summarized. This review article also presented a survey of various applications of organobismuth compounds in organic transformations, as reagents or catalysts. The reactivity, reaction pathways and mechanisms of reactions with organobismuths were discussed. Less common and limiting aspects of organobismuth compounds were also briefly mentioned. Keywords: organobismuth compounds; synthesis; properties; reagent; catalyst 1. Introduction Organometallic compounds such as organoboron, organotin, organosilicon, organoantimony, organolead, etc. have been widely applied in organic synthesis in the past several decades [1-3]. A number of reports [4-8] on these compounds have mentioned their positive role in a variety of synthetic transformations or polymerizations, acting as reagents or catalysts.
    [Show full text]
  • REGIOCHEMISTRY of DIALKYL CADMIUM ADDITION to Cis- AND
    REGIOCHEMISTRY OF DIALKYL CADMIUM ADDITION TO cis- AND trans-HEXAHYDROPHTHALIC ANHYDRIDES By VASUDHA BALASUBRAMANIAN h Master of Science Pune University Pune,India 1982 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December,l987 Tk~\o() \9~1 'B\1 \ r (.op. d REGIOCHEMISTRY OF DIALKYL CADMIUM ADDITION TO cis- AND trans-HEXAHYDROPHTHALIC ANHYDRIDES Dean of the Graduate College ii 129086"/ ACKNOWLEDGEMENTS I wish to express my gratitude to Dr.E.J.Eisenbraun for his guidance,understanding and encouragement throughout this study. Many thanks also go to Dr.J.P.Devlin and Dr.I.D.Eubanks for serving on my graduate committee. I also wish to thank the members of the faculty and the staff of the Chemistry Department for their assistance during the course of this work. I would also like to thank Mr.Stan Sigle for his help in obtaining NMR spectra. My deepest gratitude to my parents,-for their constant and unstinting love,understanding and support. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION AND HISTORICAL 1 II. RESULTS AND DISCUSSION 16 III. EXPERIMENTAL ..... 33 cis-2-Acetylcyclohexanecarboxylic Acid (3a). 34 a. Grignard Reaction • . • • . • . 34 b. Methyl Lithium Reaction . 35 c. Synthesis of the Dimethyl Cadmium Reagent . • . • . 37 d. Reaction with Dimethyl Cadmium . 37 trans-2-Acetylcyclohexanecarboxylic Acid (3b). 39 a. Reaction with Dimethyl Cadmium • . • 39 b. Epimerization Reaction . 40 cis-2-Trimethylacetylcyclohexanecarboxylic- .h::::id (~ • • • • • • • • • • • • • • • 41 a. synthesis of the Di-tert-butyl Cadmium Reagent . 42 b. Reaction with Di-tert-butyl Cadmium .
    [Show full text]
  • Advanced Organic Chemistry PART A: Structure and Mechanisms PART B: Reactions and Synthesis Advanced Organic FIFTH Chemistry EDITION
    Advanced Organic FIFTH Chemistry EDITION Part B: Reactions and Synthesis Advanced Organic Chemistry PART A: Structure and Mechanisms PART B: Reactions and Synthesis Advanced Organic FIFTH Chemistry EDITION Part B: Reactions and Synthesis FRANCIS A. CAREY and RICHARD J. SUNDBERG University of Virginia Charlottesville, Virginia 123 Francis A. Carey Richard J. Sundberg Department of Chemistry Department of Chemistry University of Virginia University of Virginia Charlottesville, VA 22904 Charlottesville, VA 22904 Library of Congress Control Number: 2006939782 ISBN-13: 978-0-387-68350-8 (hard cover) e-ISBN-13: 978-0-387-44899-2 ISBN-13: 978-0-387-68354-6 (soft cover) Printed on acid-free paper. ©2007 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 98765432(corrected 2nd printing, 2008) springer.com Preface The methods of organic synthesis have continued to advance rapidly and we have made an effort to reflect those advances in this Fifth Edition.
    [Show full text]
  • Velux Green Supply Chain Management for the Protection of the Environment and Human Health and Sustainable Development
    VELUX RESTRICTED SUBSTANCE MANAGEMENT STANDARD VELUX GREEN SUPPLY CHAIN MANAGEMENT FOR THE PROTECTION OF THE ENVIRONMENT AND HUMAN HEALTH AND SUSTAINABLE DEVELOPMENT. VELUX RESTRICTED SUBSTANCES MANAGEMENT STANDARD (VRSMS) 1 September 2020 _____________________________________________________________________________________ INTRODUCTION For more than 75 years the VELUX Group (hereafter “VELUX”) has created better living environments by bringing daylight and fresh air into people's homes and commercial buildings all over the world. Our products help create bright, healthy, energy-efficient places in which to live, work, learn and play. VELUX has manufacturing and sales operations in more than 40 countries, with an extensive distribution network. Our products include a wide range of residential applications such as roof windows, skylights, flat roof windows and a wide range of commercial applications such as modular skylights with a wide range of installation solutions, roller shutters, blinds, decorative elements and remote controls. VELUX designs our products to minimise their impact on the environment and human health during sourcing, manufacture, use and disposal. To ensure that, we – as a downstream user - take a proactive and precautious approach to managing restricted substances and substances of high concern, VELUX has established a global chemical management process. Further, VELUX has established a management process for sustainable development. Our suppliers must be committed to support VRSMS generally and must comply with all environmental laws and regulations applicable for their business and must comply with VELUX internal restrictions in addition to the restrictions required by law or regulation (“VELUX Thresholds”) for the protection of the environment and human health as well as sustainable development. Further our suppliers must support us in our compliance with all environmental laws and regulations applicable for our business, including the issuance of compliance certificates and notification of first supply of substances.
    [Show full text]
  • Guideline Ver6.2 Se Ria L No. CAS RN® Substance Group 1 Substance
    Guideline Ver6.2 Rank CAS RN® Substance Group 1 Substance Group 2 Substance Name 1=Prohibited No. Serial 2=Reduction 1 124-73-2 ozone depleting substances(Halons) Ethane, 1,2-dibromo-1,1,2,2-tetrafluoro- 1 2 25497-30-7 ozone depleting substances(Halons) Dibromotetrafluoroethane 1 3 27336-23-8 ozone depleting substances(Halons) Dibromotetrafluoroethane,compressed 1 4 353-59-3 ozone depleting substances(Halons) Methane, bromochlorodifluoro- 1 5 354-56-3 ozone depleting substances(Halons) Ethane, pentachlorofluoro- 1 6 75-61-6 ozone depleting substances(Halons) Methane, dibromodifluoro- 1 7 75-63-8 ozone depleting substances(Halons) Methane, bromotrifluoro- 1 8 110003-27-5 ozone depleting substances(HBFCs) 1,3-dibromo-1,1,2-trifluoropropane 1 9 111483-20-6 ozone depleting substances(HBFCs) 1-bromo-2,3-difluoropropane 1 10 124-72-1 ozone depleting substances(HBFCs) 2-bromo-1,1,1,2-tetrafluoroethane 1 11 148875-95-0 ozone depleting substances(HBFCs) C3H3FBr4 1 12 148875-98-3 ozone depleting substances(HBFCs) C3H2F2Br4 1 13 1511-62-2 ozone depleting substances(HBFCs) Methane, bromodifluoro- 1 14 172912-75-3 ozone depleting substances(HBFCs) HBFC-131 B3 Tribromofluoroethane 1 15 1800-81-3 ozone depleting substances(HBFCs) 1-bromo-1,2-difluoroethane 1 16 1868-53-7 ozone depleting substances(HBFCs) Dibromofluoromethane 1 17 1871-72-3 ozone depleting substances(HBFCs) FLUOROBROMOPROPANE 1 18 2252-78-0 ozone depleting substances(HBFCs) 1-Bromo-1,1,2,3,3,3-hexafluoropropane 1 19 2252-79-1 ozone depleting substances(HBFCs) 2-bromo-1,1,1,3,3,3-hexafluoropropane
    [Show full text]
  • Substances of Concern List
    < KUBOTA Group Green Procurement Guidelines Appendix > April 2009 Established April 2010 Revised to Ver.2 April 2011 Revised to Ver.3 Substances of Concern List April 2011 KUBOTA Corporation Introduction This document is for providing information related to "3. Substances of Concern" of "Eco-friendliness standards for products" specified in "KUBOTA Group Green Procurement Guidelines" revised on April 2011. Table of Contents Number of Substances Table Number, Definition of Substances Page or Substance Groups Table 1 : Substances to be Prohibited Substances to be Prohibited means the substances which should not be 144 p3 contained in the products nor used in the production process. Table 2 : Substances to be Restricted Substances to be Restricted means the substances which should not be contained in the products nor used in the production process under the certain 7p6 conditions or applications. They are to be reduced gradually the content and use with the time limit and the target and to be promoted the substitution. Attached Table I-A : RoHS Exemptions List - p9 Attached Table I-B : ELV Exemptions List - p13 Table 3 : Substances to be Controlled Substances to be Controlled means the substances which should be recognized - p16 their presence in the products or use in the production process from the viewpoint of the environmental impact of the products life cycle. Reference List of Substances to be Prohibited, Restricted and Controlled Reference List of Substances to be Prohibited, Restricted and Controlled 4272 p17 exemplifies Substances to be Prohibited, Substances to be Restricted and Substances to be Controlled. Disclaimer While the information is made based on the related regulatory control etc.
    [Show full text]