The Reactions of Aliphatic Acid Chlorides Norman 0

Total Page:16

File Type:pdf, Size:1020Kb

The Reactions of Aliphatic Acid Chlorides Norman 0 THE REACTIONS OF ALIPHATIC ACID CHLORIDES NORMAN 0 . V . SONNTAG Colgate-Palmolive-Peet Company. Jersey City. New Jersey Received November 16. 1962 CONTENTS I . Introduction .................. ......................................... 238 I1. Scope of the revieL1. ....................................................... 239 I11 . Nomenclature ............................................. IV . Reduction of aliphatic acid chlorides ...................... A . The Rosenmund reduction., ............................................ 245 B . Catalytic hydrogenation .............................................. 247 C . Chemical methods of reduction ....................................... 248 1. With sodium amalgam .......................................... 2 . With metal hydrides ................................................ 249 3 . With other reducing agents ........................................ 251 V . Hydrolysis of aliphatic acid chlorides ....................................... 251 VI . Reaction of aliphatic acid chlorides with ammonia, hydroxylamine, and hy- drazine ................................................................... 258 A . Reaction with ammonia .............................................. 258 1. At low temperatures............................................... 258 2 . At high temperatures ................................................ 265 B . Reaction with hydroxylamine and hydrazine.,........................... 266 VI1. Reaction of aliphatic acid chlorides with amines, substituted amines, and re- lated compounds ....................................................... 268 A . Reaction with primary amines ........................................... 269 B . Reaction with secondary amines ........................................ 277 C . Reaction with tertiary amines ....................................... 294 D . Reaction with compounds containing a carbon-nitrogen double bond ... 299 VI11. Reaction of aliphatic acid chlorides with amides and imides ...............302 A . Reaction with aromatic carboxylic amides ........................... 302 B . Reaction with aliphatic carboxylic amides ......................... 305 C . Reaction with sulfonamides ......................................... 309 D . Reaction with ureas and urethans ............................... 310 E . Reaction with miscellaneous amide types ............................ 311 F. Reaction with imides ................................................ 307 IX. Reaction of aliphatic acid chlorides with hydroxy-containing compounds (esterification reactions) ........................................... 312 9. Reaction with alcohols .............................................. 312 B . Reaction with phenols ................................................. 320 C . Reaction with polyhydroxy nds ................................. 321 D . Reaction with hydroperoxid ..................................... 324 X . Reaction of aliphatic acid chlor h carbonyl-containing compounds .... 324 A . Reaction n-ith aldehydes and ketones .................................... 324 B . Reaction with esters ................................................... 328 C . Reaction with acids and salts of acid ................... 330 D . Reaction with acid anhydrides and la ......... 337 E . Reaction with ketenes., ..... ..................... 337 F . Reaction with quinones ................................................. 338 237 238 NORMAN 0. V. SONNTAG XI. Reaction of aliphatic acid chlorides with inorganic compounds involving re- placement of the chlorine atom.. ......................................... 340 A. Replacement of the chlorine atom by the cyano group B. Replacement of the chlorine atom by other halogens.. C. Replacement of the chlorine atom by other groups ....................... 342 XII. Reaction of aliphatic acid chlorides with peroxides and oxides 343 A. Reaction with peroxides.. ........ ................................. 343 B. Reaction with oxides .................................................... 344 XIII. Reaction of aliphatic acid chlorides with hydrocarbons (Friedel-Crafts type of reaction) .............................................................. 345 A. Reaction with aromatic hydrocarbons. ............ B. Reaction with olefins.. ......... C. Reaction with acetylenes.. ..... D. Reaction with saturated hydrocarbons.. XIV. Reaction of aliphatic acid chlorides with heterocyclic compounds (Friedel- Crafts type of reaction). ................................................. 352 XV. Reaction of aliphatic acid chlorides with ethers and epoxides.. .............. 353 XVI. Reaction of aliphatic acid chlorides with halogens and halogenating agents. .. 358 A. Chlorination ............................................................ 359 B. Bromination ............................................................ 361 C. Chloroformylation. ............................................... D. Other halogenations.. ....................... XVII. Reaction of aliphatic acid chlorides with azides XVIII. Reaction of aliphatic acid chlorides with diazo compounds.. ................ 365 A. Reaction with diazomethane (Arndt-Eistert synthesis) B. Reaction with diazoacetic ester and diazoacetone.. ...................... 367 C. Reaction with other diazo compounds.. ................................. 369 XIX. Reaction of aliphatic acid chlorides with metals and organometallic com- pounds. .................................................................. 369 A. Reaction with alkali metals.. ........................................... 369 B. Reaction with other metals ............................. 370 C. Reaction with Grignard reagents.,...................................... 372 D. Reaction with other ..................381 1. Dialkylzinc compounds.. .. ... ........ 381 2. Dialkylcadmium c ..................385 3. Other organometallic compounds.. .................................... 386 XX. Reaction of aliphatic acid chlorides with mercaptans (thioesterification) and other sulfur, arsenic, silicon, phosphorus, and selenium compounds.. ...... 387 XXI. Reaction (non-Friedel-Crafts type) of aliphatic acid chlorides with compounds containing double or triple bonds.,....................................... 393 XXII. Miscellaneous reactions A. Dehydrochlorination. ........................................ 394 B. Pyrolysis.. ......... C. Rearrangement.. .... D. Polymerization.......................................................... 398 E. Miscellaneous ........................................................... 398 XXIII. References. ........................................................ 399 I. INTRODUCTION The aliphatic carboxylic acid chlorides as a class are among the most versatile and reactive of organic compounds. Some of the lower homologs, particularly those containing from two to five carbon atoms, have long been used in the prep- aration of a large variety of chemical compounds in a series of well-known and REACTIONS OF ALIPHATIC ACID CHLORIDES 239 well-understood reactions, such as the esterification of alcohols and the Friedel- Crafts acylation of aromatic hydrocarbons. Recent research has greatly extended the applicability of these materials in new and unprecedented ways. The straight- chain aliphatic acid chlorides containing from eight to eighteen carbon atoms, especially the even-numbered members, have achieved prominence as a conse- quence of recent developments in the field of fatty acid derivatives among which the esters, metallic salts, amides, nitriles, amines, and amine quaternaries have been noteworthy. These derivatives have assumed commercial importance over a period of years. The acid chlorides have received somewhat less attention, in general, than the other types of fatty acid derivatives, probably as a result of their relatively poorer stability and the difficulties encountered in handling them. In spite of these minor disadvantages more and more attention has been focused upon fatty acid chlorides as useful intermediates for the preparation of a huge number of products. The advent of newer synthetic routes to the aliphatic acids, particularly those utilizing inexpensive animal fats and vegetable oils, and the ease with which these acids can be converted into acid chlorides are further fac- tors which enhance the importance of acid chlorides. 11. SCOPEOF THE REVIEW This review covers the chemical reactions of aliphatic carboxylic acid chlorides containing two or more carbon atoms. Straight- and branched-chain, saturated and unsaturated, and mono- and polyfunctional types have been included. The literature has been surveyed through December, 1951. In instances where cer- tain portions of the material have been reviewed elsewhere within the last ten years the attempted coverage has been less complete, and an effort has been made, where feasible, to bring the previously reviewed material up to date. No attempt has been made to include the reactions of aromatic or aromatic-ali- phatic acid chlorides, except for certain examples of the former type where dif- ferences in reaction behavior bring out the variation in general reactivity between these types and aliphatic acid chlorides. The reactions of alicyclic and hetero- cyclic acid chlorides have not been included, nor have those of amino-, alkoxy-, or mercapto-substituted aliphatic acid chlorides. 111. KOMENCLATURE The nomenclature of acid chlorides requires the names of acyl radicals in the several systems of nomenclature, since, regardless of the system, the name for an individual species is “acyl chloride.”
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Pearson-CV-15.Pdf
    A. J. Pearson/C.V. January 2016 Curriculum Vitae Anthony J. Pearson Academic Rank: Rudolph & Susan Rense Professor of Chemistry Birthplace: Kingswinford, England. Citizenship: British; U.S. Naturalized Citizen. Education: University of Leeds, England, B.Sc. Hons. Class 1, 1971, Chemistry. Aston University, England, Ph.D., 1974, Organic Chemistry. Awards & Honors: Akroyd Scholarship (1969), Whytlaw-Gray Prize for Chemistry (1971), and Dawson Prize for Physical Chemistry (1971), University of Leeds. Sir Gilbert Morgan Medal (1973), Society for Chemical Industry, U.K. Science and Engineering Research Council (U.K.) Advanced Fellowship (1977-82). Sigma Xi Research Award (1984), Case Western Reserve University. John S. Diekhoff Award for Distinguished Graduate Teaching (1994), Case Western Reserve University. Visiting Scientist, Chemistry Research Promotion Center, Taipei, Taiwan, R.O.C., May 1990. Visiting Professor, University of Auckland, New Zealand, July/August, 1995. Chairman-Elect, American Chemical Society, Cleveland Section, 1999. Chairman, 2000. Finalist (one of three) for Northern Ohio Live 2001 Award of Achievement in Architecture, with R. Bostwick, N. Distad, K. Kutina, and N. Rushforth, for design of Agnar Pytte Science Center at CWRU. Case Alumni Association, Recognition of Meritorious Service, 2003. Experience: 1963-66 Chemist. Industrial research and analytical laboratories. Albright & Wilson; British Steel; West Midlands Gas Board. Semi-professional musician. 1974-77 Postdoctoral Research Fellow, with Arthur J. Birch. Research School of Chemistry, Australian National University, Canberra, Australia. 1977-82 SERC Advanced Fellow. Cambridge University Chemical Laboratory. 1978-81 Pauline Merz Official Fellow and Lecturer in Chemistry. Girton College, Cambridge University. 1979-81 Tutor. Girton College, Cambridge University. 1982-84 Associate Professor of Chemistry.
    [Show full text]
  • Acetic Anhydride
    ACETIC ANHYDRIDE Method number: 102 Matrix: Air Target concentration: 5 ppm (20 mg/m3) OSHA PEL: 5 ppm (20 mg/m3) TWA ACGIH TLV: 5 ppm (20 mg/m3) ceiling Procedure: Samples are collected open face on glass fiber filters coated with veratrylamine and di-n-octyl phthalate. Samples are extracted with 50/50 (v/v) 2-propanol/toluene and analyzed by GC using a nitrogen- phosphorus detector (NPD). Recommended air volume and sampling rate: 7.5 L at 0.5 L/min ceiling 7.5 L at 0.05 L/min TWA Reliable quantitation limit: 0.094 ppm (0.39 mg/m3) Standard error of estimate at the target concentration: 6.4% Special caution: Ketene and acetyl chloride produce the same derivative as acetic anhydride. Coated filters should be used within a month of preparation. Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch. Date: October 1993 Chemist: Yihlin Chan Organic Methods Evaluation Branch OSHA Salt Lake Technical Center Salt Lake City, UT 84165-0200 1. General Discussion 1.1 Background 1.1.1 History In OSHA Method 82, acetic anhydride is collected on a glass fiber filter impregnated with 1-(2-pyridyl)piperazine, which reacts with the anhydride to form a derivative (Ref. 5.1). Attempts at using 1-(2-pyridyl)piperazine for the derivatization of maleic, phthalic, and trimellitic anhydrides failed, however, because the resulting derivatives of these anhydrides were found to be unstable. These anhydrides were derivatized with veratrylamine instead (Refs. 5.2-5.4).
    [Show full text]
  • Title the Reaction of Methyl Chloride with Carbon Monoxide Author(S
    Title The reaction of methyl chloride with carbon monoxide Author(s) Osugi, Jiro; Mizukami, Tetuo Citation The Review of Physical Chemistry of Japan (1964), 34(1): 7-18 Issue Date 1964-11-05 URL http://hdl.handle.net/2433/46843 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University The Review of Physical Chemistry of Japan Vol. 34 No. 1 (1964) TftE REVIEW OF PHYSICAL CHE'HISTRY OF IAPA~, VDL. 34, No. 1, 1964 THE REACTION OF METHYL CHLORIDE WITH CARBON MONOXIDE BY ]IRD ~stlf,l ANDTETUO IVIIEUI:A]II* The reaction of methyl chloride witb carbon monoxide in the presence of pumice•anhydrous sodium borate catalyst yields mainly hydrogen chloride, methane, acetyl chloride and phosgene, and deposits carbon. Moreover, hydro• gen, methylene chloride, ethyl chloride and ethylene dichloride are obtained in a trace. From [he stand point of chemical kinetics the reaction is studied. From the initial rates of the products, the values of 13.1, I8.5, 23.2 and 27.Okcal/mole are obtained as the apparent activation energies {or the formation of acetyl chloride, phosgene, hydrogen chloride and methane respectively. Furthermore, the rates of formation of acetyl chloride and pbosgene are discussed. From the apparent rate constants, the apparent activation energies are obtained. The values are 19.0 kcal/male for acetyl chloride and 17.6 kcal/mole for phosgene. The reaction mechanism is discussed. Introduction Since a few years ago, carhop monoxide has been considered as one of the important materials for organic chemical industry, so there are some utilizations, such as s}•nthetic petroleum, Reppe's carhoxy- Iation reaction and oxo reaction etc.
    [Show full text]
  • Prohibited and Restricted Chemical List
    School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only.
    [Show full text]
  • Process for Preparing a Stabilized Chromium \III\ Propionate Solution
    Europaisches Patentamt European Patent Office © Publication number: 0 194 596 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION C 07 C 53/122 © Application number: 86103020.3 ©intci.": C 07 C 51/41, C 08 L 5/00 © Date of filing: 07.03.86 C 08 L 33/26, E 21 B 47/00 © Priority: 11.03.85 US 710754 © Applicant: PHILLIPS PETROLEUM COMPANY 5th and Keeler Bartlesville Oklahoma 74004(US) © Date of publication of application: 17.09.86 Bulletin 86/38 © Inventor: Mumallah, Nairn Abdul-Kader 4519 E. Tuxedo Blvd © Designated Contracting States: Bartlesville, OK 74006IUS) AT DE FR GB IT NL SE © Inventor: Shtoyama.TodKay 5620 East Circle Bartlesville, OK 74006(US) © Representative: Dost, Wolfgang, Dr.rer.nat, Dipl.-Chem. et al. Patent- und Rechtsanwalte Bardehle-Pagenberg-Dost-Altenburg & Partner Postfach 86 0620 D-8000 Munchen 86IDE) © Process for preparing a stabilized chromium (III) propionate solution and formation treatment with a so prepared solution. © A A sulfate-free clear green solution of chromium (III) propionate is prepared by mixing aqueous propionic acid containing up to 55 weight percent propionic acid with a chromium (Vf) oxidant, such as a dichromate or chromate, and a sulfur-containing reductant, such as a bisulfite, which on reacting yields two phases: a lower sulfate-containing phase for discard or recycle and an upper phase solution of sulfate-free clear green propionate-sequestered chromium (III), the latter phase being stabilized with additional acid. The upper phase solution is useful for crosslinking polymeric viscosifiers such as partially hydrolyzed acrylamide-based polymers and the like in permeability contrast corrections in enhanced oil recovery operations.
    [Show full text]
  • Ketene Reactions. I. the Addition of Acid Chlorides
    KETENE REACTIONS. I. THE ADDITION OF ACID CHLORIDES TO DIMETHYLKETENE. II. THE CYCLOADDITION OF KETENES TO CARBONYL COMPOUNDS APPROVED: Graduate Committee: Major Professor Committee Member.rr^- Committee Member Committee Member Director of the Department of Chemistry Dean' of the Graduate School Smith, Larry, Ketene Reactions. I. The Addition of Acid Chlorides to DimethyIketene. II. The Cycloaddition of Ketenes to Carbonvl Compounds. Doctor of Philosophy (Chemistry), December, 1970, 63 pp., 3 tables, bibliography, 62 titles. Part I describes the addition of several acid chlorides to dimethylketene. The resulting 3-ketoacid chlorides were isolated and characterized. The reactivities of acid chlorides were found to parallel the parent acid pKa's. A reactivity order of ketenes toward acid chlorides was established. Dimethylketene is more reactive than ketene which is more reactive than diphenylketene. Attempts to effect the addition of an acid halide to a ketene produced by in situ dehydro- halogenation yielded a-halovinyl esters. The addition of acid chlorides to ketenes was concluded to be an ionic process dependent upon the nucleophilic character of the ketene oc- carbon and the polarity of the carbon-chlorine bond in the acid chloride. Part II describes the cycloaddition of several aldo- ketenes to chloral. The ketenes were generated in situ by dehydrohalogenation and dehalogenation of appropriately substituted acyl halides. Both cis- and trans-4-trichloro- Miyl-2-oxetanones are produced in the cycloadditions with the sterically hindered cis isomer predominating. Isomer distributions were determined by vpc or nmr analysis of the reaction solutions. Production of the ketenes by dehalo- genation resulted in enhanced reactivity of the carbonyl compounds.
    [Show full text]
  • Study on Gas-Phase Mechanism of Chloroacetic Acid Synthesis by Catalysis and Chlorination of Acetic Acid
    Asian Journal of Chemistry; Vol. 26, No. 2 (2014), 475-480 http://dx.doi.org/10.14233/ajchem.2014.15484 Study on Gas-Phase Mechanism of Chloroacetic Acid Synthesis by Catalysis and Chlorination of Acetic Acid * JIAN-WEI XUE , JIAN-PENG ZHANG, BO WU, FU-XIANG LI and ZHI-PING LV Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R. China *Corresponding author: Fax: +86 351 6111178; Tel: +86 351 60105503; E-mail: [email protected] Received: 14 March 2013; Accepted: 17 May 2013; Published online: 15 January 2014; AJC-14570 The process of acetic acid catalysis and chlorination for synthesizing chloroacetic acid can exist in not only gas phase but also liquid phase. In this paper, the gas-phase reaction mechanism of the synthesis of chloroacetic acid was studied. Due to the high concentration of acetic acid and the better reaction mass transfer in the liquid-phase reaction, the generation amount of the dichloroacetic acid was higher than that in the gas-phase reaction. Under the solution distillation, the concentration of acetyl chloride, whose boiling point is very low, was very high in the gas phase, sometimes even up to 99 %, which would cause the acetyl chloride to escape rapidly with the hydrogen chloride exhaust, so that the reaction slowed down. Therefore, series reactions occured easily in the gas-phase reaction causing the amount of the dichloroacetic acid to increase. Keywords: Gas phase, Catalysis, Chlorination, Chloroacetic acid, Acetic acid. INTRODUCTION Martikainen et al.3 summed up the reaction mechanism that was consistent with a mechanism found by Sioli according Chloroacetic acid is not only a fine chemical product but to the system condition experiment and systematic theoretical also an important intermediate in organic synthesis.
    [Show full text]
  • The Direct Electrochemical Synthesis of Selected Group-Iib Organometallic Compounds
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-1979 THE DIRECT ELECTROCHEMICAL SYNTHESIS OF SELECTED GROUP-IIB ORGANOMETALLIC COMPOUNDS. AKHTAR OSMAN University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation OSMAN, AKHTAR, "THE DIRECT ELECTROCHEMICAL SYNTHESIS OF SELECTED GROUP-IIB ORGANOMETALLIC COMPOUNDS." (1979). Electronic Theses and Dissertations. 7187. https://scholar.uwindsor.ca/etd/7187 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. 492-33 National Library Bibliothfeque nationale CANADIAN THESES THESES CANADtENNES f l * .of Canada ~ du Canada ON MICROFICHE SUB UJCBOFICHE NAME OF AUTHOR/NOM O f L’AUTEUR. A khtar Osman TITLE OF THEStS/7777?£ O f LA THESE- The direct electrochemical synthesis of selected grouo IIB organonetallic compounds. UNIVERSITY/LW/ VERS/ TE. U niversity of ~Windsor. Windsor ..Ontario DEGREE FOR WHICH THESIS WAS PRESENTED/.
    [Show full text]
  • The Synthesis of 2-Methyl Butanal by Reaction of N-Butyl Isocyanide with Secondary-Butylcadmium Bromide, Pt
    The synthesis of 2-methyl butanal by reaction of n-butyl isocyanide with secondary-butylcadmium bromide, pt. 1 : a study of the reactions between carbon monoxide and the sodium salt of nitroethane, pt. 2 by John M Bruce Jr A THESIS Submitted to the Graduate Committee in partial fulfillment of the requirements for the degree of Master of Science in Chemsitry at Montana State College Montana State University © Copyright by John M Bruce Jr (1949) Abstract: Part I. 2-methyl butanal was prepared by the following sequence of reactions: [Formulas not Captured by OCR] A light yellow liquid was obtained as product. Confirmatory tests were run using small portions of the final product, and close agreement was found to exist between these results and the actual data pertaining to 2-methyl butanal. The 2,4-dinitrophenylhydrazone derivative was prepared from the final product, and its melting point determined. Experimental details of the above procedure ere presented, along with an explanation of the experimental results. Part II A reaction mixture consisting of the sodium salt of nitroethane and nickel carbonyl in a solvent of cyclohexane, was subjected to high pressures of carbon monoxide. This reaction mixture yielded, upon hydrolysis, a substance possessing a solubility which could not readily be accounted for. This substance is not obtained in the absence of nickel carbonyl, or when cyclohexane itself is subjected to carbon monoxide under pressure in the presence of nickel carbonyl. The unidentified substance is decomposed by steam distillation, simple distillation, and vacuum distillation, and cannot be crystallised satisfactorily even at low temperatures.
    [Show full text]
  • Small Molecule Antagonists of Cell-Surface Heparan Sulfate and Heparin–Protein Interactions† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Small molecule antagonists of cell-surface heparan sulfate and heparin–protein interactions† Cite this: Chem. Sci.,2015,6, 5984 Ryan J. Weiss,a Philip L. S. M. Gordts,b Dzung Le,cd Ding Xu,e Jeffrey D. Eskobd and Yitzhak Tor*ad Surfen, bis-2-methyl-4-amino-quinolyl-6-carbamide, was previously reported as a small molecule antagonist of heparan sulfate (HS), a key cell-surface glycosaminoglycan found on all mammalian cells. To generate structure–activity relationships, a series of rationally designed surfen analogs was synthesized, where its dimeric structure, exocyclic amines, and urea linker region were modified to probe the role of each moiety in recognizing HS. An in vitro assay monitoring inhibition of fibroblast growth factor 2 binding to wild-type CHO cells was utilized to quantify interactions with cell surface HS. The dimeric molecular structure of surfen and its aminoquinoline ring systems was essential for its interaction with HS, and certain dimeric analogs displayed higher inhibitory potency than surfen and were also shown to block downstream FGF signaling in mouse embryonic fibroblast cells. These Creative Commons Attribution-NonCommercial 3.0 Unported Licence. molecules were also able to antagonize other HS–protein interactions including the binding of soluble Received 4th April 2015 RAGE to HS. Importantly, selected molecules were shown to neutralize heparin and other heparinoids, Accepted 21st July 2015 including the synthetic pentasaccharide fondaparinux, in a factor Xa chromogenic assay and in vivo in DOI: 10.1039/c5sc01208b mice. These results suggest that small molecule antagonists of heparan sulfate and heparin can be of www.rsc.org/chemicalscience therapeutic potential for the treatment of disorders involving glycosaminoglycan–protein interactions.
    [Show full text]
  • Hazardous Substances (Chemicals) Transfer Notice 2006
    16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but
    [Show full text]