Components of Endocannabinoid Signaling System Are Expressed in the Perinatal Mouse Cerebellum and Required for Its Normal Development

Total Page:16

File Type:pdf, Size:1020Kb

Components of Endocannabinoid Signaling System Are Expressed in the Perinatal Mouse Cerebellum and Required for Its Normal Development Research Article: New Research Development Components of Endocannabinoid Signaling System Are Expressed in the Perinatal Mouse Cerebellum and Required for Its Normal Development Luis Ricardo Martinez,1 Kylie Caroline Black,1 Brynna Tellas Webb,1 Alexandria Bell,1 Shawyon Kevin Baygani,1 Tristen Jay Mier,1 Luis Dominguez,1 Ken Mackie,1 and Anna Kalinovsky1 https://doi.org/10.1523/ENEURO.0471-19.2020 1The Gill Center for Biomolecular Science, Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, 47405 IN Visual Abstract March/April 2020, 7(2) ENEURO.0471-19.2020 1–24 Research Article: New Research 2 of 24 Significance Statement In this study, we show that components of the endocannabinoid (eCB) signaling system (ECS) are prominently expressed in the perinatal [embryonic day (E)17.5 to postnatal day (P)14] mouse hindbrain. Our comprehensive characterization highlights developmentally dynamic and spatially restricted expression of cannabinoid receptor 1 (CB1), prominent at birth in pontocerebellar axons, and later in migrating and differentiating anterior vermis granule cells (GCs). We identify the role of Purkinje cells (PCs) in the regulation of eCB 2-arachidonoylglycerol (2-AG) availability, since they express both catabolic and anabolic enzymes diacylglycerol lipase a (DAGLa)and monoacylglycerol lipase (MAGL). Furthermore, we demonstrate a requirement for eCB signaling in the regulation of pontocerebellar axon distribution and of postnatal cerebellar growth. CB1 knock-outs (KOs) exhibit impair- ments in cerebellar-influenced fine-motor, but not gross-motor behaviors. Together, these results illuminate a previously unrecognized role of eCB signaling in the regulation of cerebellar development and function. Endocannabinoid (eCB) signaling system (ECS), encompassing cannabinoid receptors and enzymes involved in the synthesis and degradation of the endogenous cannabinoid signaling lipids, is highly expressed in the cerebellar cortex of adult humans and rodents. In addition to their well-established role in neuromodulation, eCBs have been shown to play key roles in aspects of neurodevelopment in the fore- and mid-brain, including neurogenesis, cell migration, and synapse specification. However, little is known about the role of ECS in cerebellar development. In this study, we conducted immunohistochemical characterization of ECS components through key stages of cere- bellar development in mice using antibodies for 2-arachidonoylglycerol (2-AG) synthetizing and degrading enzymes and the major brain cannabinoid receptor, cannabinoid receptor 1 (CB1), in combination with cerebellar cell markers. Our results reveal a temporally, spatially, and cytologically dynamic pattern of expression. Production, re- ceptor binding, and degradation of eCBs are tightly controlled, thus localization of eCB receptors and the comple- mentary cannabinoid signaling machinery determines the direction, duration, and ultimately the outcome of eCB signaling. To gain insights into the role of eCB signaling in cerebellar development, we characterized gross anat- omy of cerebellar midvermis in CB1 knock-out (CB1 KO) mice, as well as their performance in cerebellar-influ- enced motor tasks. Our results show persistent and selective anatomic and behavioral alterations in CB1 KOs. Consequently, the insights gained from this study lay down the foundation for investigating specific cellular and molecular mechanisms regulated by eCB signaling during cerebellar development. Key words: ataxia; cannabinoid; CB1; cerebellum; coordination; development Introduction Previous studies have shown robust and dynamic ex- pression of the endocannabinoid (eCB) signaling system Received November 13, 2019; accepted February 28, 2020; First published (ECS) during forebrain development, and its requirement March 11, 2020. The authors declare no competing financial interests. in regulation of multiple neurodevelopmental aspects Author contributions: A.K. designed research; K.M. provided critical feedback (Berghuis et al., 2007; Mulder et al., 2008; Vitalis et al., and contributed reagents; L.R.M., K.C.B., B.T.W., A.B., S.K.B., T.J.M., L.D., and 2008; Wu et al., 2010; Oudin et al., 2011; Díaz-Alonso et A.K. performed research; K.C.B., B.T.W., S.K.B., T.J.M., and A.K. analyzed data; al., 2012). However, very little is known about the dynam- L.R.M. and A.K. wrote the paper. This work was supported by the National Institute on Drug Abuse R21 Grant ics of ECS expression, or the role that eCB signaling DA044000 and by a research fund from the Indiana University Department of plays, in the developing hindbrain. Thus, the ubiquity of Psychological and Brain Sciences. the regulatory roles of eCB signaling in neurodevelopment Acknowledgements: We thank the dedicated undergraduate assistants who remains an open question. Furthermore, despite clear evi- contributed to the execution and the discussion of the experiments: Athanasios Liodos, Jacob LaMar, John Justin Hainline, Matthew Awad, Tin Duong, Maxime dence of the key role that eCB signaling plays in the regu- Brunet, Thomas Metcalf, Wesley Cha, Taylor Burke, and Tyler Margetts. This lation of cerebellar synaptic plasticity (Carey et al., 2011), study was initiated following inspiring discussions with our colleagues Dr. Alex the role of eCB signaling in cerebellar development has Straiker and Dr. Natalia Murataeva. We also thank Dr. Carol Mason and Dr. not yet been investigated. In this study, we undertook Alexander Gragerov for their comments on this manuscript, Indiana University Imaging Facility (LMIC) for facilitating access to confocal and slide scanning detailed immunohistochemical characterization of ECS microscopy, and Jim Powers for his invaluable assistance. localization in the perinatal hindbrain followed by charac- Correspondence should be addressed to Anna Kalinovsky at terization of anatomic and behavioral consequences of [email protected] genetic cannabinoid receptor 1 (CB1) ablation. https://doi.org/10.1523/ENEURO.0471-19.2020 Copyright © 2020 Martinez et al. This is an open-access article distributed under the terms of the Creative Cerebellar development Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is The intricate cerebellar cytoarchitecture emerges dur- properly attributed. ing a protracted developmental period (for review, see March/April 2020, 7(2) ENEURO.0471-19.2020 eNeuro.org Research Article: New Research 3 of 24 Sathyanesan et al., 2019). Shortly after the initiation of the development: embryonic day 17.5 (E17.5), P0, P3, P5, P8, cerebellar primordium, granule cell (GC) precursors popu- P10, P12. To elucidate requirements for eCB signaling in late the outer-most layer of the developing cerebellum cerebellar development, we characterized gross anatomic forming the external GC layer (EGL), a secondary prolifer- parameters throughout a developmental time course re- ative zone dedicated to GC production, which persists vealing a persistent reduction in midvermal cerebellar until postnatal day 21 (P21) in mice. Under the EGL, differ- area, accompanied by selective impairments in cerebel- entiating Purkinje cells (PCs) are located in the PC layer lar-controlled motor behaviors in young-adult mice. (PCL). Over the first four postnatal weeks, postmitotic GCs migrate inwards and settle underneath the PCL to seed the inner GC layer (IGL), while their axons form paral- Materials and Methods lel fibers (PFs) and begin to form synapses with dendrites Mice of PCs in the developing molecular layer (ML) above PCL. All mice used in this study were maintained on an out- As the IGL expands, PCs rearrange to form a monolayer bred CD1 genetic background. (around P7). Over the following two postnatal weeks the The CD1 IGS stock was initially acquired from Charles EGL is gradually depleted and disappears, and by P28 River (https://www.criver.com/products-services/find- cerebellar cytoarchitecture and synaptic connectivity model/cd-1r-igs-mouse?region=3611) and a breeding mostly achieves its mature configuration. On the gross colony was maintained in the vivarium with 12/12 h light/ anatomic level, proliferation and maturation of the cere- dark cycle under conditions stipulated by the Institutional bellar cell types is accompanied by cerebellar expansion Animal Care and Use Committee. cb1 À/À mice [CB1 and increasing complexity and refinement of cerebellar knock-out (KO)] used in this study were generated by anatomic and functional subdivisions. (Ledent et al., 1999), acquired from Charles River France and maintained in our facility by HET x HET crosses. Neurodevelopmental disorders associated with Genetic diversity was maintained by replenishing CD1 cerebellar lesions founders from Charles River annually. Mice of both sexes Lesions in the developing cerebella are linked to syn- were used for all experiments. Since we observed no sig- dromes encompassing motor, cognitive, and emotional nificant differences between sexes in expression, anat- deregulation (Koziol et al., 2014). The specific nature of omy or behavior, data are shown for the two sexes the deficits depends on their location within the cerebel- combined for all experiments. lum. Hence, traumatic and malignant lesions in the ante- rior cerebellar vermis and paravermis lead to deficits in Tissue preparation fluid and accurate execution of complex movements in- For embryonic tissue collection pregnant dams were volving
Recommended publications
  • Brainstem: Midbrainmidbrain
    Brainstem:Brainstem: MidbrainMidbrain 1.1. MidbrainMidbrain –– grossgross externalexternal anatomyanatomy 2.2. InternalInternal structurestructure ofof thethe midbrain:midbrain: cerebral peduncles tegmentum tectum (guadrigeminal plate) Midbrain MidbrainMidbrain –– generalgeneral featuresfeatures location – between forebrain and hindbrain the smallest region of the brainstem – 6-7g the shortest brainstem segment ~ 2 cm long least differentiated brainstem division human midbrain is archipallian – shared general architecture with the most ancient of vertebrates embryonic origin – mesencephalon main functions:functions a sort of relay station for sound and visual information serves as a nerve pathway of the cerebral hemispheres controls the eye movement involved in control of body movement Prof. Dr. Nikolai Lazarov 2 Midbrain MidbrainMidbrain –– grossgross anatomyanatomy dorsal part – tectum (quadrigeminal plate): superior colliculi inferior colliculi cerebral aqueduct ventral part – cerebral peduncles:peduncles dorsal – tegmentum (central part) ventral – cerebral crus substantia nigra Prof. Dr. Nikolai Lazarov 3 Midbrain CerebralCerebral cruscrus –– internalinternal structurestructure CerebralCerebral peduncle:peduncle: crus cerebri tegmentum mesencephali substantia nigra two thick semilunar white matter bundles composition – somatotopically arranged motor tracts: corticospinal } pyramidal tracts – medial ⅔ corticobulbar corticopontine fibers: frontopontine tracts – medially temporopontine tracts – laterally
    [Show full text]
  • Lecture 12 Notes
    Somatic regions Limbic regions These functionally distinct regions continue rostrally into the ‘tweenbrain. Fig 11-4 Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 1 Chapter 11, questions about the somatic regions: 4) There are motor neurons located in the midbrain. What movements do those motor neurons control? (These direct outputs of the midbrain are not a subject of much discussion in the chapter.) 5) At the base of the midbrain (ventral side) one finds a fiber bundle that shows great differences in relative size in different species. Give examples. What are the fibers called and where do they originate? 8) A decussating group of axons called the brachium conjunctivum also varies greatly in size in different species. It is largest in species with the largest neocortex but does not come from the neocortex. From which structure does it come? Where does it terminate? (Try to guess before you look it up.) 2 Motor neurons of the midbrain that control somatic muscles: the oculomotor nuclei of cranial nerves III and IV. At this level, the oculomotor nucleus of nerve III is present. Fibers from retina to Superior Colliculus Brachium of Inferior Colliculus (auditory pathway to thalamus, also to SC) Oculomotor nucleus Spinothalamic tract (somatosensory; some fibers terminate in SC) Medial lemniscus Cerebral peduncle: contains Red corticospinal + corticopontine fibers, + cortex to hindbrain fibers nucleus (n. ruber) Tectospinal tract Rubrospinal tract Courtesy of MIT Press. Used with permission. Schneider, G.
    [Show full text]
  • Functional Neuroanatomy for Posture and Gait Control
    REVIEW ARTICLE https://doi.org/10.14802/jmd.16062 / J Mov Disord 2017;10(1):1-17 pISSN 2005-940X / eISSN 2093-4939 Functional ABSTRACT Here we argue functional neuroanatomy for pos- ture-gait control. Multi-sensory information such as Neuroanatomy somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable pos- ture-gait control can be achieved. Automatic process for Posture and of gait, which is steady-state stepping movements associating with postural reflexes including head- eye coordination accompanied by appropriate align- Gait Control ment of body segments and optimal level of pos- tural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Par- ticularly, reticulospinal pathways arising from the lat- Kaoru Takakusaki eral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On The Research Center for Brain Function and Medical Engineering, the other hand, walking in unfamiliar circumstance Asahikawa Medical University, Asahikawa, Japan requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive in- formation is produced at the temporoparietal asso- ciation cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to ex- ecute anticipatory postural adjustment that is opti- mal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posture- gait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Conse- quently, impairments in cognitive function by dam- ages in the cerebral cortex, basal ganglia and cere- bellum may disturb posture-gait control, resulting in falling.
    [Show full text]
  • Compensatory Sprouting and Impulse Rerouting After Unilateral Pyramidal Tract Lesion in Neonatal Rats
    The Journal of Neuroscience, September 1, 2000, 20(17):6561–6569 Compensatory Sprouting and Impulse Rerouting after Unilateral Pyramidal Tract Lesion in Neonatal Rats Werner J. Z’Graggen, Karim Fouad, Olivier Raineteau, Gerlinde A. S. Metz, Martin E. Schwab, and Gwendolyn L. Kartje Brain Research Institute, University of Zurich and Swiss Federal Institute of Technology Zurich, CH-8057 Zurich, Switzerland After lesions of the developing mammalian CNS, structural plas- tigate possible new functional connections from the motor cortex ticity and functional recovery are much more pronounced than in of the pyramidotomy side to the periphery. In rats lesioned as the mature CNS. We investigated the anatomical reorganization adults, stimulation of the motor cortex ipsilateral to the pyra- of the corticofugal projections rostral to a unilateral lesion of the midotomy never elicited EMG activity. In contrast, in P2 lesioned corticospinal tract at the level of the medullary pyramid (pyra- rats bilateral forelimb EMGs were found. EMG latencies were midotomy) and the contribution of this reorganization and other comparable for the ipsilateral and contralateral responses but descending systems to functional recovery. were significantly longer than in unlesioned animals. Transient Two-day-old (P2) and adult rats underwent a unilateral pyra- inactivation of both red nuclei with the GABA receptor agonist midotomy. Three months later the corticofugal projections to the muscimol led to a complete loss of these bilateral movements. red nucleus and the pons were analyzed; a relatively large num- Movements and EMGs reappeared after wash-out of the drug. ber of corticorubral and corticopontine fibers from the lesioned These results suggest an important role of the red nucleus in the side had crossed the midline and established an additional con- tralateral innervation of the red nucleus and the pons.
    [Show full text]
  • Basal Ganglia and Cerebellum Receive Different Somatosensory Information in Rats (Barrel Field/Pontine Nuclei/Cortical Lamnation/Vibrissae) BARBARA E
    Proc. Nati. Acad. Sci. USA Vol. 87, pp. 4388-4392, June 1990 Neurobiology Basal ganglia and cerebellum receive different somatosensory information in rats (barrel field/pontine nuclei/cortical lamnation/vibrissae) BARBARA E. MERCIER*, CHARLES R. LEGGt, AND MITCHELL GLICKSTEIN Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1, United Kingdom Communicated by Irving T. Diamond, March 14, 1990 ABSTRACT There are two great subcortical circuits that sublamina Vb stain far more densely, suggesting that they are relay sensory information to motor structures in the mamma- capable ofhigher levels oftonic activity than those in Va (12). lian brain. One pathway relays via the pontine nuclei and Previous study of the efferent pathways from the rat cerebellum, and the other relays by way of the basal ganglia. somatosensory cortex (2) has suggested that the cell popu- We studied the cells oforigin ofthese two major pathways from lation projecting to the basal ganglia is centered on lamina Va, the posteromedial barrel subfield ofrats, a distinct region ofthe while the population projecting to the cerebellum is centered somatosensory cortex that contains the sensory representation on Vb. However, the methods available at the time the study of the large whiskers. We itjected tracer substances into the was done were relatively insensitive (13) and a comparison caudate putamen or the pontine nuclei and charted the location with more recent work (14) shows that only a subset of the of retrogradely filled cortical cells. In preliminary studies, we entire population of corticopontine cells was identified. Wise used double-labeling techniques to determine whether the cells and Jones (figure 6a in ref.
    [Show full text]
  • Chapter 3: Internal Anatomy of the Central Nervous System
    10353-03_CH03.qxd 8/30/07 1:12 PM Page 82 3 Internal Anatomy of the Central Nervous System LEARNING OBJECTIVES Nuclear structures and fiber tracts related to various functional systems exist side by side at each level of the After studying this chapter, students should be able to: nervous system. Because disease processes in the brain • Identify the shapes of corticospinal fibers at different rarely strike only one anatomic structure or pathway, there neuraxial levels is a tendency for a series of related and unrelated clinical symptoms to emerge after a brain injury. A thorough knowl- • Recognize the ventricular cavity at various neuroaxial edge of the internal brain structures, including their shape, levels size, location, and proximity, makes it easier to understand • Recognize major internal anatomic structures of the their functional significance. In addition, the proximity of spinal cord and describe their functions nuclear structures and fiber tracts explains multiple symp- toms that may develop from a single lesion site. • Recognize important internal anatomic structures of the medulla and explain their functions • Recognize important internal anatomic structures of the ANATOMIC ORIENTATION pons and describe their functions LANDMARKS • Identify important internal anatomic structures of the midbrain and discuss their functions Two distinct anatomic landmarks used for visual orientation to the internal anatomy of the brain are the shapes of the • Recognize important internal anatomic structures of the descending corticospinal fibers and the ventricular cavity forebrain (diencephalon, basal ganglia, and limbic (Fig. 3-1). Both are present throughout the brain, although structures) and describe their functions their shape and size vary as one progresses caudally from the • Follow the continuation of major anatomic structures rostral forebrain (telencephalon) to the caudal brainstem.
    [Show full text]
  • The Long Journey of Pontine Nuclei Neurons : from Rhombic Lip To
    REVIEW Erschienen in: Frontiers in Neural Circuits ; 11 (2017). - 33 published: 17 May 2017 http://dx.doi.org/10.3389/fncir.2017.00033 doi: 10.3389/fncir.2017.00033 The Long Journey of Pontine Nuclei Neurons: From Rhombic Lip to Cortico-Ponto-Cerebellar Circuitry Claudius F. Kratochwil 1,2, Upasana Maheshwari 3,4 and Filippo M. Rijli 3,4* 1Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany, 2Zukunftskolleg, University of Konstanz, Konstanz, Germany, 3Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland, 4University of Basel, Basel, Switzerland The pontine nuclei (PN) are the largest of the precerebellar nuclei, neuronal assemblies in the hindbrain providing principal input to the cerebellum. The PN are predominantly innervated by the cerebral cortex and project as mossy fibers to the cerebellar hemispheres. Here, we comprehensively review the development of the PN from specification to migration, nucleogenesis and circuit formation. PN neurons originate at the posterior rhombic lip and migrate tangentially crossing several rhombomere derived territories to reach their final position in ventral part of the pons. The developing PN provide a classical example of tangential neuronal migration and a study system for understanding its molecular underpinnings. We anticipate that understanding the mechanisms of PN migration and assembly will also permit a deeper understanding of the molecular and cellular basis of cortico-cerebellar circuit formation and function. Keywords: pontine gray nuclei, reticulotegmental nuclei, precerebellar system, cortico-ponto-cerebellar circuitry, Hox genes Edited by: Takao K. Hensch, INTRODUCTION Harvard University, United States Reviewed by: The basal pontine nuclei (BPN) (also known as basilar pons, pontine gray nuclei or pontine nuclei Masahiko Takada, (PN)) and the reticulotegmental nuclei (RTN) (also known as nucleus reticularis tegmenti pontis) Kyoto University, Japan are located within the ventral portion of the pons.
    [Show full text]
  • Cerebral Cortex 595
    Cerebral cortex 595 CEREBRAL CORTEX Gross Structure of Cerebral Hemispheres You have already looked at the blood supply of the cerebral hemispheres in lab, and will be dissecting and slicing the cerebral hemispheres to study deeper structures in a later lab. A detailed understanding of the blood supply of the cerebral cortex and its fiber systems is extremely important since blockage and rupture of these vessels accounts for a large proportion of the pathology of the brain. An extremely important point is that even though there usually are small anastomoses between branches of the different cerebral arteries or between cerebral arteries and dural arteries, these anastomoses are inadequate to supply sufficient blood to prevent loss of function. Typically, blockage of any one of the three arteries supplying the cerebral cortex (distal to their origin at the Circle of Willis) produces a rapid and irreversible destruction of a large region of cortex, although the exact extent of destruction is somewhat variable in different individuals as a result of differences in the extent of anastomoses. The pattern of distribution of the three arteries to the cerebral cortex (anterior, middle, and posterior cerebral) is seen in figures 2-4. The arterial supply for some of the more important parts of the cortex is as follows: Visual cortex (areas 17, 18, 19) in occipital lobe: posterior cerebral Somatic sensory (areas 3, 1, 2) and motor cortex (areas 4 & 6): anterior cerebral and middle cerebral. The foot and leg representations which are found medially are supplied by the anterior cerebral; the remainder of the body is supplied by the middle cerebral.
    [Show full text]
  • White Matter Anatomy: What the Radiologist Needs to Know
    White Matter Anatomy What the Radiologist Needs to Know Victor Wycoco, MBBS, FRANZCRa, Manohar Shroff, MD, DABR, FRCPCa,*, Sniya Sudhakar, MBBS, DNB, MDb, Wayne Lee, MSca KEYWORDS Diffusion tensor imaging (DTI) White matter tracts Projection fibers Association Fibers Commissural fibers KEY POINTS Diffusion tensor imaging (DTI) has emerged as an excellent tool for in vivo demonstration of white matter microstructure and has revolutionized our understanding of the same. Information on normal connectivity and relations of different white matter networks and their role in different disease conditions is still evolving. Evidence is mounting on causal relations of abnormal white matter microstructure and connectivity in a wide range of pediatric neurocognitive and white matter diseases. Hence there is a pressing need for every neuroradiologist to acquire a strong basic knowledge of white matter anatomy and to make an effort to apply this knowledge in routine reporting. INTRODUCTION (Fig. 1). However, the use of specific DTI sequences provides far more detailed and clini- DTI has allowed in vivo demonstration of axonal cally useful information. architecture and connectivity. This technique has set the stage for numerous studies on normal and abnormal connectivity and their role in devel- DIFFUSION TENSOR IMAGING: THE BASICS opmental and acquired disorders. Referencing established white matter anatomy, DTI atlases, Using appropriate magnetic field gradients, and neuroanatomical descriptions, this article diffusion-weighted sequences can be used to summarizes the major white matter anatomy and detect the motion of the water molecules to and related structures relevant to the clinical neurora- from cells. This free movement of the water mole- diologist in daily practice.
    [Show full text]
  • Mesencephalon; Midbrain Mesencephalon; Midbrain
    DOI: 10.5772/intechopen.68767 Provisional chapter Chapter 8 Mesencephalon; Midbrain Mesencephalon; Midbrain Ayla Kurkcuoglu Ayla Kurkcuoglu Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.68767 Abstract The mesencephalon is the most rostral part of the brainstem and sits above the pons and is adjoined rostrally to the thalamus. It comprises two lateral halves, called the cerebral peduncles; which is again divided into an anterior part, the crus cerebri, and a posterior part, tegmentum. The tectum is lay dorsal to an oblique coronal plane which includes the aquaduct, and consist of pretectal area and the corpora quadrigemina. In transvers section, the cerebral peduncles are seen to be composed of dorsal and ventral regions separated by the substantia nigra. Tegmentum mesencephali contains red nucleus, ocu‐ lomotor nucleus, thochlear nucleus, reticular nuclei, medial lemnisci, lateral lemnisci and medial longitudinal fasciculus. In tectum, the inferior colliculus and superior col‐ liculus have main nucleus, which are continuous with the periaqueductal grey matter. The mesencephalon serves important functions in motor movement, particularly move‐ ments of the eye, and in auditory and visual processing. The mesencephalic syndrome cause tremor, spastic paresis or paralysis, opisthotonos, nystagmus and depression or coma. In addition cranial trauma, brain tumors, thiamin deficiency and inflammatory or degenerative disorders of the mesencephalon have also been associated with the mid‐ brain syndrome. Keywords: the midbrain, mesencephalon, crus cerebri, substantia nigra, tectum 1. Introduction The nervous system has two components, namely the central nervous system and the periph‐ eral nervous system.
    [Show full text]
  • 14 Motor Nucleus of Cranial Nerve Vii (Motor Vii)
    263 Brain stem Motor VII 14 MOTOR NUCLEUS OF CRANIAL NERVE VII (MOTOR VII) Before turning to the motor VII, you should note that the pons consists of two zones, a dorsal portion called the tegmentum of the pons and a ventral zone called the basilar pons. The tegmentum contains cranial nerve nuclei and ascending pathways such as the medial lemniscus, lateral lemniscus, ALS (spinothalamic tract), STT (solitariothalamic tract) and TTT (trigeminothalamic tract). The basilar region contains the pontine grey nuclei and massive groups of descending fibers, including the corticospinal, corticobulbar, and corticopontine tracts. Brain stem 264 Motor VII The motor nucleus VII contains motor neurons (branchiomotor) that innervate the muscles of facial expression including the orbicularis oculi (CLOSES eyelid), the stapedius, the stylohyoid and the posterior belly of the digastric. Neurons comprising motor VII possess axons that pursue a rather circuitous route in order to exit the brain stem. Initially they pass dorsally and medially to loop over the abducens nucleus. The fibers then course ventrally and laterally to exit the brain stem. The bump in the floor of the fourth ventricle caused by the motor fibers of C.N. VII looping over the abducens nucleus is called the FACIAL COLLICULUS. A unilateral lesion interrupting the axons of C.N. VII results in the following: On the ipsilateral side, the forehead is immobile, the corner of the mouth sags, the nasolabial folds of the face are flattened, facial lines are lost, and saliva may drip from the corner of the mouth. The patient is unable to whistle or puff the cheek because the buccinator muscle is paralyzed.
    [Show full text]
  • Destruction of the "Pyramidal Tract" in Man*
    Destruction of the "Pyramidal Tract" in Man* PAUL C. BucY, M.D., JAMES E. KEPLINGER, M.D., AND EDIR B. SIQUEIRA,M.D. Department of Surgery, Northwestern University Medical School and Section on Neurological Surgery, Chicago Wesley Memorial Hospital, Chicago, Illinois PPORTUNITIES to observe the results cal "pyramidal tract") occupy the central of the isolated destruction of the portion of the cerebral peduncle (Fig. 1) as O "pyramidal tract" in man are rare. Levin ls,19 has shown, while the corticospinal There are but few places in the nervous sys- fibers from the postcentral region lie immedi- tem where the corticospinal fibers are sepa- ately lateral to these (Fig. ~).1 In the most rated sufficiently from other systems to per- medial part of the peduncle are found the mit of their isolated destruction, either surgi- frontopontine fibers, ls,19 The exact nature of cally or by disease. Extirpation of the the fibers in the most lateral part of the cere- pre- and postcentral cerebral cortex results in bral peduncle is less well known. Marin a destruction of the "pyramidal tract" but et al., 2~ from a study of human material con- also destroys other fibers, both ascending and cluded that the lateral segment of the pe- descending, thus producing a complex pic- duncle is composed of corticopontine fibers ture. Lesions of the internal capsule fre- from the parietal, occipital and temporal quently destroy the corticospinal system but lobes. However, their evidence as to occipito- they also destroy descending pathways to the pontine fibers is not conclusive, and that basal ganglia, the thalamus, the brain stem, dealing with a temporopontine component the cerebellum, etc., as well as many ascend- indicates only a very few such fibers.
    [Show full text]