The Career of Maclyn Mccarty Joshua Lederberg*, Emil C

Total Page:16

File Type:pdf, Size:1020Kb

The Career of Maclyn Mccarty Joshua Lederberg*, Emil C Open access, freely available online Obituary A Path to Discovery: The Career of Maclyn McCarty Joshua Lederberg*, Emil C. Gotschlich aclyn McCarty, who devoted his life as a physician-scientist Mto studying infectious disease organisms, was best known for his part in the monumental discovery that DNA, rather than protein, constituted the chemical nature of a gene. Uncovering the molecular secret of the gene in question—that for the capsular polysaccharide of pneumococcal bacteria—led the way to studying heredity not only through genetics but also through chemistry, and initiated the dawn of the age of molecular biology. McCarty was the youngest and longest surviving member of the research team responsible for this feat, which also included Oswald T. Avery and Colin MacLeod; he died on January 2, 2005, from congestive heart failure. McCarty was born in 1911 in South Bend, Indiana, the second of four sons of a branch manager for the Studebaker Corporation while it was DOI: 10.1371/journal.pbio.0030341.g001 still a fi rm for horse-drawn carriages. Maclyn McCarty (June 9, 1911, to January 2, 2005) with Francis Crick and James D. In his teens, McCarty set himself the Watson goal of becoming a physician-scientist, (Photo: Marjorie McCarty) and he pursued a successful strategy to prepare for admission to, and early pneumococcal transformation, the However, in 1928, Fred Griffi th, success in, Johns Hopkins University heritable alteration of a pneumococcal a leader in public-health research Medical School. As an undergraduate strain from a nonvirulent rough form in Britain, demonstrated that the at Stanford University, he presciently to a virulent smooth encapsulated conversion of one strain to another began his studies in the nascent fi eld form. McCarty’s arrival at the could happen in vivo in mice. Shortly of biochemistry, working with James Rockefeller Institute in September after the publication of his results, Murray Luck on protein turnover 1941 marked 13 years since this they were confi rmed in several in the liver. In 1937, he began his discovery, also known as the Griffi th quarters, including Avery’s lab. The clinical training in pediatrics at the phenomenon. Prior to this discovery, Harriet Lane Service at Johns Hopkins the 1920s had been marked by a University. There McCarty developed medley of disparate observations on Citation: Lederberg J, Gotschlich EC (2005) A path a special interest in infectious that seemed to discovery: The career of Maclyn McCarty. PLoS Biol Streptococcus pneumoniae 3(10): e341. diseases—in particular, antibacterial to involve an exchange of receptors sulfonamide drug treatments that among diverse bacteria either grown Copyright: © 2005 Lederberg and Gotschlich. This is an open-access article distributed under the were just entering medicine—which together in liquid media or exposed terms of the Creative Commons Attribution License, he subsequently pursued by moving to various kinds of extracts and which permits unrestricted use, distribution, and to New York University to work with supernatants. With rare exception, reproduction in any medium, provided the original work and source are properly cited. William Tillett. A National Research the early researchers in this area were Council Fellowship in the medical utterly confused about the distinction Joshua Lederberg and Emil C. Gotschlich are at the sciences and an opening in Oswald T. between genotype and phenotype. No Rockefeller University, New York, New York, United States of America. Avery’s laboratory spurred his move to single experiment was carried forward Rockefeller University in 1941. to confi rmation by other observers, so *To whom correspondence should be addressed. At that time, research in the the entire fi eld of “para agglutination” E-mail: [email protected] Avery laboratory was focused on the was in some disrepute. DOI: 10.1371/journal.pbio.0030341 PLoS Biology | www.plosbiology.org 1690 October 2005 | Volume 3 | Issue 10 | e341 analysis relied on serotyping: it was positively correlate DNA with biological most commentators had accepted the known that phenotypic differentiation activity. It gradually became evident untrammeled heuristic value of the of pneumoccocal groups could be that the active material in purifi ed proposition that, indeed, genes were diagnosed by their reactions with extracts had astonishingly high made of DNA. specifi c antisera, already recognized potency in micrograms of DNA that Meanwhile, a physician-scientist to refl ect chemically distinct capsular could consummate the pneumococcal through and through, McCarty turned polysaccharides. Griffi th had neither transformation in vitro. his attention to diseases promoted the resources nor the inclination to McCarty, MacLeod, and Avery by streptococci. So it happened that purify and identify the responsible wrestled with the standard of on the retirement of Homer Swift agent in pneumococcal extracts that proof required to claim that they in 1946, McCarty was asked to head induced the changes of serotype. But had accomplished pneumococcal the laboratory established in 1922 to the phenomenon of transformation was transformation with highly purifi ed work on streptococci and rheumatic at least vaguely understood to comprise DNA from extracts. After much self- fever. This was the scientifi c home of an alteration of what we would now call inquiry, in 1944, they published in the Rebecca Lancefi eld, who developed the genetic factors. Journal of Experimental Medicine that the still powerful serological classifi cation Though interrupted, sometimes active material was, indeed, DNA [2], of streptococci. From innumerable for years at a time, these studies bereft of protein or any other known clinical observations, combined with were from 1928 onwards the polymer [3,4]. Lancefi eld’s classifi cation, it was centerpiece of Avery’s lab agenda. The vicissitudes of the acceptance clear that acute rheumatic fever, a Around 1940, they were activated of the concept that “genes are DNA” severe sterile infl ammatory condition by Colin MacLeod’s efforts to purify deserve the scholarly praise they affecting particularly the joints and the the chemical agent responsible for have received [5,6]. The claim was, heart, was a complication of group A changes of serotype—whether protein, indeed, subject to a formidable, but streptococcal pharyngitis, following the nucleic acid, or some other class of predictable, round of organized infection by several weeks. The causal molecule—and demonstrate that it skepticism. Some would say, even chain of events still eludes us. McCarty was necessary and suffi cient to cause worse, that it was simply ignored, but attacked this problem by studying both the Griffi th phenomenon. Studies that is manifestly untrue, at least in the biology of group A streptococci on pneumococcal transformation the case of the New York research and patients with acute rheumatic fever were grossly burdened by a wide institutions. The scientifi c community admitted to the Rockefeller Hospital. variety of variables, which needed to does not accept major scientifi c claims Together with his students and be controlled to allow quantitative with ease, and in this case, there were collaborators, over the next 20 estimation of transforming activity challenges associated with research on years, McCarty’s work changed the in extracts undergoing various stages S. pneumoniae, which made it especially understanding of the organism from of purifi cation. MacLeod, over a diffi cult to attract other investigators a gram-positive streptococcus with a number of years of research, had to pursue this research. To begin with, particular serological characteristic resolved several thorny technical issues few people had the necessary expertise to one of the best characterized to render the experimental system with this pathogen from a biological bacterial species. Work on bacterial somewhat more reliable as an assay perspective—it was dangerous to work cell-wall anatomy and chemistry was just for biological activity. By the time with, and at the same time, it was beginning. His work led to the isolation McCarty arrived at the Rockefeller fi nicky to grow. In order to assay its of the streptococcal cell wall as a University, Avery’s team had just about virulence, one needed to use mice as a structural entity suitable for anatomic decided that the active reagent was selective fi lter. Most critically lacking as inspection by electronmicroscopy. not a protein. But what was it then? corroboration was the examination of Chemical dissection led to Could it be a soluble saccharide, RNA, other phenotypic markers, besides the characterization of the group or, least likely, DNA? The progress of capsular polysaccharide, to determine A–specifi c polysaccharide and the this research over the next three years the extent that the fi ndings on the peptidoglycan, and the identifi cation of is beautifully described in McCarty’s gene for one pneumococcal antigen its serological specifi city in the terminal memoir The Transforming Principle, would apply to other metabolic markers hexosamine. In order to prove this written in the early 1980s [1]. of S. pneumoniae. specifi city, he fi rst had to identify and As purifi cation progressed, exposure However, by 1953, infl uenced by purify a specifi c enzyme that cleaved of extracts to crystalline RNase and to the enormous impact of Watson and hexosamine (a hexosaminidase) proteinase preparations helped Avery’s Crick’s bihelical structure of DNA, from a soil organism. Treating the team determine that the biological the majority of researchers had fully polysaccharide with this enzyme activity of extracts was not dependent accepted the 1944 paper. In fact, abrogated its serological reactivity. on RNA or protein. Crystalline one might say, formal proof that McCarty further demonstrated DNase was not available until 1948, DNA encoded genetic material was the precise confi guration of the but biological activity was rapidly approximated only much later by the hexosamine linkage by synthesizing reduced by tissue extracts rich in laboratory synthesis of oligonucleotides, both α- and β-N-acetyl-glucosamine DNase.
Recommended publications
  • 2004 Albert Lasker Nomination Form
    albert and mary lasker foundation 110 East 42nd Street Suite 1300 New York, ny 10017 November 3, 2003 tel 212 286-0222 fax 212 286-0924 Greetings: www.laskerfoundation.org james w. fordyce On behalf of the Albert and Mary Lasker Foundation, I invite you to submit a nomination Chairman neen hunt, ed.d. for the 2004 Albert Lasker Medical Research Awards. President mrs. anne b. fordyce The Awards will be offered in three categories: Basic Medical Research, Clinical Medical Vice President Research, and Special Achievement in Medical Science. This is the 59th year of these christopher w. brody Treasurer awards. Since the program was first established in 1944, 68 Lasker Laureates have later w. michael brown Secretary won Nobel Prizes. Additional information on previous Lasker Laureates can be found jordan u. gutterman, m.d. online at our web site http://www.laskerfoundation.org. Representative Albert Lasker Medical Research Awards Program Nominations that have been made in previous years may be updated and resubmitted in purnell w. choppin, m.d. accordance with the instructions on page 2 of this nomination booklet. daniel e. koshland, jr., ph.d. mrs. william mccormick blair, jr. the honorable mark o. hatfied Nominations should be received by the Foundation no later than February 2, 2004. Directors Emeritus A distinguished panel of jurors will select the scientists to be honored. The 2004 Albert Lasker Medical Research Awards will be presented at a luncheon ceremony given by the Foundation in New York City on Friday, October 1, 2004. Sincerely, Joseph L. Goldstein, M.D. Chairman, Awards Jury Albert Lasker Medical Research Awards ALBERT LASKER MEDICAL2004 RESEARCH AWARDS PURPOSE AND DESCRIPTION OF THE AWARDS The major purpose of these Awards is to recognize and honor individuals who have made signifi- cant contributions in basic or clinical research in diseases that are the main cause of death and disability.
    [Show full text]
  • Streptococci
    STREPTOCOCCI Streptococci are Gram-positive, nonmotile, nonsporeforming, catalase-negative cocci that occur in pairs or chains. Older cultures may lose their Gram-positive character. Most streptococci are facultative anaerobes, and some are obligate (strict) anaerobes. Most require enriched media (blood agar). Streptococci are subdivided into groups by antibodies that recognize surface antigens (Fig. 11). These groups may include one or more species. Serologic grouping is based on antigenic differences in cell wall carbohydrates (groups A to V), in cell wall pili-associated protein, and in the polysaccharide capsule in group B streptococci. Rebecca Lancefield developed the serologic classification scheme in 1933. β-hemolytic strains possess group-specific cell wall antigens, most of which are carbohydrates. These antigens can be detected by immunologic assays and have been useful for the rapid identification of some important streptococcal pathogens. The most important groupable streptococci are A, B and D. Among the groupable streptococci, infectious disease (particularly pharyngitis) is caused by group A. Group A streptococci have a hyaluronic acid capsule. Streptococcus pneumoniae (a major cause of human pneumonia) and Streptococcus mutans and other so-called viridans streptococci (among the causes of dental caries) do not possess group antigen. Streptococcus pneumoniae has a polysaccharide capsule that acts as a virulence factor for the organism; more than 90 different serotypes are known, and these types differ in virulence. Fig. 1 Streptococci - clasiffication. Group A streptococci causes: Strep throat - a sore, red throat, sometimes with white spots on the tonsils Scarlet fever - an illness that follows strep throat. It causes a red rash on the body.
    [Show full text]
  • Research Organizations and Major Discoveries in Twentieth-Century Science: a Case Study of Excellence in Biomedical Research
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Hollingsworth, Joseph Rogers Working Paper Research organizations and major discoveries in twentieth-century science: A case study of excellence in biomedical research WZB Discussion Paper, No. P 02-003 Provided in Cooperation with: WZB Berlin Social Science Center Suggested Citation: Hollingsworth, Joseph Rogers (2002) : Research organizations and major discoveries in twentieth-century science: A case study of excellence in biomedical research, WZB Discussion Paper, No. P 02-003, Wissenschaftszentrum Berlin für Sozialforschung (WZB), Berlin This Version is available at: http://hdl.handle.net/10419/50229 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu P 02 – 003 RESEARCH ORGANIZATIONS AND MAJOR DISCOVERIES IN TWENTIETH-CENTURY SCIENCE: A CASE STUDY OF EXCELLENCE IN BIOMEDICAL RESEARCH J.
    [Show full text]
  • Universidade Do Estado Do Rio De Janeiro Centro Biomédico Faculdade De Ciências Médicas
    i Universidade do Estado do Rio de Janeiro Centro Biomédico Faculdade de Ciências Médicas Guilherme da Silva Lourenço Carvalho Formação de biofilme por espécies de Stretptococcus Rio de Janeiro 2012 ii Guilherme da Silva Lourenço Carvalho Formação de biofilme por espécies de Streptococcus Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-graduação em Microbiologia, da Universidade do Estado do Rio de Janeiro. Área de concentração: Microbiologia Médica Humana. Orientadora: Profa. Dra. Vânia Lúcia Carreira Merquior Coorientadores: Prof. Dr. Rafael Silva Duarte Profa. Dra. Lúcia Teixeira Martins Rio de Janeiro 2012 iii CATALOGAÇÃO NA FONTE UERJ/REDE SIRIUS/BIBLIOTECA CB-A C331 Carvalho, Guilherme da Silva Lourenço. Formação de biofilme por espécies de Streptococcus. / Guilherme da Silva Lourenço Carvalho. - 2012. 79 f. Orientadora: Vânia Lúcia Carreira Merquior. Coorientadores: Rafael Silva Duarte. Lúcia Teixeira Martins. Dissertação (Mestrado) - Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas. Pós-graduação em Microbiologia. 1. Streptococcus. 2. Biofilmes. 3. Virulência. I. Merquior, Vânia Lúcia Carreira II. Duarte, Rafael Silva III. Martins, Lúcia Teixeira. IV. Universidade do Estado do Rio de Janeiro. Faculdade de Ciências Médicas. V. Título. CDU 576.951.214 Bibliotecária: Ana Rachel Fonseca de Oliveira CRB7/6382 Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação, desde que citada a fonte. ________________________________________ _____________________ Assinatura Data iv Guilherme da Silva Lourenço Carvalho Formação de biofilme porespécies de Streptococcus Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-graduação em Microbiologia, da Universidade do Estado do Rio de Janeiro.
    [Show full text]
  • Synthetic Biology in Fine Art Practice. Doctoral Thesis, Northumbria University
    Citation: Mackenzie, Louise (2017) Evolution of the Subject – Synthetic Biology in Fine Art Practice. Doctoral thesis, Northumbria University. This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/38387/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html EVOLUTION OF THE SUBJECT SYNTHETIC BIOLOGY IN FINE ART PRACTICE LOUISE MACKENZIE PhD 2017 EVOLUTION OF THE SUBJECT SYNTHETIC BIOLOGY IN FINE ART PRACTICE LOUISE MACKENZIE A thesis submitted in partial fulfilment of the requirements of the University of Northumbria at Newcastle for the degree of Doctor of Philosophy Research undertaKen in the Faculty of Arts, Design & Social Sciences in collaboration with the Institute of Genetic Medicine at Newcastle University December 2017 ABSTRACT AcKnowledging a rise in the use of synthetic biology in art practice, this doctoral project draws from vital materialist discourse on biotechnology and biological materials in the worKs of Donna Haraway, Jane Bennett, Rosi Braidotti and Marietta Radomska to consider the liveliness of molecular biological material through art research and practice.
    [Show full text]
  • Lasker Interactive Research Nom'18.Indd
    THE 2018 LASKER MEDICAL RESEARCH AWARDS Nomination Packet albert and mary lasker foundation November 1, 2017 Greetings: On behalf of the Albert and Mary Lasker Foundation, I invite you to submit a nomination for the 2018 Lasker Medical Research Awards. Since 1945, the Lasker Awards have recognized the contributions of scientists, physicians, and public citizens who have made major advances in the understanding, diagnosis, treatment, cure, and prevention of disease. The Medical Research Awards will be offered in three categories in 2018: Basic Research, Clinical Research, and Special Achievement. The Lasker Foundation seeks nominations of outstanding scientists; nominations of women and minorities are encouraged. Nominations that have been made in previous years are not automatically reconsidered. Please see the Nomination Requirements section of this booklet for instructions on updating and resubmitting a nomination. The Foundation accepts electronic submissions. For information on submitting an electronic nomination, please visit www.laskerfoundation.org. Lasker Awards often presage future recognition of the Nobel committee, and they have become known popularly as “America’s Nobels.” Eighty-seven Lasker laureates have received the Nobel Prize, including 40 in the last three decades. Additional information on the Awards Program and on Lasker laureates can be found on our website, www.laskerfoundation.org. A distinguished panel of jurors will select the scientists to be honored with Lasker Medical Research Awards. The 2018 Awards will
    [Show full text]
  • The Career of Maclyn Mccarty Joshua Lederberg*, Emil C
    Open access, freely available online Obituary A Path to Discovery: The Career of Maclyn McCarty Joshua Lederberg*, Emil C. Gotschlich aclyn McCarty, who devoted his life as a physician-scientist Mto studying infectious disease organisms, was best known for his part in the monumental discovery that DNA, rather than protein, constituted the chemical nature of a gene. Uncovering the molecular secret of the gene in question—that for the capsular polysaccharide of pneumococcal bacteria—led the way to studying heredity not only through genetics but also through chemistry, and initiated the dawn of the age of molecular biology. McCarty was the youngest and longest surviving member of the research team responsible for this feat, which also included Oswald T. Avery and Colin MacLeod; he died on January 2, 2005, from congestive heart failure. McCarty was born in 1911 in South Bend, Indiana, the second of four sons of a branch manager for the Studebaker Corporation while it was DOI: 10.1371/journal.pbio.0030341.g001 still a fi rm for horse-drawn carriages. Maclyn McCarty (June 9, 1911, to January 2, 2005) with Francis Crick and James D. In his teens, McCarty set himself the Watson goal of becoming a physician-scientist, (Photo: Marjorie McCarty) and he pursued a successful strategy to prepare for admission to, and early pneumococcal transformation, the However, in 1928, Fred Griffi th, success in, Johns Hopkins University heritable alteration of a pneumococcal a leader in public-health research Medical School. As an undergraduate strain from a nonvirulent rough form in Britain, demonstrated that the at Stanford University, he presciently to a virulent smooth encapsulated conversion of one strain to another began his studies in the nascent fi eld form.
    [Show full text]
  • 157Th Meeting of the National Park System Advisory Board November 4-5, 2015
    NORTHEAST REGION Boston National Historical Park 157th Meeting Citizen advisors chartered by Congress to help the National Park Service care for special places saved by the American people so that all may experience our heritage. November 4-5, 2015 • Boston National Historical Park • Boston, Massachusetts Meeting of November 4-5, 2015 FEDERAL REGISTER MEETING NOTICE AGENDA MINUTES Meeting of May 6-7, 2015 REPORT OF THE SCIENCE COMMITTEE NATIONAL PARK SERVICE URBAN AGENDA REPORT ON THE NATIONAL PARK SERVICE COMPREHENSIVE ECONOMIC VALUATION STUDY OVERVIEW OF NATIONAL PARK SERVICE ACTIONS ON ADVISORY BOARD RECOMMENDATIONS • Planning for a Future National Park System • Strengthening NPS Science and Resource Stewardship • Recommending National Natural Landmarks • Recommending National Historic Landmarks • Asian American Pacific Islander, Latino and LGBT Heritage Initiatives • Expanding Collaboration in Education • Encouraging New Philanthropic Partnerships • Developing Leadership and Nurturing Innovation • Supporting the National Park Service Centennial Campaign REPORT OF THE NATIONAL HISTORIC LANDMARKS COMMITTEE PLANNING A BOARD SUMMARY REPORT MEETING SITE—Boston National Historical Park, Commandant’s House, Charlestown Navy Yard, Boston, MA 02139 617-242-5611 LODGING SITE—Hyatt Regency Cambridge, 575 Memorial Drive, Cambridge, MA 62139 617-492-1234 / Fax 617-491-6906 Travel to Boston, Massachusetts, on Tuesday, November 3, 2015 Hotel Check in 4:00 pm Check out 12:00 noon Hotel Restaurant: Zephyr on the Charles / Breakfast 6:30-11:00 am / Lunch 11:00 am - 5:00 pm / Dinner 5-11:00 pm Room Service: Breakfast 6:00 am - 11:00 am / Dinner 5:00 pm - 11:00 pm Wednesday NOVEMBER 4 NOTE—Meeting attire is business. The tour will involve some walking and climbing stairs.
    [Show full text]
  • Biography of Rebecca Craighill Lancefield
    NATIONAL ACADEMY OF SCIENCES R E B ECCA CRAIGHILL L ANCEFIELD 1895—1981 A Biographical Memoir by MACLYN MCCARTY Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1987 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. REBECCA CRAIGHILL LANCEFIELD January 5, 1895-March 3, 1981 BY MACLYN McCARTY EBECCA CRAIGHILL LANCEFIELD was born on Janu- R ary 5, 1895, in Fort Wadsworth, New York, where her father, Col. William E. Craighill, was stationed as an officer in the U.S. Army Engineer Corps. As a member of an Army family, she lived in many different communities during her early years. After graduating from Wellesley College, how- ever, and spending one year teaching in a girls school in Ver- mont, she returned to New York City. Except for a year's sojourn at the University of Oregon, she spent the remainder of her life there. Her first move toward a career in science apparently came at Wellesley. Stimulated by her roommate's course in zoology, she dropped her notion of majoring in French and English and concentrated her efforts on biology. By the time she graduated in 1916, she was eager to begin graduate training. But she was forced to compromise: funds were short because of the death of her father, and her mother needed her help in supporting her five sisters. She saved enough from her earnings as a teacher during the following year to enable her to accept a scholarship with graduate tuition at Teachers' Col- lege of Columbia University.
    [Show full text]
  • Curriculum Vitae Helen Haskell Hobbs
    CURRICULUM VITAE HELEN HASKELL HOBBS Birth Date; Place: May 5, 1952; Boston, Massachusetts Address: Department of Molecular Genetics University of Texas Southwestern Medical Center at Dallas 5323 Harry Hines Boulevard Dallas, Texas 75390-9046 Telephone: (214) 648-6724 Fax: (214) 648-7539 e-mail: [email protected] EDUCATION & TRAINING: 1970-1971 University of Pennsylvania, Philadelphia, PA 1971-1974 B.A., Human Biology, Stanford University, Palo Alto, CA 1975-1979 M.D., Case Western Reserve University School of Medicine, Cleveland, OH 1979-1980 Intern, Internal Medicine, Columbia Presbyterian Medical Center, New York City, NY 1980-1982 Resident, Internal Medicine, University of Texas Southwestern Medical Center (UT Southwestern), Dallas, TX 1982-1983 Chief Resident, Department of Internal Medicine, UT Southwestern 1983-1987 Postdoctoral Fellowship, Department of Molecular Genetics & Subspecialty Training in Endocrinology and Metabolism, UT Southwestern POSITIONS: 1987-1991 Assistant Professor, Departments of Internal Medicine and Molecular Genetics, and Chief, Division of Medical Genetics, UT Southwestern 1991-1995 Associate Professor, Departments of Internal Medicine and Molecular Genetics, and Chief, Division of Medical Genetics, UT Southwestern 1995- Professor, Departments of Internal Medicine and Molecular Genetics, and Chief, Division of Medical Genetics, UT Southwestern 2000- Director, McDermott Center for Human Growth and Development, UT Southwestern 2002- Investigator, Howard Hughes Medical Institute ELECTED MEMBERSHIPS:
    [Show full text]
  • National Academy of Sciences July 1, 1973
    NATIONAL ACADEMY OF SCIENCES JULY 1, 1973 OFFICERS Term expires President-PHILIP HANDLER June 30, 1975 Vice-President-SAUNDERS MAC LANE June 30, 1977 Home Secretary-ALLEN V. ASTIN June 30, 1975 Foreign Secretary-HARRISON BROWN June 30, 1974 Treasurer- E. R. PIORE June 30, 1976 Executive Officer Comptroller John S. Coleman Aaron Rosenthal Buiness Manager Bernard L. Kropp COUNCIL *Astin, Allen V. (1975) Marshak, Robert E. (1974) Babcock, Horace W. (1976) McCarty, Maclyn (1976) Bloch, Konrad E. (1974) Pierce, John R. (1974) Branscomb, Lewis M. (1975) *Piore, E. R. (1976) *Brown, Harrison (1974) Pitzer, Kenneth S. (1976) *Cloud, Preston (1975) *Shull, Harrison (1974) Eagle, Harry (1975) Westheimer, Frank H. (1975) *Handler, Philip (1975) Williams, Carroll M. (1976) *Mac Lane, Saunders (1977) * Members of the Executive Committee of the Council of the Academy. SECTIONS The Academy is divided into the following Sections, to which members are assigned at their own choice: (1) Mathematics (10) Microbiology (2) Astronomy (11) Anthropology (3) Physics (12) Psychology (4) Engineering (13) Geophysics (5) Chemistry (14) Biochemistry (6) Geology (15) Applied Biology (7) Botany (16) Applied Physical and Mathematical Sciences (8) Zoology (17) Medical Sciences (9) Physiology (18) Genetics (19) Social, Economic, and Political Sciences In the alphabetical list of members, the number in parentheses, following year of election, indicates the Section to WCiph the member belongs. 3009 Downloaded by guest on September 25, 2021 3010 Members N.A.S. Organization CLASSES Ames, Bruce Nathan, 1972 (14), Department of Biochem- istry, University of California, Berkeley, California The members of Sections are grouped in the following Classes: 94720 Anderson, Carl David, 1938 (3), California Institute of I.
    [Show full text]
  • Discovering Genes Are Made of DNA Maclyn Mccarty
    feature Discovering genes are made of DNA Maclyn McCarty The Rockefeller University, 1230 York Avenue, New York 10021, USA (e-mail: [email protected]) Maclyn McCarty is the sole surviving member of the team that made the remarkable discovery that DNA is the material of inheritance. This preceded by a decade the discovery of the structure of DNA itself. Here he shares his personal perspective of those times and the impact of the double helix. Editor’s note — For a long time, biologists thought that ‘genes’, the units of inheritance, were made up of protein. In 1944, in what was arguably the defining moment for nucleic acid research, Oswald Avery, Maclyn McCarty and Colin MacLeod, at Rockefeller Institute (now University) Hospital, New York, proved that DNA was the material of inheritance, the so-called stuff of life. They showed that the heritable property of virulence from one infectious strain of pneumococcus (the bacterial agent of pneumonia) could be transferred to a noninfectious bacterium with pure DNA1. They further supported their conclusions by showing that this ‘transforming’ activity could be destroyed by the DNA-digesting enzyme DNAase2,3. This work first linked genetic information with DNA and provided the historical platform of modern genetics. Their discovery was greeted initially with scepticism, however, in part because many scientists believed that DNA was too simple a molecule to be the genetic material. And the fact that McCarty, Avery and MacLeod were not awarded the Nobel prize is an oversight that, to this day, still puzzles. “The pivotal t the time of our discovery and publication isolated from various sources, and that despite this discovery of in 1944 (ref.
    [Show full text]