Article: Geometric Processing of Remote Sensing Lands and Islands – a Review, Quaternary Int., 241, 3–25, Images: Models, Algorithms and Methods, Int

Total Page:16

File Type:pdf, Size:1020Kb

Article: Geometric Processing of Remote Sensing Lands and Islands – a Review, Quaternary Int., 241, 3–25, Images: Models, Algorithms and Methods, Int EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Biogeosciences, 10, 4297–4318, 2013 Open Access www.biogeosciences.net/10/4297/2013/ Biogeosciences doi:10.5194/bg-10-4297-2013 Biogeosciences Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access Climate Climate of the Past of the Past Discussions Short- and long-term thermo-erosion of ice-rich permafrost coasts Open Access in the Laptev Sea region Open Access Earth System Earth System F. Gunther¨ 1, P. P. Overduin1, A. V. Sandakov2, G. Grosse3, and M. N. Grigoriev2 Dynamics Dynamics 1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany Discussions 2Melnikov Permafrost Institute, Russian Academy of Sciences, Siberian Branch, Yakutsk, Russia 3 Open Access Geophysical Institute, University of Alaska Fairbanks, Alaska, Fairbanks, USA Geoscientific Geoscientific Open Access Correspondence to: F. Gunther¨ ([email protected]) Instrumentation Instrumentation Methods and Methods and Received: 19 January 2013 – Published in Biogeosciences Discuss.: 15 February 2013 Revised: 16 May 2013 – Accepted: 20 May 2013 – Published: 27 June 2013 Data Systems Data Systems Discussions Open Access Open Access Geoscientific Abstract. Permafrost coasts in the Arctic are susceptible between study sites andGeoscientific over time, but also within single to a variety of changing environmental factors all of which coastal transects along the cliff profile. Varying intensities Model Development Model Development currently point to increasing coastal erosion rates and mass of cliff bottom and top erosion are leading to diverse quali- Discussions fluxes of sediment and carbon to the shallow arctic shelf ties of coastal erosion that have different impacts on coastal seas. Rapid erosion along high yedoma coasts composed of mass fluxes. The different extents of Ice Complex permafrost Open Access Open Access Ice Complex permafrost deposits creates impressive coastal degradation within ourHydrology study sites turned and out to influence Hydrology and ice cliffs and inspired research for designing and implement- not only the degree of coupling between TD and TA, and ing change detection studies for a long time, but continuous the magnitude of effectivelyEarth eroded System volumes, but also the Earth System quantitative monitoring and a qualitative inventory of coastal quantity of organic carbon releasedSciences to the shallow Laptev Sciences thermo-erosion for large coastline segments is still lacking. Sea from coastal erosion, which ranged on a long-term from Discussions ± ± Open Access Our goal is to use observations of thermo-erosion along the 88 21 to 800 61 t per km coastline per yearOpen Access and will cor- mainland coast of the Laptev Sea, in eastern Siberia, to un- respond to considerably higher amounts, if recently observed derstand how it depends on coastal geomorphology and the more rapid coastal erosion rates prove to be persistent. Ocean Science Ocean Science relative contributions of water level and atmospheric drivers. Discussions We compared multi-temporal sets of orthorectified satellite imagery from 1965 to 2011 for three segments of coastline 1 Introduction Open Access ranging in length from 73 to 95 km and analyzed thermo- Open Access denudation (TD) along the cliff top and thermo-abrasion Coastal erosion as a physical process along the marginal (TA) along the cliff bottom for two nested time periods: long- Solid Earth arctic shelf seas attracts increasedSolid Earth attention not only in term rates (the past 39–43 yr) and short-term rates (the past periglacial research and marine geosciences (e.g. Brown Discussions 1–4 yr). The Normalized Difference Thermo-erosion Index et al., 2003; Grigoriev and Rachold, 2003; Charkin et al., (NDTI) was used as a proxy to qualitatively describe the rel- 2011; Vasiliev et al., 2011), but also in the public awareness ative proportions of TD and TA. Mean annual erosion rates at Open Access Open Access in terms of rapid responses of coastal erosion due to climate all three sites were higher in recent years (−5.3 ± 1.3 m a−1) warming, leading to landscape instability and increased haz- than over the long-term mean (−2.2 ± 0.1 m a−1). The Ma- The Cryosphere ard exposure (ForbesThe, 2011 ).Cryosphere Because of recently decreasing montov Klyk coast exhibits primarily spatial variations of Discussions sea ice extent (Comiso et al., 2008; Maslanik et al., 2011), thermo-erosion, while intrasite-specific variations caused by larger fetch (Asplin et al., 2012), wave action and storm ac- local relief were strongest at the Buor Khaya coast, where tivity (Jones et al., 2009a), a doubling in the duration of the slowest long-term rates of around −0.5 ± 0.1 m a−1 were the open water season (Overeem et al., 2011), and rising observed. The Oyogos Yar coast showed continuously rapid air, permafrost, and sea water temperatures during the last erosion up to −6.5 ± 0.2 m a−1. In general, variable charac- decades (Romanovsky et al., 2010; Dmitrenko et al., 2011; teristics of coastal thermo-erosion were observed not only AMAP, 2011), erosion of arctic permafrost coasts and land Published by Copernicus Publications on behalf of the European Geosciences Union. 4298 F. Gunther¨ et al.: Coastal thermo-erosion in the Laptev Sea 110°E 120°E 130°E 140°E 150°E cluding the ice complex (in Russian “ledovyi kompleks”; -5 00 -100 -1000 0 also called yedoma) and thermokarst (also called alas) de- -200 -5 A r c n posits (e.g. Schirrmeister et al., 2011b). Geomorphologically, t i a yr c O c e im -20 yedoma constitutes hilly uplands and alas low lying basins, a T N N lands ° establishing local differences in elevation, e.g. up to 27 m in ° Is an 5 5 ri e 7 7 Sib ew the Lena Delta (Ulrich et al., 2010). Both types of deposits N 0 -1 East also contain high amounts of ground ice and soil organic car- Laptev Sea Siberian Lygi bon (Schirrmeister et al., 2011a; Strauss et al., 2012), making Terpyai Lyakhov Sea Tumus Islands them generally very vulnerable to carbon mobilization from O 0 Mamontov len -2 D yo mitry Laptev Strait k disturbances (e.g. Grosse et al., 2011), especially in coastal A Klyk Ba Svyatoi n y a a Nos b Len Delta Oyogos settings (Grigoriev et al., 2004; Semiletov et al., 2011). - a O 20 r- l O e Yar n le y Buor n o Thermo-erosion creates coastal cliffs with geomorpholog- yo k Khaya k l Yana owla Tiksi Gulf d nd /" Bay an ical features unique to ice-rich coastlines. Two mass trans- 0 l 1 - w Buor a lo igirk port processes that combine thermal and mechanical forces to Ind a Khaya Yana n e y a N N n ° erode the coastline are thermo-denudation (TD) and thermo- o ° L l a Y 0 0 o Kilometers 7 7 Sakha (Yakutia) Russian Federation m O 0 50 100 200 abrasion (TA) (see Are, 1978, 1988a,b; Dupeyrat et al., 2011, and Fig. 2). TA is defined as the combined mechanical and Fig. 1. Location of the study sites within the Laptev Sea region. thermal effects of impinging wave energy at the shoreline. Analyzed coastline sections are marked as red lines and comprise TD is defined as the combined influence of solar insola- from west to east: Mamontov Klyk, Buor Khaya and Oyogos Yar. tion and heat advection, influencing the energy balance at the ground surface above the water level, and can be con- ceived as periglacial coastal landslides. As an agent of TD, loss are expected to increase. Increased material fluxes in the melt water from ground ice causes water saturation on coastal nearshore zone, including sediment, organic matter, and nu- slopes, enabling gelifluction of blocks and mud stream devel- trients, affect marine ecosystems and primary production in opment. In addition to erosion products resulting from TA, arctic coastal habitats (Wassmann, 2011). The Arctic Ocean TD on coastal cliffs delivers eroded clastic material to the is the most land-dominated ocean basin, because of its large cliff’s bottom edge and to the shore platform. Often, addi- continental catchments (Peterson et al., 2002), where terrige- tional processes such as thermo-niche development and me- neous dissolved organic carbon is mobilized from high lat- chanical failure of ice-wedge polygonal blocks along eroding itude carbon-rich soils and peatlands (Benner et al., 2004). coasts enhance mass transport rates. We adopt the definition Permafrost affected arctic coasts make up approximately of thermo-erosion of the permafrost coast of Are (1988a) as 34 % of the world’s coastlines (Lantuit et al., 2011b), and the combined effects of TD and TA. feature a unique suite of coastal processes with strong sea- Ice Complex coasts have been studied by other re- sonality, cold temperatures, permafrost, and sea ice, found searchers. For instance, Kaplina (1959) describes the accel- nowhere else except Antarctica (Forbes, 2011). In the Laptev eration of coastal erosion in connection with the occurence Sea region, 25 % of the 7500 km long coastline is composed of large ice wedge bodies, leading to a reduction of mate- of very ice-rich permafrost deposits (Grigoriev et al., 2006), rial accruing during undercutting of coastal cliffs through which are highly susceptible to erosion. thermo-niches. Klyuev (1970) carries out repeated surveys In many regions, the coastal zone of the shallow East to quantify thermo-abrasion of the sea bottom. Are et al.
Recommended publications
  • Abstract Book.Pdf
    Executive Committee Motoyuki Suzuki, International EMECS Center, Japan Toshizo Ido, International EMECS Center, Governor of Hyogo Prefecture, Japan Leonid Zhindarev, Working Group “Sea Coasts” RAS, Russia Valery Mikheev, Russian State Hydrometeorological University, Russia Masataka Watanabe, International EMECS Center, Japan Robert Nigmatullin, P.P. Shirshov Institute of Oceanology RAS, Russia Oleg Petrov, A.P. Karpinsky Russian Geological Research Institute, Russia Scientific Programme Committee Ruben Kosyan, Southern Branch of the P.P. Shirshov Institute of Oceanology RAS, Russia – Chair Masataka Watanabe, Chuo University, International EMECS Center, Japan – Co-Chair Petr Brovko, Far Eastern Federal University, Russia Zhongyuan Chen, East China Normal University, China Jean-Paul Ducrotoy, Institute of Estuarine and Coastal Studies, University of Hull, France George Gogoberidze, Russian State Hydrometeorological University, Russia Sergey Dobrolyubov, Academic Council of the Russian Geographical Society, M.V. Lomonosov Moscow State University, Russia Evgeny Ignatov, M.V. Lomonosov Moscow State University, Russia Nikolay Kasimov, Russian Geographical Society, Technological platform “Technologies for Sustainable Ecological Development” Igor Leontyev, P.P. Shirshov Institute of Oceanology RAS, Russia Svetlana Lukyanova, M.V. Lomonosov Moscow State University, Russia Menasveta Piamsak, Royal Institute, Thailand Erdal Ozhan, MEDCOAST Foundation, Turkey Daria Ryabchuk, A.P. Karpinsky Russian Geological Research Institute, Russia Mikhail Spiridonov,
    [Show full text]
  • ISIRA National Reporting 2014__Germany.Xlsx
    Germany 2014 Project title Contact Institution - leadInstitution - otheCountry - Lead Country - other Project leader Other participanProject Period Investigated areDescription/abstract CarboPerm E.-M. Pfeiffer & H.- Universität AARI, AWI, GFZ, Germany , Russia Pfeiffer, Hubberten, Schirrmeister, 2013-2016 Dmitry Laptev CarboPerm, is a joint German-Russian research project funded by the German Federal Ministry of (Kohlenstoff im W. Hubberten , I. Hamburg, AWI Universities Köln, Fedorova Kutzbach, Strait, the Lena Education and Research. It comprises multi-disciplinary investigations on the formation, turnover and Permafrost: Bildung, Fedorova, M. Potsdam, AARI St. Potsdam, Hamburg Rethemeyer, River Delta, Tiksi, release of OC in Siberian permafrost. It aims to gain increased understanding of how permafrost- Umwandlung und Grigoriev, & D. Petersburg WagnerBeer, and the Kolyma affected landscapes will respond to global warming and how this response will influence the local, Freisetzung) Bolshianov Elissev, Evgrafova, lowlands close to regional and global trace gas balance. Glagolev, Kunisty Cherski Permafrost scientists from Russia and Germany will work together at different key sites in the Siberian Arctic. The coordination will be at the Universität Hamburg (scientific), the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research in Potsdam (logistic) and the Arctic and Antarctic Research Institute in St. Petersburg. European White- Dr. Helmut Institute for St. Petersburg State Germany Russia (permanent), Dr. Helmut Prof. Dr. Alexander starting in 1989- Barents Sea with White-fronted goose research was started inn 1989 with Taimyr expeditions, then was relauched in fronted Goose Kruckenberg Waterbird and university, Dept. Soil The Netherlands (in Kruckenberg Kondratyev, Dr. 1994, 2006-2008 special focus to 2006 with Kolguev expeditions. During the last 100 years only 10 faunistic expeditions went to Kolguev Research helmut.kruckenberg Wetlands Research & Biology + Acad.
    [Show full text]
  • Ground-Ice Stable Isotopes and Cryostratigraphy Reflect Late
    Clim. Past, 13, 587–611, 2017 https://doi.org/10.5194/cp-13-587-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Ground-ice stable isotopes and cryostratigraphy reflect late Quaternary palaeoclimate in the Northeast Siberian Arctic (Oyogos Yar coast, Dmitry Laptev Strait) Thomas Opel1,a, Sebastian Wetterich1, Hanno Meyer1, Alexander Y. Dereviagin2, Margret C. Fuchs3, and Lutz Schirrmeister1 1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, 14473 Potsdam, Germany 2Geology Department, Lomonosov Moscow State University, Moscow, 119992, Russia 3Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany anow at: Department of Geography, Permafrost Laboratory, University of Sussex, Brighton, BN1 9RH, UK Correspondence to: Thomas Opel ([email protected], [email protected]) Received: 3 January 2017 – Discussion started: 9 January 2017 Accepted: 4 May 2017 – Published: 6 June 2017 Abstract. To reconstruct palaeoclimate and palaeoenvi- ago, and extremely cold winter temperatures during the Last ronmental conditions in the northeast Siberian Arctic, we Glacial Maximum (MIS2). Much warmer winter conditions studied late Quaternary permafrost at the Oyogos Yar are reflected by extensive thermokarst development during coast (Dmitry Laptev Strait). New infrared-stimulated lu- MIS5c and by Holocene ice-wedge stable isotopes. Modern minescence ages for distinctive floodplain deposits of the ice-wedge
    [Show full text]
  • Source Apportionment of Methane Escaping the Subsea Permafrost System in the Outer Eurasian Arctic Shelf
    Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf Julia Steinbacha,b,c,1, Henry Holmstranda,c, Kseniia Shcherbakovad, Denis Kosmachd, Volker Brüchertb,c, Natalia Shakhovae,f,g, Anatoly Salyukd, Célia J. Saparth,i, Denis Chernykhd, Riko Noormetsj, Igor Semiletovd,e,f, and Örjan Gustafssona,c,1 aDepartment of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden; bDepartment of Geological Sciences, Stockholm University, 106 91 Stockholm, Sweden; cBolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden; dV.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia; eInstitute of Ecology, Higher School of Economics, Moscow, 101000, Russia; fInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775; gScientific Centre Moscow State University-Geophysics, Moscow, 119991, Russia; hLaboratoire de Glaciologie, Université Libre de Bruxelles, 1050 Brussels, Belgium; iInstitute for Marine and Atmospheric Research, Utrecht University, 3584 CC Utrecht, The Netherlands; and jDepartment of Arctic Geology, University Centre Svalbard, Longyearbyen, N-9171, Norway Edited by Mark Thiemens, University of California San Diego, La Jolla, CA, and approved January 19, 2021 (received for review September 19, 2020) The East Siberian Arctic Shelf holds large amounts of inundated from underlying reservoirs, allowing further methane release to carbon and methane (CH4). Holocene warming by overlying sea- the overlying water column (3, 9). water, recently fortified by anthropogenic warming, has caused Near-annual ship-based expeditions to the ESAS over the past thawing of the underlying subsea permafrost. Despite extensive two decades have documented widespread seep locations with observations of elevated seawater CH4 in the past decades, rela- extensive methane releases to the water column (3, 10).
    [Show full text]
  • Author Index
    Cambridge University Press 978-1-107-18353-7 — Sovereignty and Territorial Temptation Christopher Rossi Index More Information 335 Author Index Aalto, Pami, 176 Bardonnet, Daniel, 104 , 115 Abate, Randall, 7 Bartelson, Jens, 16 , 17 Abbott, Kenneth, 170 , 184 Barton, Jonathan, 262 Abdy, John, 110 Bartos, Tomáš, 104 , 112 – 13 Abénon, Lucien, 207 Baslar, Kemal, 33 Abi- Saab, Georges, 170 Bauer, Jack, 219 , 222 Ackrén, Maria, 162 Baur, Ivo, 279 Agnarsdóttir, Anna, 40 Baxter Richard, 247 Aguirre III, Robert, 220 , 222 Beaulac, Stéphane, 24 Alberts, Colins, 247 Beck, Robert, 25 Albrethsen, S. E., 145 Becker, Michael, 5 Alexandrowicz, Charles, 42 – 43 Bederman, David, 192 , 207 Allen, John, 52 , 53 Bellonci, Maria, 125 Allen, Steve, 105 – 08 , 250 Bevans, Charles, 153 , 217 , 219 – 22 Allot, Philip, 189 , 190 Beyerlin, Ulrich, 237 , 244 , 245 Anderson, Charles, 218 Bicheno, Hugh, 40 Anderson, David, 137 , 139 – 42 Biersteker, Thomas, 16 Andrews, Kenneth, 209 Bilder, Richard, 185 Anghie, Antony, 9 , 21 Binder, Claudia, 279 Anna, Timothy, 248 Blakkisrud, Helge, 176 Araya, Alberto, 261 Bleichert, Maura, 230 Archer, Christon, 249 Blom, Hans, 44 , 47 , 57 Arlov, Thor B., 145 – 47 , 149 , 152 , 154 , 163 – 65 Bloom, Evan, 181 Armitage, David, 2 , 21 , 32 , 33 , 42 , 44 , Blunden, Margaret, 77 , 88 , 92 , 93 , 120 63 – 64 , 226 Blutman, Lászlo, 170 , 185 Arsanjani, Mahnoush, 243 Bockstoce, John, 150 Åtland, Kristian, 141 Bodin, Jean, 17 – 19 , 38 , 194 Aust, Anthony, 185 Bollier, David, 16 , 34 , 279 , 280 , 281 Axworthy, Thomas, 174 , 177 , 179
    [Show full text]
  • Germany's 2016 Review Report to the Arctic
    Stand: 24 May 2016 | Observer Report, Germany Cover sheet Full name of state or organization: Federal Republic of Germany Date of submission: Observer’s website, if appropriate: http://www.auswaertiges -amt.de/EN/Aussenpolitik/InternatRecht/Einzelfragen/Arktis/Arktis -Grundlagentext.html Information for appropriate contact person Full name: Michael Däumer Email: E21 [email protected] Telephone: +49 -30 -1817 -2520 Organization or department: Federal Foreign Office, Northern European Division Job Title: Officer for Baltic Sea Cooperation and Arctic Policy Full mailing address: Baltic Sea Cooperation and Arctic Policy Federal Foreign Office – Division E21 Werderscher Markt 1 D-10117 Berlin, Germany Tel.: +49-30-1817-2520 Fax: +49 -30 -1817 -52520 Is your state or organization still interested in continuing as an Observer of the Arctic Council? Yes No This document has 5 pages. This is page 1. Stand: 24 May 2016 | Observer Report, Germany Observer Report Please describe in no more than 2 pages your state or organization’s contributions to the work of the Arctic Council’s Working Groups, Task Forces and/or Expert Groups since the time of your most recent report, or in the previous two years. Please highlight contributions to specific projects, such as through proposals, concept development, in-kind and financial support, and hosting of meetings. If applicable, please include mention of collaboration with Permanent Participants, such as project proposal endorsement and support. Germany as an observer to the Arctic Council (AC) since 1996 has contributed continuously and substantially to the work of the Council and its subsidiary bodies for the past 20 years. A partner in and for the Arctic region and its local communities and indigenous peoples, Germany has openly shared its expertise in research, science and technology innovation as a contribution towards implementing the objectives of the AC.
    [Show full text]
  • Coastal Cryogenic Processes and Carbonate Balance of the Coastal Waters of Eastern Arctic Seas in the Light of a Changing Climate
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Coastal cryogenic processes and carbonate balance of the coastal waters of eastern Arctic seas in the light of a changing climate S.O. Razumov Melnikov Permafrost Institute, Russian Academy of Sciences, Yakutsk, Russia ABSTRACT: An observed increase in alkalinity of the East Siberian Sea during the last quarter of the XX cen- tury is the result of CO2 absorption from the atmosphere, a more intense transport of organic substances into the water due to more active erosion of ice-rich coasts related to climate warming. Destructive coastal cryogenic Ϫ4 processes disturb the carbonate balance causing sharp rises in a partial pressure of CO2 up to 8 и10 in inshore waters and violations of the regular relative proportions of the alkali reserve and chlorine content. However, dur- ing summer seasons, a dominating partial pressure of CO2 is much lower in waters than in the atmosphere and varies from 0.83 и10Ϫ4 to 1.89 и10Ϫ4 depending on physical and chemical conditions. The current climate changes have not yet affected a potential ability of the sea to absorb CO2 from the atmosphere. On the other hand, a more active erosion of the ice-rich coasts due to climate warming reduces the ability of the sea to absorb CO2, espe- cially in coastal, cryogenically active sections of the water area. 1 INTRODUCTION ice conditions, the occurrence and duration of storms. To study the effect these climatic characteristics have It is supposed that the concentration of CO2 in the on the dynamics of ice-rich coasts, observations were atmosphere depends on the ability of the ocean to made at the following key sites of the Laptev Sea and absorb a surplus of the gas accumulating on behalf of East Siberian Sea coast: Anabar-Olenek shore, climate warming.
    [Show full text]
  • Chronology of the Key Historical Events on the Eastern Seas of the Russian Arctic (The Laptev Sea, the East Siberian Sea, the Chukchi Sea)
    Chronology of the Key Historical Events on the Eastern Seas of the Russian Arctic (the Laptev Sea, the East Siberian Sea, the Chukchi Sea) Seventeenth century 1629 At the Yenisei Voivodes’ House “The Inventory of the Lena, the Great River” was compiled and it reads that “the Lena River flows into the sea with its mouth.” 1633 The armed forces of Yenisei Cossacks, headed by Postnik, Ivanov, Gubar, and M. Stadukhin, arrived at the lower reaches of the Lena River. The Tobolsk Cossack, Ivan Rebrov, was the first to reach the mouth of Lena, departing from Yakutsk. He discovered the Olenekskiy Zaliv. 1638 The first Russian march toward the Pacific Ocean from the upper reaches of the Aldan River with the departure from the Butalskiy stockade fort was headed by Ivan Yuriev Moskvitin, a Cossack from Tomsk. Ivan Rebrov discovered the Yana Bay. He Departed from the Yana River, reached the Indigirka River by sea, and built two stockade forts there. 1641 The Cossack foreman, Mikhail Stadukhin, was sent to the Kolyma River. 1642 The Krasnoyarsk Cossack, Ivan Erastov, went down the Indigirka River up to its mouth and by sea reached the mouth of the Alazeya River, being the first one at this river and the first one to deliver the information about the Chukchi. 1643 Cossacks F. Chukichev, T. Alekseev, I. Erastov, and others accomplished the sea crossing from the mouth of the Alazeya River to the Lena. M. Stadukhin and D. Yarila (Zyryan) arrived at the Kolyma River and founded the Nizhnekolymskiy stockade fort on its bank.
    [Show full text]
  • Practice and Policies of the Use of Binominals, Endonyms and Exonyms in the Naming of Sea Bodies Rainer Dormels (University of Vienna)
    Practice and policies of the use of binominals, endonyms and exonyms in the naming of sea bodies Rainer Dormels (University of Vienna) Versions and Drafts of the “Limits of Oceans and Seas” In 1928 the International Hydrographic Organization (IHO) published the guideline “Limits of Oceans and Seas” as a Special Publication No. 23. It was produced to determine international borders and names of the seas. It was accepted in 1929 officially by a conference of the IHO. This was the first time that borderlines were dragged and names were given for 58 oceans and seas, comprising 6 oceans, 26 seas and 13 bays. The publication had therefore a high authority in the production of maps in view of the demarcation and the naming of seas. Meanwhile the number of waters had clearly increased. The draft for a new edition of 2002 already shows 154 oceans and seas. There have been doubts and suggestions for improvement of the first edition of "Limits of Oceans and Seas", so that a second edition appeared in 1937. Then in 1953 a third edition came out which separates a total of 102 maritime features. This third edition is still the valid one. Since there has been a lot of changes since then there is an urgent need for a new edition. Drafts for a fourth edition have been produced in 1986 and 2002, but they failed to be accepted. So in 2009 a Working Group ON THE REVISION OF IHO PUBLICATION S-23 “LIMITS OF OCEANS AND SEAS” (S-23 WG) has been established. The IHB circulated a list of areas of possible concern to WG members by end July 2009 and WG members had the possibility to comment on this list by end September 2009.
    [Show full text]
  • Russian-German Cooperation in the Siberian Shelf Seas: Geo-System Laptev-Sea
    Russian-German Cooperation in the Siberian Shelf Seas: Geo-System Laptev-Sea Edited by Heidemarie Kassens, Hans-Wolfgang Hubberten Sergey M. Pryamikov, RüdigeStein Ber. Polarforsch. 144 (1 994) ISSN 0176 - 5027 edited by H. Kassens GEOMAR Research Center for Marine Geosciences, Kiel, Germany, H.W. Hubberten Alfred-Wegener-Institute for Polar and Marine Research, Potsdam, Germany, S. M. Pryamikov Arctic and Antarctic Research Institute, St. Petersburg, Russia, and R. Stein Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany TABLE OF CONTENTS Preface ...........................................................................................................i Liste of authors and participants ..............................................................iv Prologue and Scientific Perspectives for the Project 'Laptev Sea System' .....................................................................................vii Oceanography, biology, and climatology of the Laptev Sea and the East Siberian Sea .......................................................................................... 1 Alekseev, G. V. The Arctic Seas in the Arctic climate system ..................................................3 Schauer, U. The Arctic shelves: their role in water mass formation ...................................9 Timokhov, L.A. Regional characteristics of the Laptev and the East Siberian seas: climate, topography, ice phases, thermohaline regime, and circulation .....................15 Zakharo V, V.F. On the character of cause-effect
    [Show full text]
  • Devonian–Permian Sedimentary Basins and Paleogeography of the Eastern Russian Arctic: an Overview
    Tectonophysics 691 (2016) 234–255 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Devonian–Permian sedimentary basins and paleogeography of the Eastern Russian Arctic: An overview Victoria B. Ershova a,⁎, Andrei V. Prokopiev b, Andrey K. Khudoley a a Institute of Earth Sciences, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia b Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences, Lenin Pr. 39, Yakutsk 677980, Russia article info abstract Article history: The Arctic basins attract broad international interest because of the region's potentially significant undiscovered Received 13 July 2015 hydrocarbon resources. The Russian High Arctic is mostly represented by broad shelves, with a few wells drilled Received in revised form 9 March 2016 only in its western part (Kara and Barents shelves). This contribution provides an overview of the geological set- Accepted 20 March 2016 ting, stratigraphy, paleogeography, and tectono-sedimentary evolution of the middle–late Paleozoic basins of the Available online 26 March 2016 Eastern Russian Arctic, including: Severnaya Zemlya, the New Siberian Islands, northern Siberia, the Taimyr and Keywords: Chukotka peninsulas, and Wrangel Island. Reconstructing the geological evolution of the Eastern Russian – fi Arctic Arctic during the middle late Paleozoic is very dif cult because the region was overprinted by a number of Russia late Paleozoic to early Mesozoic tectonic events. Paleogeography © 2016 Elsevier B.V. All rights reserved. Paleozoic Provenance 1. Introduction we also analyze the available detrital zircon data from the Eastern Russian Arctic. The Arctic basins have attracted an increasing amount of interna- tional interest in recent years because of the potential for containing a 1.1.
    [Show full text]
  • Assessing the Potential for Non-Turbulent Methane Escape From
    Assessing the potential for non-turbulent methane escape from the East Siberian Arctic Shelf Matteo Puglini1,2, Victor Brovkin1,3, Pierre Regnier2, and Sandra Arndt2 1Land in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany 2BGeosys, Department Geoscience, Environment & Society (DGES), Université Libre de Bruxelles, Brussels, Belgium 3CEN, Universität Hamburg, Hamburg, Germany Correspondence: Matteo Puglini ([email protected]) Abstract. The East Siberian Arctic Shelf (ESAS) hosts large, yet poorly quantified reservoirs of subsea permafrost and as- sociated gas hydrates. It has been suggested that the global-warming induced thawing and dissociation of these reservoirs is currently releasing methane (CH4) to the shallow coastal ocean and ultimately the atmosphere. However, a major unknown in assessing the contribution of this CH4 flux to the global CH4 cycle and its climate feedbacks is the fate of CH4 as it migrates 5 towards the sediment-water interface. In marine sediments, (an)aerobic oxidation reactions generally act as a very efficient methane sink. Yet, a number of environmental conditions can reduce the efficiency of this biofilter. Here, we used a reaction- transport model to assess the efficiency of the benthic methane filter and, thus, the potential for benthic methane escape across a wide range of environmental conditions that could be encountered on the East Siberian Arctic Shelf. Results show that, under steady state conditions, anaerobic oxidation of methane (AOM) acts as an efficient biofilter. Yet, high CH4 escape is 10 simulated for rapidly accumulating and/or active sediments and can be further enhanced by the presence of organic matter with intermediate reactivity and/or intense local transport processes, such as bioirrigation.
    [Show full text]