New Insights Into the Weichselian Environment and Climate of the East Siberian Arctic, Derived Fromfossil Insects, Plants, and Mammals$
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Contribution of Shore Thermoabrasion to the Laptev Sea Sediment Balance
THE CONTRIBUTION OF SHORE THERMOABRASION TO THE LAPTEV SEA SEDIMENT BALANCE F.E. Are Petersburg State University of Means of Communications, Moskovsky av. 9, St.-Petersburg, 190031, Russia e-mail: [email protected] Abstract A schematic map of Laptev Sea shore dynamics is compiled for the first time, using available published data. It shows the distribution of thermoabrasion shores, mean long-term shore retreat rates, and areas of seabed ero- sion and accretion. The amount of sediment released to the sea from the 85 km Anabar-Olenyok section of the coast is calculated, as an example, at 3.4 Mt/year. These results are compared with published data on sediment transport of rivers running into the Laptev Sea. Estimates of the Lena River discharge range from 12 to 21 Mt/year, of which only 2.1 to 3.5 Mt may reach the sea. The analysis shows that the input of thermoabrasion at mean shoreline retreat rates of 0.7 to 0.9 m/year is at least of the same order as the river input and may great- ly exceed it. Introduction ble to determine the input from shore thermoabrasion offshore more accurately. Thousands of kilometres of Arctic sea coast retreat at rates 2-6 m/year under the action of thermoabrasion1 Maps of shore dynamics are needed to solve this (Are, 1985; Barnes et al., 1991). Tens of square kilome- problem and others related to climate change impacts. tres of Arctic land therefore are consumed by the sea Such maps have been compiled for about 650 km of every year. -
XI. International Conference on Permafrost, Book of Abstracts
XI. INTERNATIONAL CONFERENCE ON PERMAFROST | 20.-24. JUNE 2016 Landscapes and thermokarst lake area changes in Yedoma regions under modern climate conditions, Kolyma lowland tundra Aleksandra Veremeeva1, Nagezhda Glushkova2, Frank Günther3, Ingmar Nitze3, & Guido Grosse3 1Institute of Physical, Chemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia 2Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia 3Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany Recent landscape changes in the Yedoma region period. This map shows the magnitude and direction are particularly pronounced in varying thermokarst of changes for each multi-spectral index, which are lake areas reflecting the reaction of the land surface used as proxies for different land-surface properties. on modern climate changes. However, although ther- For single locations, the entire time-series can be fur- mokarst lake change detection is essential for the ther analyzed in more detail. For the period from quantification of water body expansion and drainage 1999 till 2005 air temperatures and precipitation have within a region, remote sensing-derived surface reflec- been analysed for several weather stations that existed tion trends additionally provide valuable information in the region. The Landsat time series analysis for about the general landscape development. The aim of the last 15 years shows that the northern part of the this research is to reveal the regularities of landscape region became wetter over the last 5 – 6 years. The and thermokarst lakes area changes in the Kolyma alases are particularly affected by the wetting trend. lowland tundra in comparison with meteorological The analysis of the meteo-data shows a trend of in- data and geological and geomorphological features. -
Quaternary International Xxx (2010) 1E23
ARTICLE IN PRESS Quaternary International xxx (2010) 1e23 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands e A review L. Schirrmeister a,*, V. Kunitsky b, G. Grosse c, S. Wetterich a, H. Meyer a, G. Schwamborn a, O. Babiy b, A. Derevyagin d, C. Siegert a a Alfred Wegener Institute for Polar and Marine Research, Periglacial Research, Telegrafenberg A 43, 14471 Potsdam, Germany b Melnikov Permafrost Institute RAS SB, Merslotnaya Street, Yakutsk, Republic of Sakha, (Yakutia), 677010 Russia c Geophysical Institute, University of Alaska Fairbanks (UAF), 903 Koyukuk Drive, Fairbanks, AK 99775, USA d Moscow State University (MSU), Faculty of Geology Russia, Moscow 119899, Vorobievy Gory article info abstract Article history: The origin of Late Pleistocene ice-rich, fine-grained permafrost sequences (Ice Complex deposits) in arctic Available online xxx and subarctic Siberia has been in dispute for a long time. Corresponding permafrost sequences are frequently exposed along seacoasts and river banks in Yedoma hills, which are considered to be erosional remnants of Late Pleistocene accumulation plains. Detailed cryolithological, sedimentological, geochro- nological, and stratigraphical results from 14 study sites along the Laptev and East Siberian seacoasts were summarized for the first time in order to compare and correlate the local datasets on a large regional scale. The sediments of the Ice Complex are characterized by poorly-sorted silt to fine-sand, buried cryosols, TOC contents of 1.2e4.8 wt%, and very high ground ice content (40e60 wt% absolute). -
World's Large Rivers Initiative Report
IHP/IC-XXIII/Ref 9 Rev. Paris, 7 June 2018 English only International Hydrological Programme 23rd session of the Intergovernmental Council (Paris, 11-15 June 2018) WORLD’S LARGE RIVERS INITIATIVE (WLRI) REPORT Sub-item 6.9 of the provisional agenda Summary This document presents the World´s Large River Initiative (WLRI) report that includes the activities, proposed methodology of the initiative, outcomes of the working group meetings, publications and research, as well as an outlook of the initiave and a concept paper for further activities. IHP/IC-XXIII/Ref 9 Rev. Page 2 WORLD’S LARGE RIVERS INITIATIVE (WLRI) REPORT Title of the Initiative: World’s Large Rivers Initiative (WLRI) Host Institution: UNESCO Chair on “Integrated River Research and Management” at the University of Natural Resources and Life Sciences, Vienna, Austria (BOKU) Date of establishment: June 2014 (IHP-IC-21) Report established by: Prof. Dr. Helmut Habersack (UNESCO Chairholder) Dr. Doris Gangl (Senior Scientist) Executive Summary The World’s Large Rivers Initiative (WLRI) is of scientific nature and aims to create the knowledge base required for a holistic scientific assessment of the status and possible future of the world’s large rivers. Furthermore, it aims to develop innovative strategies based on best practices for their sustainable management. The WLRI serves as a scientific platform for peer learning that will ultimately compile global data in a comprehensive format, as accessible reference for innovation and development. Rivers are complex, dynamic and diverse ecosystems with major ecological, social, economic and cultural significance for their communities and the world at large. The WLRI was established as an IHP initiative at the 21st session of the Intergovernmental Council of the International Hydrological Programme (IHP-Council) in 2014 (Resolution XXI-3). -
Tectonic Evolution of the Mesozoic South Anyui Suture Zone, GEOSPHERE; V
Research Paper GEOSPHERE Tectonic evolution of the Mesozoic South Anyui suture zone, GEOSPHERE; v. 11, no. 5 eastern Russia: A critical component of paleogeographic doi:10.1130/GES01165.1 reconstructions of the Arctic region 18 figures; 5 tables; 2 supplemental files; 1 animation Jeffrey M. Amato1, Jaime Toro2, Vyacheslav V. Akinin3, Brian A. Hampton1, Alexander S. Salnikov4, and Marianna I. Tuchkova5 1Department of Geological Sciences, New Mexico State University, MSC 3AB, P.O. Box 30001, Las Cruces, New Mexico 88003, USA CORRESPONDENCE: [email protected] 2Department of Geology and Geography, West Virginia University, 330 Brooks Hall, P.O. Box 6300, Morgantown, West Virginia 26506, USA 3North-East Interdisciplinary Scientific Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, Portovaya Street, 16, 685000, Russia CITATION: Amato, J.M., Toro, J., Akinin, V.V., Hamp- 4Siberian Research Institute of Geology, Geophysics, and Mineral Resources, 67 Krasny Prospekt, Novosibirsk, 630091, Russia ton, B.A., Salnikov, A.S., and Tuchkova, M.I., 2015, 5Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017, Russia Tectonic evolution of the Mesozoic South Anyui su- ture zone, eastern Russia: A critical component of paleogeographic reconstructions of the Arctic region: ABSTRACT INTRODUCTION Geosphere, v. 11 no. 5, p. 1530–1564, doi: 10 .1130 /GES01165.1. The South Anyui suture zone consists of late Paleozoic–Jurassic ultra- The South Anyui suture zone (Fig. 1) is a remnant of a Mesozoic ocean Received 19 December 2014 mafic rocks and Jurassic–Cretaceous pre-, syn-, and postcollisional sedimen- basin that separated the Arctic Alaska–Chukotka microplate from Siberia Revision received 2 July 2015 tary rocks. -
Simulation of the Laptev Sea Shelf Dynamics with Focus on the Lena Delta Region by Vera Fofonova
Simulation of the Laptev Sea shelf dynamics with focus on the Lena Delta region by Vera Fofonova A Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geosciences Approved Dissertation Committee Prof. Dr. Karen Helen Wiltshire Jacobs University Bremen; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Dr. Sergey Danilov Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Prof. Dr. Vikram Unnithan Jacobs University Bremen Dr. Jens Schröter Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Date of Defense: 26th of June, 2014 School of Engineering and Science Abstract The polar shelf zones are highly dynamic and diverse systems. They form a border between warm and fresh water of continental drain and the cold currents of the northern seas. The Lena River is one of the largest rivers in the Arctic, with the largest delta. The south-eastern part of the Laptev Sea, which includes the Lena Delta region, is the place where substantial changes in ocean circulation and ecosystem may happen in changing climate. Exploring processes there, which may serve as an indicator of climate change, acquire a special importance. The Lena freshwater plume propagation dominates many aspects of dynamics in the Laptev Sea shelf. However, the direct measurements are by far insufficient, calling for a modeling approach which would enable one to estimate the impact of different factors on the circulation dynamics and would lay the foundation for further ecosystem modeling. The complexity of the region’s geometry and insufficient data make modeling of ocean circulation in the Lena Delta vicinity a challenging technical task not solved in the necessary detail previously. -
Detailed Species Accounts from the Threatened Birds Of
Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H. -
Continental Climate in the East Siberian Arctic During the Last
Available online at www.sciencedirect.com Global and Planetary Change 60 (2008) 535–562 www.elsevier.com/locate/gloplacha Continental climate in the East Siberian Arctic during the last interglacial: Implications from palaeobotanical records ⁎ Frank Kienast a, , Pavel Tarasov b, Lutz Schirrmeister a, Guido Grosse c, Andrei A. Andreev a a Alfred Wegener Institute for Polar and Marine Research Potsdam, Telegrafenberg A43, 14473 Potsdam, Germany b Free University Berlin, Institute of Geological Sciences, Palaeontology Department, Malteserstr. 74-100, Building D, Berlin 12249, Germany c Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks Alaska 99775-7320, USA Received 17 November 2006; accepted 20 July 2007 Available online 27 August 2007 Abstract To evaluate the consequences of possible future climate changes and to identify the main climate drivers in high latitudes, the vegetation and climate in the East Siberian Arctic during the last interglacial are reconstructed and compared with Holocene conditions. Plant macrofossils from permafrost deposits on Bol'shoy Lyakhovsky Island, New Siberian Archipelago, in the Russian Arctic revealed the existence of a shrubland dominated by Duschekia fruticosa, Betula nana and Ledum palustre and interspersed with lakes and grasslands during the last interglacial. The reconstructed vegetation differs fundamentally from the high arctic tundra that exists in this region today, but resembles an open variant of subarctic shrub tundra as occurring near the tree line about 350 km southwest of the study site. Such difference in the plant cover implies that, during the last interglacial, the mean summer temperature was considerably higher, the growing season was longer, and soils outside the range of thermokarst depressions were drier than today. -
Monthly Discharges for 2400 Rivers and Streams of the Former Soviet Union [FSU]
Annotations for Monthly Discharges for 2400 Rivers and Streams of the former Soviet Union [FSU] v1.1, September, 2001 Byron A. Bodo [email protected] Toronto, Canada Disclaimer Users assume responsibility for errors in the river and stream discharge data, associated metadata [river names, gauge names, drainage areas, & geographic coordinates], and the annotations contained herein. No doubt errors and discrepancies remain in the metadata and discharge records. Anyone data set users who uncover further errors and other discrepancies are invited to report them to NCAR. Acknowledgement Most discharge records in this compilation originated from the State Hydrological Institute [SHI] in St. Petersburg, Russia. Problems with some discharge records and metadata notwithstanding; this compilation could not have been created were it not for the efforts of SHI. The University of New Hampshire’s Global Hydrology Group is credited for making the SHI Arctic Basin data available. Foreword This document was prepared for on-screen viewing, not printing !!! Printed output can be very messy. To ensure wide accessibility, this document was prepared as an MS Word 6 doc file. The www addresses are not active hyperlinks. They have to be copied and pasted into www browsers. Clicking on a page number in the Table of Contents will jump the cursor to the beginning of that section of text [in the MS Word version, not the pdf file]. Distribution Files Files in the distribution package are listed below: Contents File name short abstract abstract.txt ascii description of -
Status of Brent Goose in Northwest Yakutia3 East Siberia E
Status of Brent Goose in northwest Yakutia3 East Siberia E. E. Syroechkovski, C. Zockler and E. Lappo ABSTRACT During June-July 1997, five colonies of Brent Geese Branta bemicla were visited in northwest Yakutia, East Siberia: three (total about 132 pairs) in the Olenyok delta and two (22 pairs) in the western Lena delta. Colonies varied in size from ten to 90 pairs. At all sites, both the nominate race bemicla and the race nigricans were found, the proportion of nominate varying from 15% in the east to over 95% in the west; eight mixed pairs were located, with five individuals showing intermediate characters. Ringing recoveries confirm the presence of two populations, one migrating to the Pacific coast of America and the other to northwest Europe. Populations of nominate bemicla and American nigricans are increasing, the latter also expanding westwards in Eastern Siberia, whereas the small Asian-Pacific population of nigricans remains in decline as a result of hunting pressure on passage and in winter. The discovery of mixed colonies of the two races counters suggestions that these forms should be treated as different species. During several recent expeditions to Eastern Siberia, the status of the Brent Goose Branta bemicla was investigated. Although the species was still considered to be threatened in the 1980s in Siberia (Pozdnyakov 1987), recent studies indicate that the race nigricans (known as the 'Black Brant') is expanding its range westwards and that the nominate dark-bellied Brent [Bra. Birds 91: 565-572, December 1998] © British Birds Ltd 1998 565 556 Syroechkovski el al: Status of Brent Goose in East Siberia Goose B. -
Wader Breeding Conditions in the Russian Tundras in 1997
30 Wader breeding conditionsin the Russiantundras in 1997 P.S. Tomkovich & Y. V. Zharikov Tomkovich,P.S. & Zharikov,Y.V. 1998. Wader breedingconditions in the Russiantundras in 1997. WaderStudy Group Bull. 87: 30-42. For the secondyear in a row therewas a very late springin the tundrasof EuropeanRussia and northernmostwest Siberia. Despitethe fact that springstarted extremely early in the southerntundra of westSiberia and on Taimyr,snow stormsand very low temperaturesreturned to Yamaland western Taimyr in late May. Springwas reported as being relativelylate andprolonged at mostsites further east than Taimyr, but more variable on Chukotka.As a result,many correspondentsreported a latestart to breedingand low breedingdensities in wadersin EuropeanRussia and in some Siberianareas. The summerwas humid and cold in EuropeanRussia and in westSiberia; variable but about normal conditionswere observed to the eastof Taimyr,while it waswarm and dry on almostthe whole of Taimyrand on WrangelIsland. Harshweather decreased nest and/or chick survival on VaigachIsland, Yugorsky Peninsula, Yamal, north-westTaimyr, and the lower OlenyokRiver. It waspredicted that the increase in thelemming (Lemmus sibiricus, Dicrostonyx torquatus) population which started on centralTaimyr and in theLena Delta in 1996would spread through larger areas in 1997. This happened,but on a much smallerscale than expected. Peak numbers of lemmingswere recorded at localesto the southof theByrranga Mountruns onTaimyr and at thelower Olenyok River. Averagelemming densities were found on Yugorsky (Europe), northern Yamal,some areas on Taimyrand the Lena Delta, at lowerIndigirka and at ShmidtCape. However,a decreasein their numbersduring the season was noted in mostcases. Arctic Foxes Alopex lagopus were numerous in EuropeanRussia, on Taimyr,in the LenaDelta, at lowerIndigirka and on BelyakaSpit (Chukotka). -
VI. Republic of Sakha (Yakutia) Overview of the Region Josh
Saving Russia's Far Eastern Taiga : Deforestation, Protected Areas, and Forests 'Hotspots' VI. Republic of Sakha (Yakutia) Overview of the Region Josh Newell Location The Republic of Yakutia (Sakha), situated in northeastern Siberia, stretches to the Henrietta Islands (77 N) in the far north and is washed by the Arctic Ocean (Laptev and Eastern Siberian Seas). These waters, the coldest and iciest of all seas in the northern hemisphere, are covered by ice for 9 to 10 months of the year. The Stanovoy Ridge (55 D. 30 D. N) borders Yakutia in the south, the upper reaches of the Olenyok River form the western border, and Chukotka forms the eastern border (165 E). Size Almost one-fifth of the territory of the Russian Federation (3,103,200 sq. km.) and greater than the combined areas of France, Austria, Germany, Italy, Sweden, England, Greece, and Finland. Climate Winter is prolonged and severe, with average January temperatures about -40C. Summer is short but warm; the average in July is 13C and temperatures have reached 39C in Yakutsk. In the northeast, the town of Verekhoyansk reaches -70C (-83F) and is considered the coldest inhabited place on Earth. There is little precipitation - from 150-200 mm. in Central Yakutia to 500-700 mm. in the mountains of eastern and southern Yakutia. Geography and Ecology Forty percent of Yakutia lies within the Arctic Circle and all of it is covered by eternally frozen ground- permafrost - which greatly influences the region's ecology and limits forests to the southern region. Yakutia can be divided into three great vegetation belts.