Quaternary International Xxx (2010) 1E23

Total Page:16

File Type:pdf, Size:1020Kb

Quaternary International Xxx (2010) 1E23 ARTICLE IN PRESS Quaternary International xxx (2010) 1e23 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands e A review L. Schirrmeister a,*, V. Kunitsky b, G. Grosse c, S. Wetterich a, H. Meyer a, G. Schwamborn a, O. Babiy b, A. Derevyagin d, C. Siegert a a Alfred Wegener Institute for Polar and Marine Research, Periglacial Research, Telegrafenberg A 43, 14471 Potsdam, Germany b Melnikov Permafrost Institute RAS SB, Merslotnaya Street, Yakutsk, Republic of Sakha, (Yakutia), 677010 Russia c Geophysical Institute, University of Alaska Fairbanks (UAF), 903 Koyukuk Drive, Fairbanks, AK 99775, USA d Moscow State University (MSU), Faculty of Geology Russia, Moscow 119899, Vorobievy Gory article info abstract Article history: The origin of Late Pleistocene ice-rich, fine-grained permafrost sequences (Ice Complex deposits) in arctic Available online xxx and subarctic Siberia has been in dispute for a long time. Corresponding permafrost sequences are frequently exposed along seacoasts and river banks in Yedoma hills, which are considered to be erosional remnants of Late Pleistocene accumulation plains. Detailed cryolithological, sedimentological, geochro- nological, and stratigraphical results from 14 study sites along the Laptev and East Siberian seacoasts were summarized for the first time in order to compare and correlate the local datasets on a large regional scale. The sediments of the Ice Complex are characterized by poorly-sorted silt to fine-sand, buried cryosols, TOC contents of 1.2e4.8 wt%, and very high ground ice content (40e60 wt% absolute). A second large constituent of the Ice Complex are large syngenetic ice wedges, resulting in a total ice content of the Ice Complex of up to 80 vol%. Ice Complex deposits were mostly formed during the Middle Weichselian interstadial and/or during the Late Weichselian stadial periods. A conceptual model of nival lithogenesis of Ice Complex deposits was developed that integrates various other formation hypotheses. A combination of various local and regional paleogeographical, geological, and paleoclimate conditions controlled the formation of Ice Complex sequences during the Late Pleistocene in northern East Siberia. They are chronologically and stratigraphically, but not genetically equivalent to Eurasian and Alaskan loess deposits. Ó 2010 Elsevier Ltd and INQUA. All rights reserved. 1. Introduction (Kunitsky,1989; Galabala,1997), and polygenetic origins (Konishchev, 1981; Sher et al.,1987). Subsequently, some of these hypotheses were In Siberia, perennially frozen fine-grained deposits are considered easily discarded as the increasing availability of paleoenvironmental to be part of the Northern Hemisphere Late Pleistocene loess region data falsified the core ideas of such hypotheses, e.g. the ice-sheet- (Péwé et al., 1977; Péwé and Journaux, 1983; Kaplina and Lozhkin, dammed hypothesis of Grosswald (1998) or the deltaic origin of 1984; Pye, 1984; Frenzel et al., 1992; Colinvaux, 1996; Morozova and Nagaoka et al. (1995).Currently,thehypothesisofapureaeolian Velichko, 1996). The sedimentological and cryolithological genesis (loessic) origin of these deposits appears to be the one favoured by of these widely distributed ice-rich sediments is still under discus- most of the current scientific literature (e.g. Brigham-Grette, 2001; sion, and several hypotheses have been put forward in the last Walter et al., 2006; Zimov et al., 2006; Schuur et al., 2008). The decades. Concepts included ice-sheet-dammed basin sediments concept of a uniform arctic loess cover during the Late Pleistocene is (Grosswald, 1998), deltaic formations (Nagaoka et al., 1995), alluvial also used in some climate models to simulate a dust cover on snow genesis (Rozenbaum, 1981), proluvial and slope deposits (Gravis, and ice, which reduces albedo (Krinner et al., 2006). Often, studies on 1969; Slagoda, 2004), cryogeniceaeolian deposits (Tomirdiaro, these fine-grained permafrost deposits draw generalized conclusions 1982, 1984; Tomirdiaro and Chernen’k’ii, 1987), nival deposits from few study sites and tend to neglect some of the special paleo- environmental conditions in heterogeneous periglacial landscapes during the time of deposition. Permafrost is a widely distributed, climatically-induced * Corresponding author. phenomenon in terrestrial arctic and subarctic regions. In northern E-mail address: [email protected] (L. Schirrmeister). 1040-6182/$ e see front matter Ó 2010 Elsevier Ltd and INQUA. All rights reserved. doi:10.1016/j.quaint.2010.04.004 Please cite this article in press as: Schirrmeister, L., et al., Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north- east..., Quaternary International (2010), doi:10.1016/j.quaint.2010.04.004 ARTICLE IN PRESS 2 L. Schirrmeister et al. / Quaternary International xxx (2010) 1e23 East Siberia, permafrost is closely connected to long-term stable cold important role for understanding the Late Pleistocene sedimento- and dry climate conditions and the absence of large ice sheets in the logical, stratigraphical, and paleoenvironmental dynamics in East Quaternary past (Hubberten et al., 2004). Extreme cooling under the Siberia. In connection with ongoing climate change and global influence of long-term very cold winter air temperatures resulted in warming, it is assumed that the Ice Complex formations will be the formation and preservation of a thick continuous permafrost transformed from a long-term carbon sink to a major carbon source zone. Areas where such conditions prevailed for several 10,000 year as these organic-rich sediments thaw and greenhouse gases are periods during the Late Pleistocene include the arctic lowland subsequently released (Walter et al., 2006; Zimov et al., 2006; regions east of the Eurasian ice shield. The idea of largely barren and Schuur et al., 2008). windswept North Siberian lowlands prone to wind-erosion and This study presents similarities and differences among various acting as both source and sink of loessic material during the Late Ice Complex sequences by summarizing cryolithological data Pleistocene has been largely discarded by newer paleoenvir- acquired and analyzed within the Russian-German science colla- onmental studies indicating a nearly complete vegetation cover and boration “Laptev Sea System” from 1998 to 2008. Short dense populations of grazing animals (e.g. Sher et al., 2003, 2005). descriptions of geomorphological, stratigraphical, and cryolitho- The fine-grained Late Pleistocene ice-rich deposits in question, logical features are presented for 14 major sites (Fig. 1) and then called Ice Complex formations (in Russian: ledovyi complex, summarized into five different Ice Complex provinces. Selected according to Soloviev, 1959), are well exposed along coasts and records of similar sedimentological parameters are used for the river banks in the northern East Siberian lowlands. For describing synthesis. The objective of this paper is to provide a compre- this permafrost formation, the term “Yedoma” is very often used hensive characterisation of Ice Complex deposits in northern East synonymously (e.g. Zimov et al., 2006). In its original sense, the Siberia, i.e., for the Laptev Sea region and the New Siberian term Yedoma defines relief features in East Siberian lowlands, i.e. Archipelago. Ice Complex genesis is discussed and the conceptual elevated areas separating thermokarst depressions (Kolosov, 1947; model of deposition and genesis for these deposits is advanced Baranova and Biské, 1964; Tomirdiaro, 1980; Mursaev, 1984). Such by going a step beyond the prevailing loess formation hills are usually composed of the Ice Complex deposits. Because of hypothesis. the high content of fossil plant and animal remains ranging from Although site-specific data has been published before in grass leaves to mammoth bones, and the unknown depositional numerous papers (Table 1), a generalizing review of Ice Complex origin, these deposits had already attracted scientific interest early characteristics from NE Siberian Arctic coastal lowland and island in the 19th century (Adams, 1807; Bunge, 1895). sites was not conducted yet. This paper represents the first Ice Complex deposits are an essential component of periglacial systematic review of ten years of intense cryolithological field landscapes in the northern East Siberian lowlands, and play an studies on North Siberian Ice Complex deposits. Fig. 1. Study region in northern East Siberia and positions of study sites and other locations mentioned in the text. Please cite this article in press as: Schirrmeister, L., et al., Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north- east..., Quaternary International (2010), doi:10.1016/j.quaint.2010.04.004 ARTICLE IN PRESS L. Schirrmeister et al. / Quaternary International xxx (2010) 1e23 3 Table 1 Location of studied Ice Complex sites indicated in Fig. 1 and corresponding site-specific publications. Region Location Coordinates N E W Laptev Sea Cape Mamontov Klyk (Schirrmeister et al., 2008; Bobrov et al., 2009; Müller et al., 2009; 73.61 117.18 Winterfeld et al., under review) Lena Delta Ebe Basyn Sise Island (Nagym) 72.88 123.32 Khardang Sise Island, 2005 (Schirrmeister, 2007) 72.95 124.21 Kurungnakh Sise Island (Buor Khaya), 1998, 2000, 2002 (Kuzmina et al., 2003; Schirrmeister 72.33 126.30 et al.
Recommended publications
  • Northern Sea Route Cargo Flows and Infrastructure- Present State And
    Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources.
    [Show full text]
  • Arctic Marine Aviation Transportation
    SARA FRENCh, WAlTER AND DuNCAN GORDON FOundation Response CapacityandSustainableDevelopment Arctic Transportation Infrastructure: Transportation Arctic 3-6 December 2012 | Reykjavik, Iceland 3-6 December2012|Reykjavik, Prepared for the Sustainable Development Working Group Prepared fortheSustainableDevelopment Working By InstituteoftheNorth,Anchorage, Alaska,USA PROCEEDINGS: 20 Decem B er 2012 ICElANDIC coast GuARD INSTITuTE OF ThE NORTh INSTITuTE OF ThE NORTh SARA FRENCh, WAlTER AND DuNCAN GORDON FOundation Table of Contents Introduction ................................................................................ 5 Acknowledgments ......................................................................... 6 Abbreviations and Acronyms .......................................................... 7 Executive Summary ....................................................................... 8 Chapters—Workshop Proceedings................................................. 10 1. Current infrastructure and response 2. Current and future activity 3. Infrastructure and investment 4. Infrastructure and sustainable development 5. Conclusions: What’s next? Appendices ................................................................................ 21 A. Arctic vignettes—innovative best practices B. Case studies—showcasing Arctic infrastructure C. Workshop materials 1) Workshop agenda 2) Workshop participants 3) Project-related terminology 4) List of data points and definitions 5) List of Arctic marine and aviation infrastructure AlASkA DepartmENT OF ENvIRONmental
    [Show full text]
  • Yakutia) “…The Republic of Sakha (Yakutia) Is the Largest Region in the Russian Federation and One of the Richest in Natural Resources
    Investor's Guide to the Republic of Sakha (Yakutia) “…The Republic of Sakha (Yakutia) is the largest region in the Russian Federation and one of the richest in natural resources. Needless to say, the stable and dynamic development of Yakutia is of key importance to both the Far Eastern Federal District and all of Russia…” President of the Russian Federation Vladimir Putin “One of the fundamental priorities of the Government of the Republic of Sakha (Yakutia) is to develop comfortable conditions for business and investment activities to ensure dynamic economic growth” Head of the Republic of Sakha (Yakutia) Egor Borisov 2 Contents Welcome from Egor Borisov, Head of the Republic of Sakha (Yakutia) 5 Overview of the Republic of Sakha (Yakutia) 6 Interesting facts about the Republic of Sakha (Yakutia) 7 Strategic priorities of the Republic of Sakha (Yakutia) investment policy 8 Seven reasons to start a business in the Republic of Sakha (Yakutia) 10 1. Rich reserves of natural resources 10 2. Significant business development potential for the extraction and processing of mineral and fossil resources 12 3. Unique geographical location 15 4. Stable credit rating 16 5. Convenient conditions for investment activity 18 6. Developed infrastructure for the support of small and medium-sized enterprises 19 7. High level of social and economic development 20 Investment infrastructure 22 Interaction with large businesses 24 Interaction with small and medium-sized enterprises 25 Other organisations and institutions 26 Practical information on doing business in the Republic of Sakha (Yakutia) 27 Public-Private Partnership 29 Information for small and medium-sized enterprises 31 Appendix 1.
    [Show full text]
  • Complete Mitochondrial Genome of a Woolly Mammoth (Mammuthus Primigenius) from Maly Lyakhovsky Island (New Siberian Islands, Russia) and Its Phylogenetic Assessment
    Mitochondrial DNA Part B Resources ISSN: (Print) 2380-2359 (Online) Journal homepage: http://www.tandfonline.com/loi/tmdn20 Complete mitochondrial genome of a woolly mammoth (Mammuthus primigenius) from Maly Lyakhovsky Island (New Siberian Islands, Russia) and its phylogenetic assessment Igor V. Kornienko, Tatiana G. Faleeva, Natalia V. Oreshkova, Semyon E. Grigoriev, Lena V. Grigoreva, Evgeniy P. Simonov, Anna I. Kolesnikova, Yuliya A. Putintseva & Konstantin V. Krutovsky To cite this article: Igor V. Kornienko, Tatiana G. Faleeva, Natalia V. Oreshkova, Semyon E. Grigoriev, Lena V. Grigoreva, Evgeniy P. Simonov, Anna I. Kolesnikova, Yuliya A. Putintseva & Konstantin V. Krutovsky (2018) Complete mitochondrial genome of a woolly mammoth (Mammuthusprimigenius) from Maly Lyakhovsky Island (New Siberian Islands, Russia) and its phylogenetic assessment, Mitochondrial DNA Part B, 3:2, 596-598, DOI: 10.1080/23802359.2018.1473721 To link to this article: https://doi.org/10.1080/23802359.2018.1473721 © 2018 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group. Published online: 18 May 2018. Submit your article to this journal Article views: 118 View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmdn20 MITOCHONDRIAL DNA PART B: RESOURCES 2018, VOL. 3, NO. 2, 596–598 https://doi.org/10.1080/23802359.2018.1473721 MITOGENOME ANNOUNCEMENT Complete mitochondrial genome of a woolly mammoth (Mammuthus primigenius) from Maly Lyakhovsky Island (New Siberian Islands, Russia) and its phylogenetic assessment Igor V. Kornienkoa,b, Tatiana G. Faleevac, Natalia V. Oreshkovad,e, Semyon E. Grigorievf, Lena V. Grigorevaf, Evgeniy P.
    [Show full text]
  • Размеры Тела Шерстистого Мамонта Mammuthus Primigenius (Blumenbach) Второй Половины Позднего Плейстоцена Севера Восточной Сибири Г.Г
    ПРИРОДНЫЕ РЕСУРСЫ АРКТИКИ И СУБАРКТИКИ, 2021, Т. 26, № 1 УДК562/569:566/569 DOI10.31242/2618-9712-2021-26-1-4 Размеры тела шерстистого мамонта Mammuthus primigenius (Blumenbach) второй половины позднего плейстоцена севера Восточной Сибири Г.Г.Боескоров Институт геологии алмаза и благородных металлов СО РАН, Якутск, Россия [email protected] Аннотация. Проанализированы сведения о размерах тела шерстистого мамонта Mammuthus primigenius (Blumenbach) второй половины позднего плейстоцена севера Восточной Сибири (Яку- тия, п-ов Таймыр, западная Чукотка). Статья основана на оригинальных данных автора, прини- мавшего участие в исследовании морфологических особенностей замороженных останков мумий и скелетов мамонтов, найденных на территории Якутии за последние 30 лет: Чурапчинский, Максу- нуохский, Юкагирский мамонты; часть скелета мамонта с р. Зимовье (остров Большой Ляховс- кий). Отдельно измерен скелет Тирехтяхского мамонта. Кроме того, проанализированы литера- турные данные по размерам тела шерстистого мамонта второй половины позднего плейстоцена Восточной Сибири и других регионов. Предыдущими исследователями отмечалось, что высота в холке взрослых самцов M. primigenius с территории Якутии и Таймыра близка таковой самцов ази- атского (индийского) слона Elephas maximus L. Отсюда был сделан вывод, что и общие размеры тела у шерстистого мамонта схожи с таковыми азиатского слона. В данной статье, основанной на более обширном материале, показано, что хотя шерстистый мамонт действительно был очень схож по высоте в холке с современным E. maximus, в то же время тело у него было в среднем длин- нее, голова больше, т. е. пропорции тела у этих видов были разными. По-видимому, особенности пропорций тела шерстистого мамонта способствовали его лучшему выживанию в условиях ледни- кового периода. Ключевые слова:шерстистыймамонт,Mammuthus primigenius,позднийплейстоцен,размеры тела,ВосточнаяСибирь.. Благодарности.
    [Show full text]
  • The Contribution of Shore Thermoabrasion to the Laptev Sea Sediment Balance
    THE CONTRIBUTION OF SHORE THERMOABRASION TO THE LAPTEV SEA SEDIMENT BALANCE F.E. Are Petersburg State University of Means of Communications, Moskovsky av. 9, St.-Petersburg, 190031, Russia e-mail: [email protected] Abstract A schematic map of Laptev Sea shore dynamics is compiled for the first time, using available published data. It shows the distribution of thermoabrasion shores, mean long-term shore retreat rates, and areas of seabed ero- sion and accretion. The amount of sediment released to the sea from the 85 km Anabar-Olenyok section of the coast is calculated, as an example, at 3.4 Mt/year. These results are compared with published data on sediment transport of rivers running into the Laptev Sea. Estimates of the Lena River discharge range from 12 to 21 Mt/year, of which only 2.1 to 3.5 Mt may reach the sea. The analysis shows that the input of thermoabrasion at mean shoreline retreat rates of 0.7 to 0.9 m/year is at least of the same order as the river input and may great- ly exceed it. Introduction ble to determine the input from shore thermoabrasion offshore more accurately. Thousands of kilometres of Arctic sea coast retreat at rates 2-6 m/year under the action of thermoabrasion1 Maps of shore dynamics are needed to solve this (Are, 1985; Barnes et al., 1991). Tens of square kilome- problem and others related to climate change impacts. tres of Arctic land therefore are consumed by the sea Such maps have been compiled for about 650 km of every year.
    [Show full text]
  • Curriculum Vitae
    ADAM N ROUNTREY Research Museum Collection Manager University of Michigan Museum of Paleontology Research Museums Center 3600 Varsity Drive, Ann Arbor, MI 48108 +1 (734) 936 1385 [email protected] EDUCATION / ACADEMIC POSITIONS8 Research Museum Collection Manager, University of Michigan (2013-present) Research Assistant Professor, University of Western Australia (2012-2013) Postdoctoral Scholar, University of Michigan (2009-2012) PhD, Geology (2009) – University of Michigan “Life Histories of Juvenile Woolly Mammoths from Siberia: Stable Isotope and Elemental Analyses of Tooth Dentin” MS, Geology (2006) – University of Michigan BS (magna cum laude), Environmental Studies, (2003) – Randolph-Macon College PUBLICATIONS ( * = student paper) Moore, J., Rountrey, A., Scates Kettler, H. (2019). CS3DP: Developing Agreement for 3D Standards and Practices Based on Community Needs and Values. In Grayburn, J., Lischer-Katz, Z., Golubiewski-Davis, K., Ikeshoji-Orlati, V. (Eds.), 3D/VR in the Academic Library: Emerging Practices and Trends. Council on Library and Information Resources. Arlington, Virginia. *Ong, J.L., et al. (2018). A boundary current drives synchronous growth of marine fishes across tropical and temperate latitudes. Global Change Biology 24(5):1894-1903. DOI: 10.1111/gcb.14083. Holen, S.R., et al. (2018). Broken bones and hammerstones at the Cerutti Mastodon site: a reply to Haynes. PaleoAmerica 4(1):8-11. Holen, S.R., et al. (2018). Reply to Ferraro, J.V, et al. Contesting early archaeology in California. Nature 544:E3. DOI: 10.1038/nature25166. Holen, S.R., et al. (2017). Disparate Perspectives on Evidence from the Cerutti Mastodon Site: A Reply to Braje et al. PaleoAmerica DOI: 10.1080/20555563.2017.1396836.
    [Show full text]
  • K. Fujita1, E. E. Dretzka2 and A. Grantz3 This Report Is Preliminary and Has Not Been Reviewed for Conformity with U. S. Geologi
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY BIBLIOGRAPHY OF NORTHEAST SIBERIAN GEOLOGY AND GEOPHYSICS (SECOND EDITION) K. Fujita1, E. E. Dretzka2 and A. Grantz3 OPEN FILE REPORT 82-616 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards. Menlo Park, California July 1982 1. Department of Geology, Michigan State University, East Lansing MI 48824 2. Department of Geological Sciences, Northwestern University, Evanston IL 60201; now at: Department of Computer Sciences, Stanford University, Stanford CA 94305. 3. U. S. Geological Survey, Menlo Park, CA 94025 INTRODUCTION This bibliography is a compendium of literature available in English, either in its original form or in translation, on the geology and geophysics of northeast Siberia and adjacent seas and shelves. It is an expanded version of Fujita and Dretzka (1978-) and has been updated to include publications released through early 1982. The area! coverage extends from the edge of the Siberian platform (just east of the Lena River) on the east to the U. S. - Russia Convention Line of 1867 on the west. The East Siberian and Chukchi Seas are included as the northern limit while the Sea if Okhotsk and Kamchatka represent the southern limits. Sakhalin has been excluded and some, but not all, references to the Kuril Islands have been included. A sketch map of the area is shown in figure 1. It is hoped that this listing is nearly exhaustive for works on this area with some exceptions. Neither the Paleontological Journal nor Petroleum Geology have been indexed in this edition and, in addition, articles on Recent seismicity and volcanic activity in the Kuril-Kamchatka arc have been omitted.
    [Show full text]
  • Sub-Seasonal Thaw Slump Mass Wasting Is Not Consistently Energy Limited at the Landscape Scale Simon Zwieback1,2, Steven V
    Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale Simon Zwieback1,2, Steven V. Kokelj3, Frank Günther4, Julia Boike4, Guido Grosse4, and Irena Hajnsek2,5 1Department of Geography, University of Guelph, Guelph, Canada 2Department of Environmental Engineering, ETH Zurich, Zurich, Switzerland 3Northwest Territories Geological Survey, Government of Northwest Territories, Yellowknife, Canada 4Periglacial Research, Alfred Wegener Institute, Potsdam, Germany 5Microwaves and Radar Institute, German Aerospace Center (DLR), Wessling, Germany Correspondence to: Simon Zwieback ([email protected]), Irena Hajnsek ([email protected]) Abstract. Predicting future thaw slump activity requires a sound understanding of the atmospheric drivers and geomorphic controls on mass wasting across a range of time scales. On sub-seasonal time scales, sparse measurements indicate that mass wasting at active slumps is often limited by the energy available for melting ground ice, but other factors such as rainfall or the formation of an insulating veneer may also be relevant. To study the sub-seasonal drivers, we derive topographic changes from 5 single-pass radar interferometric data acquired by the TanDEM-X satellites. The estimated elevation changes at 12 m resolution complement the commonly observed planimetric retreat rates by providing information on volume losses. Their high vertical precision (around 30 cm), frequent observations (11 days) and large coverage (5000 km2) allow us to track mass wasting as drivers such as the available energy change during the summer of 2015 in two study regions. We find that thaw slumps in the Tuktoyaktuk coastlands, Canada, are not energy limited in June, as they undergo limited mass wasting (height loss of around 0 10 cm/day) despite the ample available energy, suggesting the widespread presence of an early-season insulating snow or debris veneer.
    [Show full text]
  • Laptev Sea System
    Russian-German Cooperation: Laptev Sea System Edited by Heidemarie Kassens, Dieter Piepenburg, Jör Thiede, Leonid Timokhov, Hans-Wolfgang Hubberten and Sergey M. Priamikov Ber. Polarforsch. 176 (1995) ISSN 01 76 - 5027 Russian-German Cooperation: Laptev Sea System Edited by Heidemarie Kassens GEOMAR Research Center for Marine Geosciences, Kiel, Germany Dieter Piepenburg Institute for Polar Ecology, Kiel, Germany Jör Thiede GEOMAR Research Center for Marine Geosciences, Kiel. Germany Leonid Timokhov Arctic and Antarctic Research Institute, St. Petersburg, Russia Hans-Woifgang Hubberten Alfred-Wegener-Institute for Polar and Marine Research, Potsdam, Germany and Sergey M. Priamikov Arctic and Antarctic Research Institute, St. Petersburg, Russia TABLE OF CONTENTS Preface ....................................................................................................................................i Liste of Authors and Participants ..............................................................................V Modern Environment of the Laptev Sea .................................................................1 J. Afanasyeva, M. Larnakin and V. Tirnachev Investigations of Air-Sea Interactions Carried out During the Transdrift II Expedition ............................................................................................................3 V.P. Shevchenko , A.P. Lisitzin, V.M. Kuptzov, G./. Ivanov, V.N. Lukashin, J.M. Martin, V.Yu. ßusakovS.A. Safarova, V. V. Serova, ßvan Grieken and H. van Malderen The Composition of Aerosols
    [Show full text]
  • The Brunhes-Matuyama Boundary in Western Beringia: a Review
    Quaternary Science Reviews 30 (2011) 2054e2068 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev The Brunhes-Matuyama boundary in Western Beringia: a review Pavel S. Minyuk*, Yury Yu. Ivanov 1 North-East Interdisciplinary Scientific Research Institute, Far East Branch Russian Academy of Science, 16 Portovaya St., Magadan 685000, Russia article info abstract Article history: Early-Middle Pleistocene deposits have been studied in Central and Northern Yakutia, the Magadan Received 24 September 2009 region, and Chukotka. The Brunhes-Matuyama boundary occurs in the Ozheleznenye Galechniki Received in revised form (¼Ferruginated pebblestones) beds of Central Yakutia that belong to the Talagay horizon of the Early- 31 May 2010 Middle Pleistocene. These layers include classic Aldan mammal fauna. In Eastern Yakutia sediments of Accepted 3 June 2010 Early-Middle Pleistocene belong to the Akan horizon, and the Early Pleistocene sediments are from the Available online 22 July 2010 Chukochya horizon. These sediments which belong to the Olyor Formation and its age-equivalents yielded numerous mammal remains, termed the Olyor faunal complex. The Brunhes-Matuyama boundary is located in Akan horizon. In the upper reaches of the Kolyma River, the Brunhes-Matuyama boundary occurs in sediments of the Middle Pleistocene Belichan horizon. The boundary of the Brunhes- Matuyama is characteristic within the Elhkakvun and Enmakay formations of Chukotka. In Kamchatka, the boundary of Matuyama and Brunhes is evident in volcanic sequences. In the eastern part of the peninsula, this boundary is located in the Tumrok or Iult volcanic complex and in Central Kamchatka in the Kreruk volcanic complex.
    [Show full text]
  • LATE PLEISTOCENE and EARLY HOLOCENE WINTER AIR TEMPERATURES in KOTELNY ISLAND: RECONSTRUCTIONS USING STABLE ISOTOPES of ICE WEDGES Yu.K
    Kriosfera Zemli, 2019, vol. XXIII, No. 2, pp. 12–24 http://www.izdatgeo.ru DOI: 10.21782/EC2541-9994-2019-2(12-24) LATE PLEISTOCENE AND EARLY HOLOCENE WINTER AIR TEMPERATURES IN KOTELNY ISLAND: RECONSTRUCTIONS USING STABLE ISOTOPES OF ICE WEDGES Yu.K. Vasil’chuk1,2, V.M. Makeev3, A.A. Maslakov1, N.A. Budantseva1, A.C. Vasil’chuk1 1 Lomonosov Moscow State University, Faculty of Geography and Faculty of Geology, 1, Leninskie Gory, Moscow, 119991, Russia 2 Tyumen State University, 6, Volodarskogo str., Tyumen, 625003, Russia; [email protected] 3Russian State Hydrometeorological University, 98, Malookhtinsky prosp., St. Petersburg, 109017, Russia Late Pleistocene and Holocene winter air temperatures in Kotelny Island, northeastern Russian Arctic, have been reconstructed using oxygen isotope compositions of ice wedges and correlated with evidence of Late Pleistocene and Holocene climate variations inferred from pollen data. The δ18О values range exceeds 6 ‰ in Late Pleistocene ice wedges but is only 1.5 ‰ in the Holocene ones (–30.6 ‰ to –24.0 ‰ against –23.1 ‰ to –21.6 ‰, respectively). The Late Pleistocene mean January air temperatures in Kotelny Island were 10–12 °С lower than the respective present temperature. On the other hand, mean winter temperatures in cold substages during the Karga interstadial were colder than those during the Sartan glacial event. The Late Pleistocene– Holocene climate history included several warm intervals when air temperatures were high enough to maintain the existence of low canopy tree patches in Kotelny Island. Mean January air temperatures in the early Holocene were only 1.0–1.5 °С lower than now.
    [Show full text]