VI. Republic of Sakha (Yakutia) Overview of the Region Josh
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cretaceous Tectonics and Geological Environments in East Russia
Journal of Asian Earth Sciences 21 (2003) 967–977 www.elsevier.com/locate/jseaes Cretaceous tectonics and geological environments in East Russia G.L. Kirillova Institute of Tectonics and Geophysics, Far East Branch, Russian Academy of Sciences, 65 Kim Yu Chen Str., Khabarovsk 680000, Russian Federation Received 5 October 2000; revised 7 October 2001; accepted 26 April 2002 Abstract By the Late Jurassic, the northern part of the East Asian continental margin was diversified. Principal structural constituents were the Siberian (or North Asian) craton bounded on the east by a miogeosynclinal fold belt, a system of smaller ancient blocks, and a collage of terranes that had been attached to the craton from the east and southeast at different times. Such a diverse structural environment caused variability of Cretaceous landscapes and related sedimentary systems. Global processes of lithospheric plate interaction and related regional tectonic processes played a leading role in Cretaceous environmental changes in the continental margin of East Russia. During the Early Cretaceous, the oblique plate convergence produced a transform continental margin over a long period of time. During the Middle Albian, a collage of terranes were attached to the continental margin of East Russia. Then during the Late Albian period, the angle of convergence increased, subduction resumed, and a giant East Asian volcanic belt formed along the continental margin. This belt was morphologically represented by a chain of mountain ridges (up to 3000 m), thus creating a sublongitudinal tectonic and climatic zonation. The active continental margin with a typical environmental arrangement of marginal seas–island arcs–the open sea, persisted until the end of the Cretaceous. -
Golden Eagle Trans-Siberian Express Via the BAM and Yakutsk
Golden Eagle Trans-Siberian Express via the BAM and Yakutsk https://www.irtsociety.com/journey/golden-eagle-trans-siberian-express-bam-line/ Overview The Highlights - Explore smaller and remote towns of Russia, rarely visited by tourists - Grand Moscow’s Red Square, the Kremlin Armoury Chamber, St. Basil's Cathedral and Cafe Pushkin - Yekaterinburg, infamous execution site of Tsar Nicholas II, his wife Alexandra, their son, daughters and servants, by the Bolsheviks in 1918 - Fantastic Sayan Mountain scenery, including the Dzheb double horse-shoe curves The Society of International Railway Travelers | irtsociety.com | (800) 478-4881 Page 1/7 - Visit one of the biggest hydro-electric dams in the world in Bratsk and one of the world’s largest open cast mines in Neryungri - Stop at the unique and mysterious 3.7-mile (6km) long Chara Sand Dunes - Learn about the history and building of the BAM line at the local museum in Tynda - Marvel at Komsomolsk's majestic and expansive urban architecture of the Soviet era, including the stupendous Pervostroitelei Avenue, lined with Soviet store fronts and signage intact - City tour of Vladivostok, including a preserved World War II submarine - All meals, fine wine with lunch and dinner, hotels, gratuities, off-train tours and arrival/departure transfers included The Tour Travel by private train through an outstanding area of untouched natural beauty of Siberia, along the Baikal-Amur Magistral (BAM) line, visiting some of the lesser known places and communities of remote Russia. The luxurious Golden Eagle will transport you from Moscow to Vladivostok along the less-traveled, northerly Trans-Siberian BAM line. -
The Effect of Grazing on the Temperature Regime of the Alas
land Article The Effect of Grazing on the Temperature Regime of the Alas Soils of Central Yakutia Victor Makarov * , Grigory Savvinov , Lyudmila Gavrilieva and Anna Gololobova Scientific Research Institute of Applied Ecology of the North, M.K. Ammosov North-Eastern Federal University, 43 Lenin Prospekt, 677980 Yakutsk, Russia; [email protected] (G.S.); [email protected] (L.G.); [email protected] (A.G.) * Correspondence: [email protected]; Tel.: +7-4112-33-68-51 Received: 7 September 2020; Accepted: 22 September 2020; Published: 1 October 2020 Abstract: There are numerous studies on the effect of grazing on the physical and chemical parameters of soils. However, the impact of grazing on the temperature regime of the alas soils in Central Yakutia is still poorly understood. This paper presents the results of long-term observations of the state of the soil-and-plant cover of thermokarst basins—i.e., alases—located in the Lena-Amga interfluve and actively used as pastureland. Observations of the process of the self-restoration of grass cover and changes in the temperature regime of alas soils were carried out on different variants (with isolation from grazing and without isolation). A significant increase in the average height of the grass stand and its foliage projective cover was observed with a gradual reduction in the number of species when isolated from grazing. Changes in the structure of the alas vegetation cover influence the microclimate of the soil. As a result of livestock grazing, the mean annual soil temperature rises and the amount and depth of the penetration of active temperatures increase. -
Goldman Et Al. (2016) Monitoring of the Ecological Security in the North-Western Region of the Republic …
ISSN 2056-9386 Volume 3 (2016) issue 3, article 2 Monitoring of the ecological security in the north- western region of the Republic of Sakha, Russian Federation 俄罗斯联邦萨哈共和国西北地区的生态安全监测 Albina A. Goldman, Elena V. Sleptsova, Raissa P. Ivanova Mirny Polytechnic Institute (branch) of Ammosov North-Eastern Federal University (NEFU), Mirny, Tikhonova street 5, build.1, Russian Federation [email protected], [email protected], [email protected] Accepted for publication on 3rd September 2016 Abstract – The paper is devoted to the environmental diamonds and hydrocarbon crude are located in western and impact of industrial sector in Western Yakutia and the south-western parts of the republic. The largest diamond, oil role of the Mirny Polytechnic Institute (branch) of the and gas fields are situated in Western Yakutia. Ammosov North-Eastern Federal University in training specialists for oil and gas and diamond mining industries II. INDUSTRIAL SECTORS OF THE REGION and the research carried out at the educational and scientific laboratory of complex analysis of The area of disturbed lands in Mirny district ranks second anthropogenic disturbances of the Institute on in the Republic after the Neryungrinsky district (about 9 compliance with the requirements. thousand hectares). Key words – environment, industry, oil and gas, diamond The history of diamond mining in Yakutia dates back to mining, ecological monitoring, East Siberia. 1954, when prospectors discovered the first diamond pipe, Zarnitsa (‘Summer Lightning’). In 1957 the Soviet I. INTRODUCTION government established Yakutalmaz Group of enterprises, and diamond mining operations commenced. Two years later The Mirny Polytechnic Institute (branch) of the the USSR sold the first parcel of Yakutian diamonds on the Ammosov North-Eastern Federal University is located in the world market. -
2002 Annual Report of Alrosa Table of Contents
2002 ANNUAL REPORT OF ALROSA TABLE OF CONTENTS: Members of Supervisory Council Members of the Board Members of Auditing Committee Structure of ALROSA Group President’s Statement Activities of Supervisory Council Report by the Board on the Company’s Activities in the Main Fields of Operations Mining Operations Marketing Policy. Sales of Rough Diamonds. Polished Diamond Manufacture and Sales Geological Exploration Capital Construction Supplies and Logistics Research and Development Diversification of the Company’s Activities. Subsidiaries and Affiliated Companies Personnel Management External Relations Environmental Safety Accounting and Financial Results Accounting Policy Audit Statement Consolidated Financial Statement of ALROSA Co. Ltd. Basic Performance Indicators of ALROSA Co. Ltd. Information for Shareholders Historic Highlights of ALROSA Addresses of ALROSA Offices 2 Supervisory Council Co-Chairmen of Supervisory Council: Alexey Leonidovich KUDRIN Deputy Chairman of RF Government, Minister of Finance of the Russian Federation, Chairman of ALROSA Supervisory Council Vyacheslav Anataloyevich SHTYROV President of Republic of Sakha (Yakutia), First Deputy Chairman of ALROSA Supervisory Council Andrei Dmitrievich KIRILLIN Chairman of ALROSA Supervisory Council Members of Supervisory Council: Gennady Fedorovich ALEXEYEV Minister of Property Relations of Republic of Sakha (Yakutia) Alexandr Vasilyevich ANOSHKIN Assistant of Head of RF President’s Administration Ernst Borisovich BEREZKIN Minister of Finance of Republic of Sakha (Yakutia) -
Chapter 7. Cities of the Russian North in the Context of Climate Change
? chapter seven Cities of the Russian North in the Context of Climate Change Oleg Anisimov and Vasily Kokorev Introduction In addressing Arctic urban sustainability, one has to deal with the com- plex interplay of multiple factors, such as governance and economic development, demography and migration, environmental changes and land use, changes in the ecosystems and their services, and climate change.1 While climate change can be seen as a factor that exacerbates existing vulnerabilities to other stressors, changes in temperatures, precipitation, snow accumulation, river and lake ice, and hydrological conditions also have direct implications for Northern cities. Climate change leads to a reduction in the demand for heating energy, on one hand, and heightens concerns about the fate of the infrastruc- ture built upon thawing permafrost, on the other. Changes in snowfall are particularly important and have direct implications for the urban economy, because, together with heating costs, expenses for snow removal from streets, airport runways, roofs, and ventilation spaces underneath buildings standing on pile foundations built upon perma- frost constitute the bulk of a city’s maintenance budget during the long cold period of the year. Many cities are located in river valleys and are prone to fl oods that lead to enormous economic losses, inju- ries, and in some cases human deaths. The severity of the northern climate has a direct impact on the regional migration of labor. Climate could thus potentially be viewed as an inexhaustible public resource that creates opportunities for sustainable urban development (Simp- 142 | Oleg Anisimov and Vasily Kokorev son 2009). Long-term trends show that climate as a resource is, in fact, becoming more readily available in the Russian North, notwith- standing the general perception that globally climate change is one of the greatest challenges facing humanity in the twenty-fi rst century. -
Late Quaternary Environment of Central Yakutia (NE' Siberia
Late Quaternary environment of Central Yakutia (NE’ Siberia): Signals in frozen ground and terrestrial sediments Spätquartäre Umweltentwicklung in Zentral-Jakutien (NO-Sibirien): Hinweise aus Permafrost und terrestrischen Sedimentarchiven Steffen Popp Steffen Popp Alfred-Wegener-Institut für Polar- und Meeresforschung Forschungsstelle Potsdam Telegrafenberg A43 D-14473 Potsdam Diese Arbeit ist die leicht veränderte Fassung einer Dissertation, die im März 2006 dem Fachbereich Geowissenschaften der Universität Potsdam vorgelegt wurde. 1. Introduction Contents Contents..............................................................................................................................i Abstract............................................................................................................................ iii Zusammenfassung ............................................................................................................iv List of Figures...................................................................................................................vi List of Tables.................................................................................................................. vii Acknowledgements ........................................................................................................ vii 1. Introduction ...............................................................................................................1 2. Regional Setting and Climate...................................................................................4 -
Climate Change and Human Mobility in Indigenous Communities of the Russian North
Climate Change and Human Mobility in Indigenous Communities of the Russian North January 30, 2013 Susan A. Crate George Mason University Cover image: Winifried K. Dallmann, Norwegian Polar Institute. http://www.arctic-council.org/index.php/en/about/maps. TABLE OF CONTENTS Acknowledgements .......................................................................................................................... i Executive Summary ........................................................................................................................ ii 1. Introduction and Purpose ............................................................................................................ 1 1.1 Focus of paper and author’s approach................................................................................... 2 1.2 Human mobility in the Russian North: Physical and Cultural Forces .................................. 3 1.2.1 Mobility as the Historical Rule in the Circumpolar North ............................................. 3 1.2.2. Changing the Rules: Mobility and Migration in the Russian and Soviet North ............ 4 1.2.3 Peoples of the Russian North .......................................................................................... 7 1.2.4 The contemporary state: changes affecting livelihoods ................................................. 8 2. Overview of the physical science: actual and potential effects of climate change in the Russian North .............................................................................................................................................. -
Description of Map Units Northeast Asia Geodynamics Map
DESCRIPTION OF MAP UNITS NORTHEAST ASIA GEODYNAMICS MAP OVERLAP ASSEMBLAGES (Arranged alphabetically by map symbol) ad Adycha intermountain sedimentary basin (Miocene and Pliocene) (Yakutia) Basin forms a discontinuous chain along the foot of southwestern slope of Chersky Range in the Yana and Adycha Rivers basins. Contain Miocene and Pliocene sandstone, pebble gravel conglomerate, claystone, and minor boulder gravel conglomerate that range up to 400 m thick. REFERENCES: Grinenko and others, 1998. ag Agul (Rybinsk) molasse basin (Middle Devonian to Early Carboniferous) (Eastern Sayan) Consists of Middle Devonian through Early Carboniferous aerial and lacustrine sand-silt-mudstone, conglomerate, marl, and limestone with fauna and flora. Tuff, tuffite, and tuffaceous rock occur in Early Carboniferous sedimentary rocks. Ranges up to 2,000 m thick in southwestern margin of basin. Unconformably overlaps Early Devonian rocks of South Siberian volcanic-plutonic belt and Precambrian and early Paleozoic rocks of the Siberian Platform and surrounding fold belts. REFERENCES: Yanov, 1956; Graizer, Borovskaya, 1964. ags Argun sedimentary basin (Early Paleozoic) (Northeastern China) Occurs east of the Argun River in a discontinuously exposed, northeast-trending belt and consists of Cambrian and Ordovician marine, terrigenous detrital, and carbonate rocks. Cambrian units are composed of of feldspar- quartz sandstone, siltstone, shale and limestone and contain abundant Afaciacyathus sp., Bensocyathus sp., Robustocyathus yavorskii, Archaeocyathus yavorskii(Vologalin), Ethomophyllum hinganense Gu,o and other fossils. Ordovicain units consist of feldspar-quartz sandstone, siltstone, fine-grained sandstone and phylitic siltstone, and interlayered metamorphosed muddy siltstone and fine-grained sandstone with brachiopods, corals, and trilobites. Total thickness ranges up to 4,370 m. Basin unconformably overlies the Argunsky metamorphic terrane. -
PERMAFROST DYNAMICS in 20™ and 21 St CENTURIES ALONG the EAST-SIBERIAN and ALASKAN TRANSECTS a THESIS Presented to the Faculty
Permafrost Dynamics In 20Th And 21St Centuries Along The East-Siberian And Alaskan Transects Item Type Thesis Authors Sazonova, Tatiana Sergeevna Download date 26/09/2021 06:03:10 Link to Item http://hdl.handle.net/11122/8665 PERMAFROST DYNAMICS IN 20™ AND 21 st CENTURIES ALONG THE EAST-SIBERIAN AND ALASKAN TRANSECTS A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Tatiana Sergeevna Sazonova Fairbanks, Alaska May 2003 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3092294 Copyright 2003 by Sazonova, Tatiana Sergeevna All rights reserved. ® UMI UMI Microform 3092294 Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PERMAFROST DYNAMICS IN 20™ AND 21 st CENTURIES ALONG THE EAST-SIBERIAN AND ALASKAN TRANSECTS By Tatiana Sergeevna Sazonova RECOMMENDED: O f a ' b r n 'US % ~ OmnJ VmJmL 3 APr il m 3 *Z i . - . Advisory Copialptee Chajrg/ -A*” y" / -y , y / Z/■ .Zyk. Z K--^‘' Chair, Department oT Geology and Geophysics APPROVED: v :,) C c h o d a Dean, College of Science, Engineering and Mathematics Dean of tlje/Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Abstract High latitude ecosystems where the mean annual ground surface temperature is around or below 0°C are highly sensitive to global warming. -
Loanwords in Sakha (Yakut), a Turkic Language of Siberia Brigitte Pakendorf, Innokentij Novgorodov
Loanwords in Sakha (Yakut), a Turkic language of Siberia Brigitte Pakendorf, Innokentij Novgorodov To cite this version: Brigitte Pakendorf, Innokentij Novgorodov. Loanwords in Sakha (Yakut), a Turkic language of Siberia. In Martin Haspelmath, Uri Tadmor. Loanwords in the World’s Languages: a Comparative Handbook, de Gruyter Mouton, pp.496-524, 2009. hal-02012602 HAL Id: hal-02012602 https://hal.univ-lyon2.fr/hal-02012602 Submitted on 23 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chapter 19 Loanwords in Sakha (Yakut), a Turkic language of Siberia* Brigitte Pakendorf and Innokentij N. Novgorodov 1. The language and its speakers Sakha (often referred to as Yakut) is a Turkic language spoken in northeastern Siberia. It is classified as a Northeastern Turkic language together with South Sibe- rian Turkic languages such as Tuvan, Altay, and Khakas. This classification, however, is based primarily on geography, rather than shared linguistic innovations (Schönig 1997: 123; Johanson 1998: 82f); thus, !"erbak (1994: 37–42) does not include Sakha amongst the South Siberian Turkic languages, but considers it a separate branch of Turkic. The closest relative of Sakha is Dolgan, spoken to the northwest of the Republic of Sakha (Yakutia). -
The Contribution of Shore Thermoabrasion to the Laptev Sea Sediment Balance
THE CONTRIBUTION OF SHORE THERMOABRASION TO THE LAPTEV SEA SEDIMENT BALANCE F.E. Are Petersburg State University of Means of Communications, Moskovsky av. 9, St.-Petersburg, 190031, Russia e-mail: [email protected] Abstract A schematic map of Laptev Sea shore dynamics is compiled for the first time, using available published data. It shows the distribution of thermoabrasion shores, mean long-term shore retreat rates, and areas of seabed ero- sion and accretion. The amount of sediment released to the sea from the 85 km Anabar-Olenyok section of the coast is calculated, as an example, at 3.4 Mt/year. These results are compared with published data on sediment transport of rivers running into the Laptev Sea. Estimates of the Lena River discharge range from 12 to 21 Mt/year, of which only 2.1 to 3.5 Mt may reach the sea. The analysis shows that the input of thermoabrasion at mean shoreline retreat rates of 0.7 to 0.9 m/year is at least of the same order as the river input and may great- ly exceed it. Introduction ble to determine the input from shore thermoabrasion offshore more accurately. Thousands of kilometres of Arctic sea coast retreat at rates 2-6 m/year under the action of thermoabrasion1 Maps of shore dynamics are needed to solve this (Are, 1985; Barnes et al., 1991). Tens of square kilome- problem and others related to climate change impacts. tres of Arctic land therefore are consumed by the sea Such maps have been compiled for about 650 km of every year.