Ground-Ice Stable Isotopes and Cryostratigraphy Reflect Late
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mg2sio4) in a H2O-H2 Gas DANIEL TABERSKY1, NORMAN LUECHINGER2, SAMUEL S
Goldschmidt2013 Conference Abstracts 2297 Compacted Nanoparticles for Evaporation behavior of forsterite Quantification in LA-ICPMS (Mg2SiO4) in a H2O-H2 gas DANIEL TABERSKY1, NORMAN LUECHINGER2, SAMUEL S. TACHIBANA1* AND A. TAKIGAWA2 2 2 1 , HALIM , MICHAEL ROSSIER AND DETLEF GÜNTHER * 1 Department of Natural History Sciences, Hokkaido 1ETH Zurich, Department of Chemistry and Applied University, N10 W8, Sapporo 060-0810, Japan. Biosciences, Laboratory of Inorganic Chemistry (*correspondence: [email protected]) (*correspondence: [email protected]) 2Carnegie Institution of Washington, Department of Terrestrial 2Nanograde, Staefa, Switzerland Magnetism, 5241 Broad Branch Road NW, Washington DC, 20015 USA. Gray et al. did first studies of LA-ICPMS in 1985 [1]. Ever since, extensive research has been performed to Forsterite (Mg2SiO4) is one of the most abundant overcome the problem of so-called “non-stoichiometric crystalline silicates in extraterrestrial materials and in sampling” and/or analysis, the origins of which are commonly circumstellar environments, and its evaporation behavior has referred to as elemental fractionation (EF). EF mainly consists been intensively studied in vacuum and in the presence of of laser-, transport- and ICP-induced effects, and often results low-pressure hydrogen gas [e.g., 1-4]. It has been known that in inaccurate analyses as pointed out in, e.g. references [2,3]. the evaporation rate of forsterite is controlled by a A major problem that has to be addressed is the lack of thermodynamic driving force (i.e., equilibrium vapor reference materials. Though the glass series of NIST SRM 61x pressure), and the evaporation rate increases linearly with 1/2 have been the most commonly reference material used in LA- pH2 in the presence of hydrogen gas due to the increase of ICPMS, heterogeneities have been reported for some sample the equilibrium vapor pressure. -
Abstract Book.Pdf
Executive Committee Motoyuki Suzuki, International EMECS Center, Japan Toshizo Ido, International EMECS Center, Governor of Hyogo Prefecture, Japan Leonid Zhindarev, Working Group “Sea Coasts” RAS, Russia Valery Mikheev, Russian State Hydrometeorological University, Russia Masataka Watanabe, International EMECS Center, Japan Robert Nigmatullin, P.P. Shirshov Institute of Oceanology RAS, Russia Oleg Petrov, A.P. Karpinsky Russian Geological Research Institute, Russia Scientific Programme Committee Ruben Kosyan, Southern Branch of the P.P. Shirshov Institute of Oceanology RAS, Russia – Chair Masataka Watanabe, Chuo University, International EMECS Center, Japan – Co-Chair Petr Brovko, Far Eastern Federal University, Russia Zhongyuan Chen, East China Normal University, China Jean-Paul Ducrotoy, Institute of Estuarine and Coastal Studies, University of Hull, France George Gogoberidze, Russian State Hydrometeorological University, Russia Sergey Dobrolyubov, Academic Council of the Russian Geographical Society, M.V. Lomonosov Moscow State University, Russia Evgeny Ignatov, M.V. Lomonosov Moscow State University, Russia Nikolay Kasimov, Russian Geographical Society, Technological platform “Technologies for Sustainable Ecological Development” Igor Leontyev, P.P. Shirshov Institute of Oceanology RAS, Russia Svetlana Lukyanova, M.V. Lomonosov Moscow State University, Russia Menasveta Piamsak, Royal Institute, Thailand Erdal Ozhan, MEDCOAST Foundation, Turkey Daria Ryabchuk, A.P. Karpinsky Russian Geological Research Institute, Russia Mikhail Spiridonov, -
Migration: on the Move in Alaska
National Park Service U.S. Department of the Interior Alaska Park Science Alaska Region Migration: On the Move in Alaska Volume 17, Issue 1 Alaska Park Science Volume 17, Issue 1 June 2018 Editorial Board: Leigh Welling Jim Lawler Jason J. Taylor Jennifer Pederson Weinberger Guest Editor: Laura Phillips Managing Editor: Nina Chambers Contributing Editor: Stacia Backensto Design: Nina Chambers Contact Alaska Park Science at: [email protected] Alaska Park Science is the semi-annual science journal of the National Park Service Alaska Region. Each issue highlights research and scholarship important to the stewardship of Alaska’s parks. Publication in Alaska Park Science does not signify that the contents reflect the views or policies of the National Park Service, nor does mention of trade names or commercial products constitute National Park Service endorsement or recommendation. Alaska Park Science is found online at: www.nps.gov/subjects/alaskaparkscience/index.htm Table of Contents Migration: On the Move in Alaska ...............1 Future Challenges for Salmon and the Statewide Movements of Non-territorial Freshwater Ecosystems of Southeast Alaska Golden Eagles in Alaska During the A Survey of Human Migration in Alaska's .......................................................................41 Breeding Season: Information for National Parks through Time .......................5 Developing Effective Conservation Plans ..65 History, Purpose, and Status of Caribou Duck-billed Dinosaurs (Hadrosauridae), Movements in Northwest -
Signs of Biological Activities of 28,000-Year-Old Mammoth Nuclei in Mouse Oocytes Visualized by Live-Cell Imaging
www.nature.com/scientificreports OPEN Signs of biological activities of 28,000-year-old mammoth nuclei in mouse oocytes visualized by Received: 12 October 2018 Accepted: 19 February 2019 live-cell imaging Published: xx xx xxxx Kazuo Yamagata1, Kouhei Nagai1, Hiroshi Miyamoto1, Masayuki Anzai2, Hiromi Kato2, Kei Miyamoto1, Satoshi Kurosaka2, Rika Azuma1, Igor I. Kolodeznikov3, Albert V. Protopopov3, Valerii V. Plotnikov3, Hisato Kobayashi 4, Ryouka Kawahara-Miki 4, Tomohiro Kono4,5, Masao Uchida6, Yasuyuki Shibata6, Tetsuya Handa7, Hiroshi Kimura7, Yoshihiko Hosoi1, Tasuku Mitani1, Kazuya Matsumoto1 & Akira Iritani2 The 28,000-year-old remains of a woolly mammoth, named ‘Yuka’, were found in Siberian permafrost. Here we recovered the less-damaged nucleus-like structures from the remains and visualised their dynamics in living mouse oocytes after nuclear transfer. Proteomic analyses demonstrated the presence of nuclear components in the remains. Nucleus-like structures found in the tissue homogenate were histone- and lamin-positive by immunostaining. In the reconstructed oocytes, the mammoth nuclei showed the spindle assembly, histone incorporation and partial nuclear formation; however, the full activation of nuclei for cleavage was not confrmed. DNA damage levels, which varied among the nuclei, were comparable to those of frozen-thawed mouse sperm and were reduced in some reconstructed oocytes. Our work provides a platform to evaluate the biological activities of nuclei in extinct animal species. Ancient species carry invaluable information about the genetic basis of adaptive evolution and factors related to extinction. Fundamental studies on woolly mammoth (Mammuthus primigenius) genes, including whole genome analyses1–3, led to the reconstitution of mammoth haemoglobin with cold tolerance4 and to an understanding of the expression of mammoth-specifc coat colour5 and temperature-sensitive channels6. -
ISIRA National Reporting 2014__Germany.Xlsx
Germany 2014 Project title Contact Institution - leadInstitution - otheCountry - Lead Country - other Project leader Other participanProject Period Investigated areDescription/abstract CarboPerm E.-M. Pfeiffer & H.- Universität AARI, AWI, GFZ, Germany , Russia Pfeiffer, Hubberten, Schirrmeister, 2013-2016 Dmitry Laptev CarboPerm, is a joint German-Russian research project funded by the German Federal Ministry of (Kohlenstoff im W. Hubberten , I. Hamburg, AWI Universities Köln, Fedorova Kutzbach, Strait, the Lena Education and Research. It comprises multi-disciplinary investigations on the formation, turnover and Permafrost: Bildung, Fedorova, M. Potsdam, AARI St. Potsdam, Hamburg Rethemeyer, River Delta, Tiksi, release of OC in Siberian permafrost. It aims to gain increased understanding of how permafrost- Umwandlung und Grigoriev, & D. Petersburg WagnerBeer, and the Kolyma affected landscapes will respond to global warming and how this response will influence the local, Freisetzung) Bolshianov Elissev, Evgrafova, lowlands close to regional and global trace gas balance. Glagolev, Kunisty Cherski Permafrost scientists from Russia and Germany will work together at different key sites in the Siberian Arctic. The coordination will be at the Universität Hamburg (scientific), the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research in Potsdam (logistic) and the Arctic and Antarctic Research Institute in St. Petersburg. European White- Dr. Helmut Institute for St. Petersburg State Germany Russia (permanent), Dr. Helmut Prof. Dr. Alexander starting in 1989- Barents Sea with White-fronted goose research was started inn 1989 with Taimyr expeditions, then was relauched in fronted Goose Kruckenberg Waterbird and university, Dept. Soil The Netherlands (in Kruckenberg Kondratyev, Dr. 1994, 2006-2008 special focus to 2006 with Kolguev expeditions. During the last 100 years only 10 faunistic expeditions went to Kolguev Research helmut.kruckenberg Wetlands Research & Biology + Acad. -
Architectonics of the Hairs of the Woolly Mammoth and Woolly Rhino O.F
Proceedings of the Zoological Institute RAS Vol. 319, No. 3, 2015, рр. 441–460 УДК 591.478 ARCHITECTONICS OF THE HAIRS OF THE WOOLLY MAMMOTH AND WOOLLY RHINO O.F. Chernova1*, I.V. Kirillova2, G.G. Boeskorov3, F.K. Shidlovskiy2 and M.R. Kabilov4 1A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskiy Pr. 33, 119071 Moscow, Russia; e-mail: [email protected] 2“National Alliance of Shidlovskiy”. “Ice Age”, Ice Age Museum, 129223 Moscow, Russia; e-mail: [email protected] 3The Diamond and Precious Metal Geology Institute of the Siberian Branch of the Russian Academy of Sciences, Lenina Pr. 39, 677890 Yakutsk, Russia; e-mail: [email protected] 4Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Academika Lavrent’eva Pr. 8, 630090 Novosibirsk, Russia ABSTRACT SEM studies of hairs of two individuals of the woolly rhinoceros (rhino) Coelodonta antiquitatis and six individuals of the woolly mammoth Mammuthus primigenius, and hairs of matted wool (“wads”) of a possible woolly mammoth and/or woolly rhinoceros (X-probe) showed that coloration and differentiation of the hair, hair shaft shape, cuticle ornament and cortical structure are similar in both species and in the X-probe. The cortex has numerous longitu- dinal slits, which some authors misinterpret as medullae. In both species, the medulla is degenerative and does not affect the insulation properties of the hairs. Nevertheless its architectonics, occasionally discernible in thick hairs, is a major diagnostic for identification of these species. The hair structure of rhino is similar to that of the vibrissae of some predatory small mammals and suggests increased resilience. -
Source Apportionment of Methane Escaping the Subsea Permafrost System in the Outer Eurasian Arctic Shelf
Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf Julia Steinbacha,b,c,1, Henry Holmstranda,c, Kseniia Shcherbakovad, Denis Kosmachd, Volker Brüchertb,c, Natalia Shakhovae,f,g, Anatoly Salyukd, Célia J. Saparth,i, Denis Chernykhd, Riko Noormetsj, Igor Semiletovd,e,f, and Örjan Gustafssona,c,1 aDepartment of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden; bDepartment of Geological Sciences, Stockholm University, 106 91 Stockholm, Sweden; cBolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden; dV.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia; eInstitute of Ecology, Higher School of Economics, Moscow, 101000, Russia; fInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775; gScientific Centre Moscow State University-Geophysics, Moscow, 119991, Russia; hLaboratoire de Glaciologie, Université Libre de Bruxelles, 1050 Brussels, Belgium; iInstitute for Marine and Atmospheric Research, Utrecht University, 3584 CC Utrecht, The Netherlands; and jDepartment of Arctic Geology, University Centre Svalbard, Longyearbyen, N-9171, Norway Edited by Mark Thiemens, University of California San Diego, La Jolla, CA, and approved January 19, 2021 (received for review September 19, 2020) The East Siberian Arctic Shelf holds large amounts of inundated from underlying reservoirs, allowing further methane release to carbon and methane (CH4). Holocene warming by overlying sea- the overlying water column (3, 9). water, recently fortified by anthropogenic warming, has caused Near-annual ship-based expeditions to the ESAS over the past thawing of the underlying subsea permafrost. Despite extensive two decades have documented widespread seep locations with observations of elevated seawater CH4 in the past decades, rela- extensive methane releases to the water column (3, 10). -
Author Index
Cambridge University Press 978-1-107-18353-7 — Sovereignty and Territorial Temptation Christopher Rossi Index More Information 335 Author Index Aalto, Pami, 176 Bardonnet, Daniel, 104 , 115 Abate, Randall, 7 Bartelson, Jens, 16 , 17 Abbott, Kenneth, 170 , 184 Barton, Jonathan, 262 Abdy, John, 110 Bartos, Tomáš, 104 , 112 – 13 Abénon, Lucien, 207 Baslar, Kemal, 33 Abi- Saab, Georges, 170 Bauer, Jack, 219 , 222 Ackrén, Maria, 162 Baur, Ivo, 279 Agnarsdóttir, Anna, 40 Baxter Richard, 247 Aguirre III, Robert, 220 , 222 Beaulac, Stéphane, 24 Alberts, Colins, 247 Beck, Robert, 25 Albrethsen, S. E., 145 Becker, Michael, 5 Alexandrowicz, Charles, 42 – 43 Bederman, David, 192 , 207 Allen, John, 52 , 53 Bellonci, Maria, 125 Allen, Steve, 105 – 08 , 250 Bevans, Charles, 153 , 217 , 219 – 22 Allot, Philip, 189 , 190 Beyerlin, Ulrich, 237 , 244 , 245 Anderson, Charles, 218 Bicheno, Hugh, 40 Anderson, David, 137 , 139 – 42 Biersteker, Thomas, 16 Andrews, Kenneth, 209 Bilder, Richard, 185 Anghie, Antony, 9 , 21 Binder, Claudia, 279 Anna, Timothy, 248 Blakkisrud, Helge, 176 Araya, Alberto, 261 Bleichert, Maura, 230 Archer, Christon, 249 Blom, Hans, 44 , 47 , 57 Arlov, Thor B., 145 – 47 , 149 , 152 , 154 , 163 – 65 Bloom, Evan, 181 Armitage, David, 2 , 21 , 32 , 33 , 42 , 44 , Blunden, Margaret, 77 , 88 , 92 , 93 , 120 63 – 64 , 226 Blutman, Lászlo, 170 , 185 Arsanjani, Mahnoush, 243 Bockstoce, John, 150 Åtland, Kristian, 141 Bodin, Jean, 17 – 19 , 38 , 194 Aust, Anthony, 185 Bollier, David, 16 , 34 , 279 , 280 , 281 Axworthy, Thomas, 174 , 177 , 179 -
Germany's 2016 Review Report to the Arctic
Stand: 24 May 2016 | Observer Report, Germany Cover sheet Full name of state or organization: Federal Republic of Germany Date of submission: Observer’s website, if appropriate: http://www.auswaertiges -amt.de/EN/Aussenpolitik/InternatRecht/Einzelfragen/Arktis/Arktis -Grundlagentext.html Information for appropriate contact person Full name: Michael Däumer Email: E21 [email protected] Telephone: +49 -30 -1817 -2520 Organization or department: Federal Foreign Office, Northern European Division Job Title: Officer for Baltic Sea Cooperation and Arctic Policy Full mailing address: Baltic Sea Cooperation and Arctic Policy Federal Foreign Office – Division E21 Werderscher Markt 1 D-10117 Berlin, Germany Tel.: +49-30-1817-2520 Fax: +49 -30 -1817 -52520 Is your state or organization still interested in continuing as an Observer of the Arctic Council? Yes No This document has 5 pages. This is page 1. Stand: 24 May 2016 | Observer Report, Germany Observer Report Please describe in no more than 2 pages your state or organization’s contributions to the work of the Arctic Council’s Working Groups, Task Forces and/or Expert Groups since the time of your most recent report, or in the previous two years. Please highlight contributions to specific projects, such as through proposals, concept development, in-kind and financial support, and hosting of meetings. If applicable, please include mention of collaboration with Permanent Participants, such as project proposal endorsement and support. Germany as an observer to the Arctic Council (AC) since 1996 has contributed continuously and substantially to the work of the Council and its subsidiary bodies for the past 20 years. A partner in and for the Arctic region and its local communities and indigenous peoples, Germany has openly shared its expertise in research, science and technology innovation as a contribution towards implementing the objectives of the AC. -
Coastal Cryogenic Processes and Carbonate Balance of the Coastal Waters of Eastern Arctic Seas in the Light of a Changing Climate
Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Coastal cryogenic processes and carbonate balance of the coastal waters of eastern Arctic seas in the light of a changing climate S.O. Razumov Melnikov Permafrost Institute, Russian Academy of Sciences, Yakutsk, Russia ABSTRACT: An observed increase in alkalinity of the East Siberian Sea during the last quarter of the XX cen- tury is the result of CO2 absorption from the atmosphere, a more intense transport of organic substances into the water due to more active erosion of ice-rich coasts related to climate warming. Destructive coastal cryogenic Ϫ4 processes disturb the carbonate balance causing sharp rises in a partial pressure of CO2 up to 8 и10 in inshore waters and violations of the regular relative proportions of the alkali reserve and chlorine content. However, dur- ing summer seasons, a dominating partial pressure of CO2 is much lower in waters than in the atmosphere and varies from 0.83 и10Ϫ4 to 1.89 и10Ϫ4 depending on physical and chemical conditions. The current climate changes have not yet affected a potential ability of the sea to absorb CO2 from the atmosphere. On the other hand, a more active erosion of the ice-rich coasts due to climate warming reduces the ability of the sea to absorb CO2, espe- cially in coastal, cryogenically active sections of the water area. 1 INTRODUCTION ice conditions, the occurrence and duration of storms. To study the effect these climatic characteristics have It is supposed that the concentration of CO2 in the on the dynamics of ice-rich coasts, observations were atmosphere depends on the ability of the ocean to made at the following key sites of the Laptev Sea and absorb a surplus of the gas accumulating on behalf of East Siberian Sea coast: Anabar-Olenek shore, climate warming. -
Chronology of the Key Historical Events on the Eastern Seas of the Russian Arctic (The Laptev Sea, the East Siberian Sea, the Chukchi Sea)
Chronology of the Key Historical Events on the Eastern Seas of the Russian Arctic (the Laptev Sea, the East Siberian Sea, the Chukchi Sea) Seventeenth century 1629 At the Yenisei Voivodes’ House “The Inventory of the Lena, the Great River” was compiled and it reads that “the Lena River flows into the sea with its mouth.” 1633 The armed forces of Yenisei Cossacks, headed by Postnik, Ivanov, Gubar, and M. Stadukhin, arrived at the lower reaches of the Lena River. The Tobolsk Cossack, Ivan Rebrov, was the first to reach the mouth of Lena, departing from Yakutsk. He discovered the Olenekskiy Zaliv. 1638 The first Russian march toward the Pacific Ocean from the upper reaches of the Aldan River with the departure from the Butalskiy stockade fort was headed by Ivan Yuriev Moskvitin, a Cossack from Tomsk. Ivan Rebrov discovered the Yana Bay. He Departed from the Yana River, reached the Indigirka River by sea, and built two stockade forts there. 1641 The Cossack foreman, Mikhail Stadukhin, was sent to the Kolyma River. 1642 The Krasnoyarsk Cossack, Ivan Erastov, went down the Indigirka River up to its mouth and by sea reached the mouth of the Alazeya River, being the first one at this river and the first one to deliver the information about the Chukchi. 1643 Cossacks F. Chukichev, T. Alekseev, I. Erastov, and others accomplished the sea crossing from the mouth of the Alazeya River to the Lena. M. Stadukhin and D. Yarila (Zyryan) arrived at the Kolyma River and founded the Nizhnekolymskiy stockade fort on its bank. -
Ice Age Megafauna and Time Notes Contents
Ice Age megafauna and time notes Contents 1 Ice age 1 1.1 Origin of ice age theory ........................................ 1 1.2 Evidence for ice ages ......................................... 2 1.3 Major ice ages ............................................ 3 1.4 Glacials and interglacials ....................................... 4 1.5 Positive and negative feedback in glacial periods ........................... 5 1.5.1 Positive feedback processes ................................. 5 1.5.2 Negative feedback processes ................................. 5 1.6 Causes of ice ages ........................................... 5 1.6.1 Changes in Earth’s atmosphere ................................ 6 1.6.2 Position of the continents ................................... 6 1.6.3 Fluctuations in ocean currents ................................ 7 1.6.4 Uplift of the Tibetan plateau and surrounding mountain areas above the snowline ...... 7 1.6.5 Variations in Earth’s orbit (Milankovitch cycles) ....................... 7 1.6.6 Variations in the Sun’s energy output ............................. 8 1.6.7 Volcanism .......................................... 8 1.7 Recent glacial and interglacial phases ................................. 8 1.7.1 Glacial stages in North America ............................... 8 1.7.2 Last Glacial Period in the semiarid Andes around Aconcagua and Tupungato ........ 9 1.8 Effects of glaciation .......................................... 9 1.9 See also ................................................ 10 1.10 References .............................................