Handbook of Best Practices for Geothermal Drilling

Total Page:16

File Type:pdf, Size:1020Kb

Handbook of Best Practices for Geothermal Drilling SANDIA REPORT SAND2010-6048 Unlimited Release Printed December 2010 Handbook of Best Practices for Geothermal Drilling John Finger and Doug Blankenship Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: (865) 576-8401 Facsimile: (865) 576-5728 E-Mail: [email protected] Online ordering: http://www.osti.gov/bridge Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd. Springfield, VA 22161 Telephone: (800) 553-6847 Facsimile: (703) 605-6900 E-Mail: [email protected] Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 2 SAND2010-6048 Unlimited Release Printed December 2010 Handbook of Best Practices for Geothermal Drilling John Finger and Doug Blankenship Prepared for the International Energy Agency, Geothermal Implementing Agreement, Annex VII by Sandia National Laboratories P.O. Box 5800 Albuquerque, New Mexico 87185 Abstract This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the Geothermal Implementing Agreement (GIA) web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven. 3 Acknowledgements This Handbook was funded by the US Department of Energy’s Geothermal Technologies Program and has been made possible with support and guidance from Jay Nathwani. The Handbook was prepared for the International Energy Agency, Geothermal Implementing Agreement, Annex VII. Drafts of the Handbook have been extensively reviewed, and the authors’ gratitude for extremely valuable comments is extended to Steve Pye, Lindsay Fooks (Geothermal Associates NZ Ltd), and James Coda (Department of Primary Industries and Resources SA), as well as present and previous staff members—Steve Bauer, David Raymond, Randy Normann, Steve Knudsen, Chip Mansure, Ron Jacobson, and Joe Henfling—in the Geothermal Research Department at Sandia National Laboratories. 4 Table of Contents Acknowledgements ................................................................................................................. 4 1. Introduction to Geothermal Energy ...........................................................................................9 Occurrence of Geothermal Energy ............................................................................................. 9 Heat Flow and Temperature ................................................................................................. 10 Tectonic Controls .................................................................................................................. 10 Types of Geothermal Systems .................................................................................................. 12 2. Overview of Geothermal Drilling ............................................................................................13 Background ............................................................................................................................... 13 Approach in this Handbook ...................................................................................................... 13 Nature of Geothermal Formations ............................................................................................ 14 Well Cost Drivers ..................................................................................................................... 15 Well design ............................................................................................................................ 16 Drilling Hazards ................................................................................................................... 17 Rate of penetration (ROP) .................................................................................................... 17 Bit and tool life...................................................................................................................... 17 3. Planning a Geothermal Well ....................................................................................................18 Overview ................................................................................................................................... 18 Drill Rig Selection .................................................................................................................... 20 Rig capacity .......................................................................................................................... 22 Rig footprint .......................................................................................................................... 22 Pump capacity ....................................................................................................................... 22 Fluid cleaning ....................................................................................................................... 23 Drill string and BHA ............................................................................................................. 23 High-temperature capability ................................................................................................. 23 Rig instrumentation ............................................................................................................... 23 Support .................................................................................................................................. 24 Crew and training ................................................................................................................. 24 Case Histories of Two Geothermal Wells ................................................................................ 24 Steam Well ............................................................................................................................ 24 Brine Well ............................................................................................................................. 24 4. Wellbore Design – Casing and Cement ...................................................................................26 Overview ................................................................................................................................... 26 Casing design ............................................................................................................................ 27 Cementing ................................................................................................................................. 29 Completions .......................................................................................................................... 31 5. Drilling Fluids ..........................................................................................................................33 Overview ................................................................................................................................... 33 Drilling fluid functions ............................................................................................................. 34 Drilling fluid system ................................................................................................................. 34 5 Planning the mud program ........................................................................................................ 37 6. Drilling Tools ...........................................................................................................................38
Recommended publications
  • Petroleum Extension-The University of Texas at Austin ROTARY DRILLING SERIES
    Petroleum Extension-The University of Texas at Austin ROTARY DRILLING SERIES Unit I: The Rig and Its Maintenance Lesson 1: The Rotary Rig and Its Components Lesson 2: The Bit Lesson 3: Drill String and Drill Collars Lesson 4: Rotary, Kelly, Swivel, Tongs, and Top Drive Lesson 5: The Blocks and Drilling Line Lesson 6: The Drawworks and the Compound Lesson 7: Drilling Fluids, Mud Pumps, and Conditioning Equipment Lesson 8: Diesel Engines and Electric Power Lesson 9: The Auxiliaries Lesson 10: Safety on the Rig Unit II: Normal Drilling Operations Lesson 1: Making Hole Lesson 2: Drilling Fluids Lesson 3: Drilling a Straight Hole Lesson 4: Casing and Cementing Lesson 5: Testing and Completing Unit III: Nonroutine Operations Lesson 1: Controlled Directional Drilling Lesson 2: Open-Hole Fishing Lesson 3: Blowout Prevention Unit IV: Man Management and Rig Management Unit V: Offshore Technology Lesson 1: Wind, Waves, and Weather Lesson 2: Spread Mooring Systems Lesson 3: Buoyancy, Stability, and Trim Lesson 4: Jacking Systems and Rig Moving Procedures Lesson 5: Diving and Equipment Lesson 6: Vessel Inspection and Maintenance Lesson 7: Helicopter Safety Lesson 8: Orientation for Offshore Crane Operations Lesson 9: Life Offshore Lesson 10: Marine Riser Systems and Subsea Blowout Preventers Petroleum Extension-The University of Texas at Austin Library of Congress Cataloging-in-Publication Data Vieira, João Luiz, 1958– Controlled directional drilling / by João Luiz Vieira. — 4th ed. p. cm. — (Rotary drilling series ; unit 3, lesson 1) Rev. ed. of: Controlled directional drilling. 1984 Includes index. ISBN-10 0-88698-254-5 (alk. paper) ISBN-13 978-0-88698-254-6 (alk.
    [Show full text]
  • Middle East Oil Pricing Systems in Flux Introduction
    May 2021: ISSUE 128 MIDDLE EAST OIL PRICING SYSTEMS IN FLUX INTRODUCTION ........................................................................................................................................................................ 2 THE GULF/ASIA BENCHMARKS: SETTING THE SCENE...................................................................................................... 5 Adi Imsirovic THE SHIFT IN CRUDE AND PRODUCT FLOWS ..................................................................................................................... 8 Reid l'Anson and Kevin Wright THE DUBAI BENCHMARK: EVOLUTION AND RESILIENCE ............................................................................................... 12 Dave Ernsberger MIDDLE EAST AND ASIA OIL PRICING—BENCHMARKS AND TRADING OPPORTUNITIES......................................... 15 Paul Young THE PROSPECTS OF MURBAN AS A BENCHMARK .......................................................................................................... 18 Michael Wittner IFAD: A LURCHING START IN A SANDY ROAD .................................................................................................................. 22 Jorge Montepeque THE SECOND SPLIT: BASRAH MEDIUM AND THE CHALLENGE OF IRAQI CRUDE QUALITY...................................... 29 Ahmed Mehdi CHINA’S SHANGHAI INE CRUDE FUTURES: HAPPY ACCIDENT VERSUS OVERDESIGN ............................................. 33 Tom Reed FUJAIRAH’S RISE TO PROMINENCE ..................................................................................................................................
    [Show full text]
  • Manual Borehole Drilling As a Cost-Effective Solution for Drinking
    water Review Manual Borehole Drilling as a Cost-Effective Solution for Drinking Water Access in Low-Income Contexts Pedro Martínez-Santos 1,* , Miguel Martín-Loeches 2, Silvia Díaz-Alcaide 1 and Kerstin Danert 3 1 Departamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; [email protected] 2 Departamento de Geología, Geografía y Medio Ambiente, Facultad de Ciencias Ambientales, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, 28801 Madrid, Spain; [email protected] 3 Ask for Water GmbH, Zürcherstr 204F, 9014 St Gallen, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +34-659-969-338 Received: 7 June 2020; Accepted: 7 July 2020; Published: 13 July 2020 Abstract: Water access remains a challenge in rural areas of low-income countries. Manual drilling technologies have the potential to enhance water access by providing a low cost drinking water alternative for communities in low and middle income countries. This paper provides an overview of the main successes and challenges experienced by manual boreholes in the last two decades. A review of the existing methods is provided, discussing their advantages and disadvantages and comparing their potential against alternatives such as excavated wells and mechanized boreholes. Manual boreholes are found to be a competitive solution in relatively soft rocks, such as unconsolidated sediments and weathered materials, as well as and in hydrogeological settings characterized by moderately shallow water tables. Ensuring professional workmanship, the development of regulatory frameworks, protection against groundwater pollution and standards for quality assurance rank among the main challenges for the future.
    [Show full text]
  • Drilling and Completion Services Cost Index Q2 2015
    Drilling and Completion Services Cost Index Q2 2015 Prepared by Spears and Associates, Inc. 8908 S. Yale, Suite 440 Tulsa, OK 74137 www.spearsresearch.com July 2015 Drilling and Completion Services Cost Index: Q2 2015 Introduction The Drilling and Completion Services (DCS) Cost Index tracks and forecasts price changes for products and services used in drilling and completing new wells in the US. The DCS Cost Index is a tool for oil and gas companies, oilfield equipment and service firms, and financial institutions interested in benchmarking and forecasting well costs. Methodology Spears and Associates undertakes a quarterly survey of independent well engineering and wellsite supervision firms to collect “spot market” drilling and completion services price information for a specific set of commonly drilled wells in the US. The information in the “well profile” survey is collected in the form of detailed drilling and completion services cost estimates based on current unit prices and usage rates in each location at the end of the quarter. The well profiles are equally-weighted in calculating an average price change per quarter for the drilling and completion services cost components. A “total well cost” price change is calculated for each well profile covered by the survey which reflects the weighted average price change for each component of the well’s cost. An overall “total well cost” price change is calculated, with each well profile equally weighted, to determine the “composite well cost” index shown in this report. All cost items are indexed to 100 as of Q1 2008. “Spot” prices tracked by the DCS Cost Index are those in effect at the end of each quarter and as such may differ from prices averaged across the entire quarter.
    [Show full text]
  • Best Research Support and Anti-Plagiarism Services and Training
    CleanScript Group – best research support and anti-plagiarism services and training List of oil field acronyms The oil and gas industry uses many jargons, acronyms and abbreviations. Obviously, this list is not anywhere near exhaustive or definitive, but this should be the most comprehensive list anywhere. Mostly coming from user contributions, it is contextual and is meant for indicative purposes only. It should not be relied upon for anything but general information. # 2D - Two dimensional (geophysics) 2P - Proved and Probable Reserves 3C - Three components seismic acquisition (x,y and z) 3D - Three dimensional (geophysics) 3DATW - 3 Dimension All The Way 3P - Proved, Probable and Possible Reserves 4D - Multiple Three dimensional's overlapping each other (geophysics) 7P - Prior Preparation and Precaution Prevents Piss Poor Performance, also Prior Proper Planning Prevents Piss Poor Performance A A&D - Acquisition & Divestment AADE - American Association of Drilling Engineers [1] AAPG - American Association of Petroleum Geologists[2] AAODC - American Association of Oilwell Drilling Contractors (obsolete; superseded by IADC) AAR - After Action Review (What went right/wrong, dif next time) AAV - Annulus Access Valve ABAN - Abandonment, (also as AB) ABCM - Activity Based Costing Model AbEx - Abandonment Expense ACHE - Air Cooled Heat Exchanger ACOU - Acoustic ACQ - Annual Contract Quantity (in reference to gas sales) ACQU - Acquisition Log ACV - Approved/Authorized Contract Value AD - Assistant Driller ADE - Asphaltene
    [Show full text]
  • Torque and Drag Applications for Deviated and Horizontal Wells: a Case Study
    TORQUE AND DRAG APPLICATIONS FOR DEVIATED AND HORIZONTAL WELLS: A CASE STUDY A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY BURAK KAĞAN ÇAĞLAYAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN PETROLEUM AND NATURAL GAS ENGINEERING DECEMBER 2014 Approval of the thesis: TORQUE AND DRAG APPLICATIONS FOR DEVIATED AND HORIZONTAL WELLS: A CASE STUDY submitted by BURAK KAĞAN ÇAĞLAYAN in partial fulfillment of the requirements for the degree of Master of Science in Petroleum and Natural Gas Engineering Department, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver ___________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Mahmut Parlaktuna ___________ Head of Department, Petroleum and Natural Gas Engineering Prof. Dr. Mustafa Verşan Kök ___________ Supervisor, Petroleum and Natural Gas Engineering Dept., METU Assist. Prof. Dr. Tuna Eren ___________ Co-Supervisor, Petroleum and Natural Gas Engineering Dept., BATÜ Examining Committee Members: Prof. Dr. Mahmut Parlaktuna _________________ Petroleum and Natural Gas Engineering Dept., METU Prof. Dr. Mustafa Verşan Kök _________________ Petroleum and Natural Gas Engineering Dept., METU Assist. Prof. Dr. Tuna Eren _________________ Petroleum and Natural Gas Engineering Dept., BATÜ Assist. Prof. Dr. Çağlar Sınayuç _________________ Petroleum and Natural Gas Engineering Dept., METU Dr. Reha Özel _________________ TPAO, Research Center Date: 01/12/2014 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.
    [Show full text]
  • Godišnje Izvješc´ E Annual Report Godišnj Zvješc´ E
    GodišnjeGodišnj izvješczvješc´e Rudarsko-geološko-naftnogudarsko-geološ nog fakulteta SveučilištSveučilišta u Zagrebuebu Za akademskuakadem godinu 2013./2014.2013./ Annual Report Faculty of Mining,ng, GeologGeologyy andand Petroleun Engineering UUniversityniversity of ZZagreb ForFor thethe academicacadem year 2013/20142013/20 Zagreb,Zagreb, 2012014. Nakladnik Rudarsko-geološko-na ni fakultet Sveučilišta u Zagrebu Za nakladnika Zoran Nakić Zoran Nakić Sibila Borojević Šoštarić Katarina Simon Mario Dobrilović Bojan Moslavac Urednici Daria Karasalihović Sedlar Ema Jurkin Iva Kolenković Jelena Parlov Vinko Škrlec Tehnički urednik Chris an T. Belinc Jezični savje i lektura hrvatskog jezika Alisa Kichl Dubravka Pleše Jezični savje i lektura engleskog jezika Željka Kurelec Oblikovanje omota Chris an T. Belinc Tisak DENONA d.o.o., Zagreb Naklada 500 ZAGREB, 2014. ISBN 978-953-6923-00-0 Uvodna rijecˇ dekana Foreword by the dean Poštovani čitatelji, Dear Readers, protekla akademska godina 2013./2014. bila je po mnogim po- the past academic year 2013/2014 was an extremely dynamic kazateljima izrazito dinamična i turbulentna godina na Rudarsko- and turbulent one at the Faculty of Mining, Geology and Petro- geološko-na nom fakultetu Sveučilišta u Zagrebu (RGNF-u). leum Engineering, University of Zagreb (RGNF). Bila je to godina u kojoj smo na RGNF-u pokrenuli mnoge nove It was a year in which we have launched many new ac vi es, ak vnos , usmjerene, prije svega, poboljšanju i unaprjeđenju aimed, above all, to enhance and improve the Faculty’s core ac- svojih temeljnih djelatnos , ali i godina u kojoj smo na RGNF- vity, but also a year in which we have faced numerous challeng- u bili suočeni i s brojnim izazovima u fi nanciranju, prije svega es in the budge ng and funding of the scien fi c research work, znanstveno-istraživačkoga rada, kao i u zapošljavanju djelatnika as well as in the recruitment of staff for the scien fi c-educa on- na znanstveno-nastavna, nastavna, stručna i administra vna al, technical and administra ve jobs.
    [Show full text]
  • Coal Mine Methane Recovery: a Primer
    Coal Mine Methane Recovery: A Primer U.S. Environmental Protection Agency July 2019 EPA-430-R-09-013 ACKNOWLEDGEMENTS This report was originally prepared under Task Orders No. 13 and 18 of U.S. Environmental Protection Agency (USEPA) Contract EP-W-05-067 by Advanced Resources, Arlington, USA and updated under Contract EP-BPA-18-0010. This report is a technical document meant for information dissemination and is a compilation and update of five reports previously written for the USEPA. DISCLAIMER This report was prepared for the U.S. Environmental Protection Agency (USEPA). USEPA does not: (a) make any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe upon privately owned rights; (b) assume any liability with respect to the use of, or damages resulting from the use of, any information, apparatus, method, or process disclosed in this report; or (c) imply endorsement of any technology supplier, product, or process mentioned in this report. ABSTRACT This Coal Mine Methane (CMM) Recovery Primer is an update of the 2009 CMM Primer, which reviewed the major methods of CMM recovery from gassy mines. [USEPA 1999b, 2000, 2001a,b,c] The intended audiences for this Primer are potential investors in CMM projects and project developers seeking an overview of the basic technical details of CMM drainage methods and projects. The report reviews the main pre-mining and post-mining CMM drainage methods with associated costs, water disposal options and in-mine and surface gas collection systems.
    [Show full text]
  • A Pdf Document
    Kansas Geological Survey Public Information Circular 34 April 2013 Guidelines for Voluntary Baseline Groundwater Quality Sampling in the Vicinity of Hydraulic Fracturing Operations Dustin Fross and Shane Lyle, Kansas Geological Survey Introduction Baseline water-quality sampling is prescribed in areas Advances in horizontal drilling and hydraulic of oil and gas production in addition to, not in place fracturing techniques have increased oil and gas of, recommended regular water-quality testing of exploration and production in Kansas. The new private domestic drinking water wells. methods require larger volumes of water and, This public information circular includes consequently, increase the amount of oil and gas information about hydraulic fracturing techniques wastewater to be disposed of in comparison with and fluids, depth to water in Kansas aquifers, conventional methods. The volume of fluid and water-quality standards, accredited water-sampling chemical additives associated with hydraulically laboratories, and testing guidelines that can be fractured horizontal wells has heightened concerns used to make decisions about water sampling and about the potential impact on groundwater quality. analysis. This document is not an interpretation This circular provides information and outlines of law or a general policy statement by the procedures for landowners interested in assessing Kansas Corporation Commission (KCC), Kansas groundwater quality in the vicinity of hydraulically Department of Health and Environment (KDHE), fractured wells through sample collection and or Kansas Geological Survey (KGS). Terms in bold analysis. face type are defined in the glossary at the end of the Baseline water-quality sampling, before and circular. after drilling, is not mandated by state or federal law.
    [Show full text]
  • Trends in U.S. Oil and Natural Gas Upstream Costs
    Trends in U.S. Oil and Natural Gas Upstream Costs March 2016 Independent Statistics & Analysis U.S. Department of Energy www.eia.gov Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. U.S. Energy Information Administration | Trends in U.S. Oil and Natural Gas Upstream Costs i March 2016 Contents Summary .................................................................................................................................................. 1 Onshore costs .......................................................................................................................................... 2 Offshore costs .......................................................................................................................................... 5 Approach .................................................................................................................................................. 6 Appendix ‐ IHS Oil and Gas Upstream Cost Study (Commission by EIA) ................................................. 7 I. Introduction……………..………………….……………………….…………………..……………………….. IHS‐3 II. Summary of Results and Conclusions – Onshore Basins/Plays…..………………..…….…
    [Show full text]
  • Downhole Sensors in Drilling Operations
    PROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2019 SGP-TR-214 Downhole Sensors in Drilling Operations Nathan Pastorek, Katherine R. Young, and Alfred Eustes 15013 Denver West Blvd., Golden, CO 80401 [email protected] Keywords: MWD, LWD, Rate of Penetration, Drilling Data, Geothermal, Telemetry ABSTRACT Before downhole and surface equipment became mainstream, drillers had little way of knowing where they were or the conditions of the well. Eventually, breakthroughs in technology such as Measurement While Drilling (MWD) devices and the Electronic Drilling Recorder system allowed for more accurate and increased data collection. More modern initiatives that approach drilling as manufacturing— such as Lean Drilling, Drilling the Limit, and revitalized Drilling the Limit programs—have allowed petroleum drilling operations to become more efficient in the design and creation of a well, increasing rates of penetration by more than 50%. Unfortunately, temperature and cost limitations of these tools have prevented geothermal operations from using this state-of-the-art equipment in most wells. Today, petroleum drilling operations can collect surface measurements on key drilling data such as rotary torque, hook load (for surface weight on bit), rotary speed, block height (for rate of penetration), mud pressure, pit volume, and pump strokes (for flowrates). They also can collect downhole measurements of azimuth, inclination, temperature, pressure, revolutions per minute, downhole torque on bit, downhole weight on bit, downhole vibration, and bending moment using an MWD device (although not necessarily in real time). These data can be used to calculate and minimize mechanical specific energy, which is the energy input required to remove a unit volume of rock.
    [Show full text]
  • World Oil Outlook 2040
    Organization of the Petroleum Exporting Countries 2019 World Oil Outlook 2040 2019 World Oil Outlook 2040 Organization of the Petroleum Exporting Countries Digital access to the WOO: an interactive user experience 24/7 OPEC’s World Oil Outlook (WOO) is part of the Organization’s commitment to market stability. The publication is a means to highlight and further the understanding of the many possible future challenges and opportunities for the oil industry. It is also a channel to encourage dialogue, cooperation and transparency between OPEC and other stakeholders within the industry. As part of OPEC’s ongoing efforts to improve user experience of the WOO and provide data transparency, two digital interfaces are available: the OPEC WOO App and the interactive version of the WOO. The OPEC WOO App provides increased access to the publication’s vital analysis and energy-related data. It is ideal for energy professionals, oil industry stakeholders, policymakers, market analysts, academics and the media. The App’s search engine enables users to easily find information, and its bookmarking function allows them to store and review their favourite articles. Its versatility also allows users to compare graphs and tables interactively, thereby maximizing information extraction and empowering users to undertake their own analysis. The interactive version of the WOO also provides the possibility to download specific data and information, thereby enhancing user experience. Download Access the OPEC WOO App interactive version Available for Android and iOS OPEC is a permanent, intergovernmental organization, established in Baghdad, Iraq, on 10–14 September 1960. The Organization comprises 14 Members: Algeria, Angola, Republic of the Congo, Ecuador, Equatorial Guinea, Gabon, the Islamic Republic of Iran, Iraq, Kuwait, Libya, Nigeria, Saudi Arabia, the United Arab Emirates and Venezuela.
    [Show full text]