<<

Dr. Pere Romea Department of Organic Chemistry

Sky and Water I Maurits Cornelis Escher, 1938

6. Interconversion

Organic Synthesis 2014-2015 Autumn Term Carbon Backbone & Functional Groups

The synthesis of an organic compound must pay attention to ...

Carbon backbone Functional groups (Chapters 2–4 ) Functional Group Interconversion (FGI)

I. Nucleophilic Substitutions Electrophilic Additions to C=C Addition-Eliminations on Carboxylic Acids and Derivatives II. Reductions Mechanism!!! III. Oxidations

Pere Romea, 2014 2 Nucleophilic Substitutions

The nucleophilic substitutions involve the interconversion of functional groups bound to sp3 carbonis

+ Nu + X X Nu

Csp3

RX

Electrophile Nucleophile Leaving group

Chap. 15 Pere Romea, 2014 3 Nucleophilic Substitutions

Two model mechanisms, called SN1 i SN2, are used to explain the nucleophilic substitutions

+ Nu + X X Nu

Unimolecular (SN1) or bimolecular (SN2) nucleophilic substitution?

A slightly different model, called SN2’, may be useful in substitutions on allylic substrates

X + Nu Nu + X

4 Pere Romea, 2014 Nucleophilic Substitutions and FGI

There are three main sources to carry out FGI through nucleophilic substitutions: sulfonates, , and alkyl halides

Nu Sulfonates R–OSO2R’ R–Nu

Nu Alcohols R–OH R–Nu

Alkyl halides Nu R–X R–Nu X: I, Br, Cl

5 Pere Romea, 2014 Nucleophilic Substitutions and FGI

A wide array of structures can be synthesized from sulfonates and alkyl halides through nucleophilic substitution of X = OSO2R, I, Br, Cl in C–C bond forming reactions and FGI

R Y R R R OH

Y R H2O or OH R N R OR ROH CN or RO R X O N3 O R N O R R 3 O R NH H2S 3 RSH or HS or RS

R NH2 R SH

Pere Romea, 2014 R SR 6 Nucleophilic Substitutions and FGI

How easy is to interconvert sulfonates, alcohols, and alkyl halides?

Nu Sulfonates R–OSO2R’ R–Nu

Nu Alcohols R–OH R–Nu

Alkyl halides Nu R–X R–Nu X: I, Br, Cl

7 Pere Romea, 2014 Alcohols and Sulfonic

Conversion of alcohols into sulfonic esters

+ RSO2Cl or (RSO2)2O OH CH2Cl2 or Et2O OSO2R 0 °C – rt

Mesyl chloride MsCl MeSO2Cl Mesylate

Tosyl chloride TsCl p-MePhSO2Cl Tosylate

Triflic Anhidride Tf2O (CF3SO2)2O Triflate

– Primary and secondary ROH OK, but the reaction is sensitive to steric hindrance OH TsCl, pyr Me Me Me H Me

– The reaction does not affect the C–O bond: the configuration of the carbon remains the same – Mesylates and tosylates are largely employed. Triflates are the most reactive sulfonates – Rearrangements of the carbon backbone are not frequent 8 Pere Romea, 2014 Sulfonic Esters and Alkyl Halides

Conversion of sulfonate into alkyl halides

X OH X SN2 X: Cl, Br, I

OH 1) MsCl, Et3N, CH2Cl2 Cl

Pr 2) LiCl, DMF Pr 83%

Ph 1) TsCl, pyr, CH2Cl2 Ph OH Br 2) LiBr, DMF Ph Ph 89%

1) MsCl, Et3N, CH2Cl2 TBDPSO OH TBDPSO I 2) Lil, acetone 94% 9 Pere Romea, 2014 Alcohols and Alkyl Halides

Conversion of alcohols into alkyl halides

Sulfonates R–OSO2R’

R’SO2Cl

Alcohols R–OH X–

?

Alkyl halides R–X X: I, Br, Cl

10 Pere Romea, 2014 Alcohols and Alkyl Halides

Conversion of alcohols into alkyl halides

OH X X: Cl, Br, I

Reagents & Conditions Alcohols Mechanism

HCl conc Tert SN1 (racemization)

HCl/ZnCl2 (Lucas reagent) Prim & Sec SN2 (inversion) PCl3 Prim & Sec SN2 (inversion) SOCl2, 1,4-dioxane Prim & Sec SN2 + SN2 (retention) SOCl2, non nucleophilic solvent Prim & Sec SN2 (inversion)

HBr conc Tert SN1 (racemization)

HBr conc, ∆ Prim SN2 PBr3 Prim & Sec SN2 (inversion)

P/I2 Prim & Sec SN2 (inversion)

11 Pere Romea, 2014 Alcohols and Alkyl Halides

Problem! Too harsh experimental conditions: mixture of mechanisms and transpositions

H Br OH OH2 Br SN2 single

OH OH2 H

Br Br SN1 Br

86% 14% Br

Cl

H Cl OH OH2 single Pere Romea, 2014 12 Alcohols and Alkyl Halides

More selective transformations are required …

The most used options are based on the conversion of alcohols into alkoxyphosphonium salts,

highly reactive in SN2 substitutions

E Ph3P + E–Nu Ph3P Ph3P E + Nu Nu

Ph3P E + HO Ph3P O + HE H H Alkoxyphosphonium salt

Ph3P O + Nu Ph3P=O + Nu H H Alkoxyphosphonium salt 13 Pere Romea, 2014 Alcohols and Alkyl Halides

Ph3P / X2 : Ph3P / I2, Ph 3P / Br2, Ph3P / Cl2

Br – Br Ph3P + Br–Br Ph3P Ph3P Br Br + Br

– HBr – Ph3P=O Ph3P Br + HO Ph3P O Br H H Br H SN2

This transformation is very useful for secondary alcohols and those systems that easily produce transpositions, as neopentylic alcohols The control on the configuration is very good.

Br Br PBr3 Ph3P/Br2 + + Br OH Br

11% 26% 63% 90%

OMe OMe Ph3P, Br2 Ph3P, I2 OH I O O R O O R Imidazole OH Br Et2O, rt 85% 96% 14 OBn OBn Alcohols and Alkyl Halides

Since chlorine (Cl2) is a gas difficult to handle ....

HO

– CCl3 H – Ph3P=O Ph3P + Cl–CCl3 Ph3P Cl Ph3P O Cl – HCl H Cl H carbon tetrachloride

O O Cl Cl Ph3P + CCl3 CCl3 Cl Cl Cl hexachloroacetone

OH Cl Ph3P/Cl2 Ph3P/CCl4 OH Cl 92% 70%

Ph3P/CCl3COCCl3 OH Cl 99%

15 Pere Romea, 2014 Nucleophilic Substitutions and FGI

Nu Sulfonates R–OSO2R’ R–Nu

Nu Alcohols R–OH R–Nu

Alkyl halides Nu R–X R–Nu X: I, Br, Cl

16 Pere Romea, 2014 Carbon Nucleophiles

O O O

R NH2 R OH R H R Me 1 Aldehyde Methyl ketone

Red Hydrolisis Red Hydration + 2+ LiAlH4 H3O DIBALH cat Hg , H 2O

R CN R C CH

+ C + 2 C

Attention! Alkyl halides are very useful for R X R OH the construction of C–C bonds

17 Pere Romea, 2014 Nitrogen Nucleophiles: Primary

The alkylation of ammonia, NH3, is not easy ...

R X – HX NH3 R NH3 X R NH2 Primary Amine + HX

R X – HX R NH2 R2 NH2 X R2 NH Secondary Amine + HX

R X – HX R2 NH R3 NH X R3 N Tertiary Amine + HX

R X R3 N R4 N X Ammonium Salt

Such an alkylation only becomes efficient when the resulting amine is much less nucleophile than the initial one, for steric or electronic reasons

CO2Et CO2Et CO2Et 1) Br CO Et 1) RCH2Cl 2 NH N 2) NaHCO 2) NaHCO H2N 3 R N 3 H R: C15H31 18 Pere Romea, 2014 Nitrogen Nucleophiles: Primary Amines

Potassium phthalimide, PhthNK

O O Br Ph NaOH Ph H N N K N 2 Ph 95% O SN2 O Potassium phthalimide, pKa 8.3 Gabriel synthesis of amines

– Azide, N3

The azide anion is an excellent nucleophile that participates in a large number of SN2 processes The reduction of the azide group affords a primary amine

NaN I 3 N NH Bu Bu 3 Bu 2 DMSO, Δ 90% O O O O 1) MsCl, Et3N OTBDPS OTBDPS 2) NaN3, DMF OH N3 85% 19 Nitrogen Nucleophiles: Primary Amines

Mitsunobu conditions: Ph3P / DEAD / HN3 or DPPA [(PhO)2PON3]

Ph3P, EtO2C N N CO2Et OH N3 H HN3 o (PhO)2PON3, H

Ph3P CO2Et Ph3P CO2Et N N N N EtO2C EtO2C

OH Ph3P CO2Et CO2Et H N N O PPh3 + N N EtO2C H EtO2C H O P (PhO)2PO CO2Et CO2Et H CO2Et (PhO)2 N3 HN3 N3 + N N N N N N + N3 DPPA EtO2C H EtO2C H EtO2C H

N3 O PPh3 N3 + O=PPh3 H H

20 Pere Romea, 2014 Nitrogen Nucleophiles

Reduction Mitsunobu LiAlH4, H 2 cat, Ph3P/H2O Ph3P/DEAD/ HN3 or DPPA O

1 R N R R NH2 R N3 R OH H Amine 1 Azide

SN2 SN2 – Phthalimide N3

R X R OSO2R'

O O O O Ph3P, DEAD, HN3 O N OH O N N3 CH2Cl2, 0 °C Bn 97% Bn

O O O 1) H2, Pd/C, THF/MeOH/TFA, ta O N N Ph H 2) PhCOCl, Et3N, CH2Cl2, 0 °C

Bn 97% 21 Oxygen Nucleophiles: Alcohols

– The most simple nucleophile: H2O / OH

– H2O, OH X OH

X: Cl, Br, I

This is a rare transformation in which...

... tertiary halides, R3C–X, react with H2O (solvolysis) through SN1 and – ... the secondary and primary ones, R2CH–X i RCH2–X, with OH /H2O through SN2 In both situations E1 and E2 eliminations are competing reactions

No eliminations can occur at this benzylic position Me Cl OH

Cl2 K2CO3

hν H2O NC NC 85% NC Radical chlorination

22 Pere Romea, 2014 Oxygen Nucleophiles: Ethers

Alkoxydes, RO–: Williamson Synthesis

RO– X RO SN2 H H X: Cl, Br, I

Only on 1ary substrates to avoid E2 eliminations ... and the most successful deconnections are applied to activated systems

O 2 O O Ar + XCH2R R1 R2 R1 + MeX o BnX

NO2 NO2 O O OH OBu O O BuBr, K2CO3 1) NaH, THF O O O O H2O H 2) BnCl, Δ H HO O BnO O 80% 95%

23 Pere Romea, 2014 Oxygen Nucleophiles: Esters

– Carboxilates, RCO2

– RCO2 X RCO2 SN2 H H X: Cl, Br, I, OSO2R

They are usually applied to 1ary substrates to avoid E2 eliminations

O O OK Br 18-crown-6 O + O 95% O Br Br why KF? O O CO2H O O CO2Me MeI, KF O O O DMF O O O 84% Attention: interconversion of carboxílic acids and derivatives 24 Oxygen Nucleophiles: Esters

Mitsunobu conditions: Ph3P / DEAD / RCO2H

Ph3P, EtO2C N N CO2Et OH RCO2 SN2 H RCOOH H

Ph3P CO2Et Ph3P CO2Et N N N N EtO2C EtO2C

OH Ph3P CO2Et CO2Et H N N N N + O PPh3 EtO2C EtO2C H H

RCO2H H CO2Et N N RCO2 RCO2 EtO2C H H

OH PhCO2 Ph3P, DEAD CO2Me CO2Me O PhCO2H O 25 Pere Romea, 2014 89% Oxygen Nucleophiles

Configuration inversion

SN2 Hidrolysis – – RCO2 OH

OH OSO2R' RCO2 HO H H H H

Mitsunobu Hidrolysis – Ph3P/DEAD/RCO2H OH

OH RCO2 HO H H H

O

OH O OH Ph Ph Ph Ph3P, DEAD O2N KOH

p-O2NPhCO2H MeOH 99% overall

26 Pere Romea, 2014 Phosphorus Nucleophiles: in Route to Wittig Reactions

Phosphines are excellent nucleophiles because they are less basic than amines and the phosphorus atom is very polarizable.

Moreover, E2 reactions do not compete with SN2 because they are weak bases

B 1 1 1 1 R CH2–X + PR3 R CH2–PR3 R CH–PR3 R CH PR3 phosphine X phosphorus ylide phosphonium salt Attention: Wittig reaction

O O O NaOH Ph P + Br Ph3P Ph3P 3 OEt OEt OEt Br

BuLi Ph P + Br Ph3P Ph3P 3 OPh OPh OPh Br

Ph P Attention: no E2 occurs 3 OPh 27 Phosphorus Nucleophiles: in Route to Wittig Reactions

Phosphites are also good nucleophiles and react with alkyl halides: Michaelis-Arbuzov reaction

1 O R R R OCHR2 (R CHO) P + R1–X 2 3 P P 1 H O OCHR2 (R2CHO)2 R X phosphite alkylphosphonate alkyltrialkoxyphosphonium halide Attention: Horner-Wadsworth-Emmons reaction

O O O O O Δ EtO Br (EtO) P (EtO) P (EtO)3P + 2 OEt 2 OEt OEt EtBr

O O (EtO) P 2 OEt

O O

(EtO)2P Pere Romea, 2014 28 OEt Sulfur Nucleophiles: Thiols

The easiest option is troublesome ...

–H R–X R–X + HS R SH R S R S R +H S

NH2 thiourea H2N NH2 NaOH

H S NH2 O X H H SH O S NaOH H S thioacetate or LiAlH4

1) Thiourea AcSCs Br HS C H C H Br H 10 21 2) NaOH 10 21 DMF i-Pr i-Pr H SAc 80% 84%

29 Pere Romea, 2014 Sulfur Nucleophiles: Thioethers

Thiolates are the best option since they are excellent nucleophiles ...

X–R2 R1–SH + OH R1 S R1 S R2

NaOH Br SH S S 95%

O O O MsCl, Et N BnSH, K CO Me 3 Me 2 3 Me N N N CH2Cl2 CH3CN HO OMe MsO OMe BnS OMe 100% 80% Weinreb Amide O EtMgBr

BnS

30 Pere Romea, 2014 Carbon Backbone & Functional Groups

The synthesis of an organic compound must pay attention to ...

Carbon backbone Functional groups (Chapters 2–4 ) Functional Group Interconversion (FGI)

I. Nucleophilic Substitutions Chap. 19 Electrophilic Additions to C=C Addition-Eliminations on Carboxylic Acids and Derivatives II. Reductions Mechanism!!! III. Oxidations

Pere Romea, 2014 31 Hydroboration of C=C

Borane, BH3, as a reacting species

Lewis Base R R H H X R R H X B B 2 H B H H H H H H B H H Lewis Acid H3B· SMe2 H3B· OEt2 H3B· THF LUMO H B H H − + δ δ H H BH H B 2 BH3 H C C C C C C C C + − π δ δ syn Addition HOMO Cyclic transition state 4 centers, 4 electrons

The regiochemistry for the addition of BH3 to an olefin is controlled by steric as well as electronic factors: the boron atom binds to the less substituted carbon atom

32 Pere Romea, 2014 Hydroboration of C=C

Additions of BH3 to olefins produce boranes R

H R R R BH2 B B BH3 R R R R R Alkylborane Dialkylborane Trialkylborane

– The appropriate choice permits to obtain a wide array of alkylboranes

3 + BH3 B

2 + BH 3 B Sia2BH H

+ BH3 BH 2 ThxBH2

H B + BH3 9-BBN Pere Romea, 2014 33 Hydroboration of C=C

– Steric effects rule the reactivity

H R H H R R H H H R R R R > R > R > R > R > R H H R H H H

... the regioselectivity,

BH 94 80 99 57 3 % atack B Sia BH 99 98 97 to the less 2 substituted carbon atom 9-BBN 99.9 98.5 99.5 99.8

... and the stereoselectivity R2BH H + BR2 H BR2 BH3 72 28

34 9-BBN 97 3 Hydroboration of C=C

Protonolysis: synthesis of alkanes

BH RCO H R 3 R 2 3 R B H Δ 3 Trialkylborane Alkane

Conversion of trialkylboranes into alcohols: H2O2/NaOAc, ...

R R R OR HO B B B B 3 ROH R R O R RO R RO OR 3 R – HO – BO3 HO HO O Borate – The migration does not Hidrolysis produce the inversion of the configuration

H 1) B H OH It looks like 2 6 an anti-Markovnikov hydration – 2) H2O2, OH with a syn stereochemistry

35 85% Pere Romea, 2014 Hydroboration of C=C

Hidroboration of alkynes

H H RCO2H

Δ R1 R2 Alquè Z

L B H – HO H 2 L2B H 2 H2O2, OH O R R1 R2 R1 R2 R1 R2 R1

(HO) B H H2O 2

1 2 R R Vinilboronic acid

O 1) B H Br O OH B 2) H2O OH Pd(0) cat 75% Suzuki Coupling 36 Pere Romea, 2014 Dr. Pere Romea Department of Organic Chemistry

The moneychanger and his wife Marinus Claesz van Reymerswaele, 1539

6. Functional Group Interconversion

Organic Synthesis 2014-2015 Autumn Term Carboxylic Acids and Derivatives

Carboxylic acids Derivatives of carboxylic acids

O O

R1 OH R1 L

O O O O O O O 2 1 1 2 1 1 2 1 2 1 R R Cl R O R R N3 R SR R OR R N R3 Acid chloride Anhydride Acyl azide Thioester Amide

R1 C N Nitrile

All these FG participate in reactions that can be understood using the addition-elimination mechanism

2 Pere Romea, 2014 Addition-Elimination Mechanism

Addition-elimination mechanism

O Addition Nu O Elimination O + L Trigonal Planar R1 L R1 L R1 Nu

Nu Tetrahedral Trigonal Planar

The requirements for a smooth process are … a) RCOL must be a good , b) Nu must be a good nucleophile, c) L must be a better leaving group than Nu

Remember: “The lower the pKa (HL), the better the leaving group”

If the system is not reactive enough, it must be activated ...

3 Pere Romea, 2014 Addition-Elimination Mechanism

Activation with a Lewis Acid, LA, ...

LA LA LA LA O O HNu O Nu O O O LA –LH –LA R1 L R1 L R1 L R1 LH R1 Nu R1 Nu Activation Addition Elimination NuH Remember: Fischer esterification

Activation with a Lewis Base, B , ...

O O Nu O O –L –B R1 L R1 B R1 B R1 Nu

B Activation NuH Addition Elimination

Remember: synthesis of esters by addition of alcohols to acid chlorides in the presence of DMAP

4 Pere Romea, 2014 Addition-Elimination Processes

O H2O R1 Cl Very easy Chap. 16 Chap. 10 2 – R CO2

O O 2 – R CO2 H2O R1 O R2 Easy O 1 R2OH R OH

2 O R OH H2O R1 OR2 Moderate

R2R3NH

O 2 3 R R NH 2 H2O 1 R R N Difficult R3 5 Pere Romea, 2014 Addition-Elimination Processes

O ? R1 Cl Chap. 16 Chap. 10 2 – R CO2

O O 2 – R CO2 ? R1 O R2 O

1 R2OH R OH

R2OH O ? R1 OR2

R2R3NH

O R2R3NH ? R2 R1 N R3 6 Pere Romea, 2014 Acid Chlorides from Carboxylic Acids

Via SOCl2 o PCl5

O O O O SOCl2 OH PCl5 Cl OH Cl 85% O2N 93% O2N

Via (COCl)2

Useful for systems sensitive to acid media. It is usually used with the sodium salt (neutral media) or with catalytic amounts of DMF.

O Bn O Bn

O (COCl)2 O N N N N

CO2Na 83% COCl HO O HO O

7 Pere Romea, 2014 Anhydrides from Carboxylic Acids

Regioselectivity in the nucleophilic attacks to anhydrides

O O O O Regioselectivity In mixed anhydrides R1 O R1 R1 O R2 is not a problem for the R2 group must prevent the symmetric anhydrides the nucleophilic attack Nu Nu O O Cl O O The mixed anhydrides are usually prepared quantitatively from acid chlorides or other anhydrides. R1 O R1 O They are not isolated. Cl Cl Yamaguchi Method Nu Nu

O O O Cl O O O O O P P P (OMe) Cl (OMe) H OBn (OMe)

Cl Cl HO O BnO PMBO O Et N, DMAP PMBO O O Cl PMBO O H 3 95% THF–PhMe, rt PMBO OH PMBO O PMBO O

Cl Cl Nu Pere Romea, 2014 8 Esters from Carboxylic Acids and Derivatives

The retrosynthetic analysis shows two ways of deconnecting the ester group ...

O b) O a) O + HOR2 R2 + R2–X R1 L R1 O R1 O

Addition-elimination Processes SN2 Processes

– Fischer Esterification X

– H – Using coupling agents as carbodiimides RCO2 RCO2 X: Cl, Br, I, OSO2R H – Acylation with acid chlorides or anhydrides OH H RCOOH RCO2 Ph3P, DEAD H Mitsunobu

HH CH2N2 RCO2H RCO2 H Pere Romea, 2014 9 Esters through SN2 Transformations

Synthesis of methyl esters by reaction with diazomethane

Diazomethane is a highly volatile (it must be handled in etherial solutions), toxic, and explosive compound ...

H H H C N N C N N C N N H H H

The best leaving group

O H O H O HH H – N2 H C N N N N R O R O R O H H H Acid-base SN2

O O CH2N2 HO O MeO O Et2O O O 95%

pKa 10 pKa 16

PhOH + CH2N2 PhOMe PrOH + CH2N2 PrOMe

10 Pere Romea, 2014 Esters through Addition-Elimination Transformations

Fischer esterification O H + HOR2 R1 O A problem

H H H 2 H O O O HO R O O H O R2 HO O –H H H H 2 2 1 1 1 1 1 1 R 1 R R O R O R O R OH R O H R O R O H Activation HO R2

O O H 2 H + HOR2 R + H O R1 O R1 O 2

– Reversible reaction catalyzed by H+ 2 – Excess of R OH or removal of H2O are necessary to obtain esters in high yields

O O O O HCl cat TsOH cat + MeOH + HO Cl OH Δ OMe OH Δ O Cl solvent –H O azeotropic 95% 2 85% 11 Pere Romea, 2014 Esters through Addition-Elimination Transformations

Esterification with carbodiimides

O O O 2 H + + HOR2 R R R R1 O R N C N R R1 O + N N Carbodiimide H H

O O H O NHR O O R1 O R1 O H R2 R R R1 O NR R1 O + N N R N C N R R N C N H H R R OH – Neutral and aprotic apolar medium Good leaving group – DMAP is usually used as catalyst

TBSO OMe TBSO OMe

O DCC: DiCiclohexylCarbodiimide O O

OH O N C N O H H + HO DMAP cat, CH2Cl2 97% H 12 H Pere Romea, 2014 Esters through Addition-Elimination Transformations

Acylation with acid chlorides and anhydrides

O O O O R2OH o R2 R1 Cl R1 O R1 R1 O R3N Good leaving groups

O O O PhCOCl O O O pyr, DMAP cat O O Ac Ac O CH2Cl2 O HO O 85% O Ph

CO2Me CO2Me Ac O OH 2 OAc Et3N, DMAP cat OH OAc CH2Cl2 95% OH OAc

13 Pere Romea, 2014 Esters through Addition-Elimination Transformations

Acylation with mixed anhydrides O O Cl O O Me R1 O R1 O Mixed anhydrides are usually prepared quantitatively Cl Cl O N from acid chlorides or other anhydrides. 2 They are not isolated. Nu Nu Yamaguchi Method Shiina Method J. Org. Chem. 2004, 69, 1822

O O O Cl O O O O O P P P (OMe) Cl (OMe) H OBn (OMe)

Cl Cl HO O BnO

PMBO O Et3N, DMAP PMBO O O Cl PMBO O H 95% THF–PhMe, ta PMBO OH PMBO O PMBO O

Cl Cl Nu Me O O Me

O

X X TBSO O TBSO O X: NO2 Ph OH + HO Ph Ph O Ph Et3N, DMAP cat, CH2Cl2 Pere Romea, 2014 92% 14 Lactones in Natural Products

Lactones (cyclic esters) are a common structural motif in natural products

OMe O HO O O OH Scytophycin C (20) O N O H O MeO MeO OH Octalactin A (8) H O O OMe O

HO OH O OH Bafilomycin A (16) OH NMe2 O O O OMe O OH O O OMe O OH O Erythromycin A (14) O OH HO HO OMe

O HO (C)n L O (C)n ? O Campagne, J. -M. Pere Romea, 2014 15 Chem. Rev. 2006, 106, 911 & 2013, 113, PR1 Lactones in Natural Products

The size of the ring determines the synthetic method ...

Cyclization of γ- and ∂-hydroxy acids is straightforward … O O O O Very easy OH Very easy O OH O

γ δ OH OH For 5- and 6-membered rings, both enthalpy and entropy OK !!!

... but as the size of the ring increases, the cyclization mets the selectivity problem

O O O inter inter k1 k2 L (C)n OH L (C)n O (C)n OH vintra >> vinter O intra intra k1 k2 intra inter 2 O O vintra = k1 [S] vinter = k1 [S]

intra inter vintra 1 O (C)n si k1 k1 = monòmer dímer vinter [S] O O Per a v >> v [S] High dilution conditions are required as well as intra inter 0 activation of the carboxylate group compatible with the OH group 16 Synthesis of Macrolactones

Mixed anhydrides (Yamaguchi and Shiina methods) met these conditions

O Cl O O Cl O O Cl Cl

O 1) Et3N, THF, rt O

OH O 1) PhMe, DMAP, 60 °C O O [S] = 30 mM HOOC O O O 78%

Me O O Me

O

O X X O X: NO O OH 2 O O O O O Et N, DMAP, CH Cl , 40 °C HO 3 2 2 O [S] = 2.7 mM O O 42%

17 Pere Romea, 2014 through Addition-Elimination Transformations

The retrosynthetic analysis of amides also shows two options …

O b) O a) O + HNR2R3 R2 + R2–X R1 L R1 N R1 NR3 R3

Addition-elimination processes SN2 Processes

– Acylation with acid chlorides and anhydrides No very common, but N-substitutions using – Via coupling agents: carbodiimides, HATU sterically unindexed alkyl halides are useful options. Attention with E2

O O H Me N NaH, MeI N Benzè

18 Pere Romea, 2014 Amides through Addition-Elimination Transformations

Acylation with acid chlorides and anhydrides

O O O O R2R3NH o R2 R1 Cl R1 O R1 R1 N R3N Good leaving groups R3

O O 1) SOCl2 OH NH2 2) NH3 excess

70%

O O 2 eq Me NH Me Cl 2 N + Me2NH2 Cl Me 85%

O O Ac O, pyr H NH 2 N HO 2 HO 90% O 19 Pere Romea, 2014 Amides through Addition-Elimination Transformations

Synthesis of amides by using carbodiimides

O O O 2 H + + HNR2R3 R R R R1 O R N C N R R1 N + N N Carbodiimide R3 H H

O O H O NHR O O R1 O R1 O H R2 R R R1 O NR R1 N + N N R N C N R R N C N R3 H H R R2 NH – Neutral and aprotic apolar medium Good leaving group R3 – DMAP is usually used as catalyst

R2 HO Boc O H N O H R2 O H R2 N O H N Boc TFA N H RO H RO N RO N DCC R1 R1 O H R1 O H Coupling Deprotection

Peptide synthesis 20 Pere Romea, 2014 Amides through Addition-Elimination Transformations

Occasionally, O-acylisourea intermediates are not stable enough or produce the epimerization of the Cα center. Then, the addition of N-hydroxy derivatives transforms such intermediates into less reactive active esters with a beneficial effect on the overall efficiency

O NHR O O HOXt Xt 2 1 1 R R O NR R O R1 N R3 O R2 NH HOXt R R N N R3 H H HOXt O N N N N N OH N N N OH OH O HOBt HOAt HOSu

21 Pere Romea, 2014