The Chemistry of 1-Acylpyridiniums

Total Page:16

File Type:pdf, Size:1020Kb

The Chemistry of 1-Acylpyridiniums Baran Lab T h e C h e m i s t r y o f 1 - A c y l p y r i d i n i u m s D. W. Lin 1,4-addition A Big Player in The Acylpyridinium Field 1,2-addition 1,2-addition N O R acyl transfer 1,4-addition 1,2-addition acyl transfer Nu* O * * * N Nu Prof. Daniel Comins N * R Nu* N North Carolina State University O R * * O R B.S., SUNY Potsdam, 1972 Ph.D. (Robert Lyle, advisor), University of New Hampshire, 1977 Despite the electron-deficient nature of pyridines, direct nucleophilic addition is Postdoctoral Associate (A.I. Meyers), Colorado State University, 1977-1979 difficult without activating the pyridine in some fashion. This review will cover the use of acylating agents to activate the ring -- and the acyl group -- to nucleophilic addition. Reviews on Related Topics Other stratgies for activating the ring (which will not be covered in this review) include N-alkylation, N-fluorination, N-sulfonation, N-oxidation, and N-amination. The chemistry of N-alkylpyridiniums is not covered in this seminar. For a For an overview of this chemistry, see Joule and Mills' Heterocyclic Chemistry, 4th representative review, see: J. Bosch, Bennasar, M.-L. Synlett 1995, 587, and Edition (2000), Chapters 4-5. references therein. Notice that N-acylation, subsequent nucleophilic addition, and further A review covering catalytic enantioselective methods of addition to imines: T. functionalization reactions can rapidly produce stereochemically and functionally Vilaivan, W. Banthumnavin, Y. Sritana-Anant. Curr. Org. Chem. 2005, 9, 1315. complex piperidine systems. This review will emphasize asymmetric methods for functionalizing pyridines. Be sure to review the previous Baran Lab group seminar on a related topic, "Iminium and Pyridinium Photochemistry" (J. Richter, 2005). 1 Baran Lab T h e C h e m i s t r y o f 1 - A c y l p y r i d i n i u m s D. W. Lin ADDITION OF NUCLEOPHILES INTO 1-ACYLPYRIDINIUM SALTS A. Regioselectivity of Addition 800 g scale! Addition of Grignards into 1-acylpyridinium salts with unsubstituted C2 and C4 positions results in mixtures of C2- and C4-substituted dihydropyridines. 1,2- addition is typically favored, although selectivity is not large. 1,4-addition is favored if either the nucleophile R or acyl chloride R' is sterically demanding. Use of organocuprates, however, strongly favors 1,4-addition, as seen below: R 1. RMgX + N N R N 2. R'COCl O R' O R' O R' 3 4 No Copper Additive With 5% CuI G.N. Boice, et al. Tet. Lett. 2004, 60, 11367. Titanium enolates also strongly favor 1,4-addition: O R Me 1. R2 R1 H R OM N R + 1 R2 R2 2. PhOCOCl Me R1 N O N R H D.L. Comins, A.H. Abdullah. J. Org. Chem. 1982, 47, 4315. Me O OPh O OPh Process chemists at Merck have applied this method on a process scale: PhOCOCl 1 2 CuI, THF CO2Ph N N -10 oC, then M = Li --> 50:50 (1:2) M = Ti --> 70:30 to 98:2, typically 90:10 (1:2) MgCl Ester enolates yield somewhat lower regioselectivity (typically 70:30 mixtures of Cl CN 57% 1:2 at best) than the corresponding ketone enolates. Cl CN D.L. Comins, J.D. Brown. Tet. Lett. 1984, 25, 3297. 2 Baran Lab T h e C h e m i s t r y o f 1 - A c y l p y r i d i n i u m s D. W. Lin Certain nucleophiles - allyltin, allylindium, and alkynyl Grignard reagents - will OZn undergo 1,2-addition regioselectively. For example: SnMe3 Cl OEt SnMe3 Cl Cl Me then methyl chloroformate oxalic acid BrMg O Me O N THF N THF-water N -78 oC MeO2C CO2Et MeO2C CO2Et Me N Cl THF Me N o CO Me D.L. Comins, J.D. Brown. Tet. Lett. 1986, 27, 2219. CO2Me 0 C, 1.5 h 2 O O 89%, no 1,4-adduct Comins has employed this blocking method in an elegant synthesis of lasubine II: OMe O 1. BnOCOCl MgBr H Cl Me N 2. OMe 4 steps, CuBr(SMe)2 N BrMg OMe N 32% overall yield BF3-OEt2 Bu Cbz o OMe THF, -78 C (±)-monomorine I 75% OMe R. Yamaguchi, E. Hata, T. Matsuki, M. Kawanisi. J. Org. Chem. 1987, 52, 2094. axial addition favored O for 1,2-addition of allylstannanes see: R. Yamaguchi, M. Moriyasu, M. Yoshioka, M. Kawanisi. J. Org. Chem. 1985, 50, 287; and T.G.M. Dhar, C. Gluchowski. Tet. Lett. 1994, 35, 989. to avoid 1,3-allylic strain for 1,2-addition of allylindium reagents see: T.-P. Loh, P.-L. Lye, R.-B. Wang, K.-Y. Sim. Tet. Lett. 2000, 41, 7779. O O Ar OMe Generally, however, forcing 1,2-addition requires use of blocking groups or BzO N N substituents at the C4 position. O N Ar H Cbz 1,3-allylic strain O OMe OBz H Cl MgCl Cl Cl Cl 56%, de > 96% o-chloranil O OH Cl N THF N N H2 LS- o Selectride -78 C Pd/C OMe OMe N O OPh O OPh o N 42% Li2CO3 -78 C over 2 steps 82% 81% OMe OMe D.L. Comins, N.B. Mantlo. J. Org. Chem. 1985, 50, 4410. (±)-lasubine II J.D. Brown, M.A. Foley, D.L. Comins. J. Am. Chem. Soc. 1988, 110, 7445. 3 Baran Lab T h e C h e m i s t r y o f 1 - A c y l p y r i d i n i u m s D. W. Lin STRATEGIES FOR ASYMMETRIC 1,2-ADDITION Me Me Comins' Chiral Auxiliary for 1,2-Addition Me Me Comins has developed a chiral acylating group which directs the stereoselectivity of OH OH 1,2-additions into the pyridinium ring. This group, when employed on a 3-silyl-4- Me methoxypyridine, permits highly diastereoselective 1,2-additions. (-)-trans-2-(α-cumyl)cyclohexanol (TCC) (-)-8-phenylmenthol 1. R*OCOCl OMe O O see reference below for route commercially available 2. RMgX for preparing enantiopure auxiliary, see: D.L. Comins, Y.C. Myoung. J. Org. Chem. , 55, 292. TIPS + TIPS TIPS 1990 3. H3O + Deprotection of either the TIPS group or the auxiliary is straightforward: N R N R N CO R* CO2R* 2 O major diastereomer major diastereomer TIPS with (-)-auxiliary with (+)-auxiliary H2, Pd/C This substrate has been chosen carefully to maximize diastereoselectivity. The rt bulky TIPS group directs addition to C over C , and the C -methoxy group blocks 1 h R N 6 2 4 H C4 addition. The chiral auxiliary blocks access to one face of the pyridinium salt. Me O O blocked by TIPS TIPS Me TIPS NaOMe/MeOH O N O reflux R N OMe TIPS 8 h H permitted approach back face blocked by aryl group O R N CO2R* 30%HBr/AcOH 0 oC --> rt R N 2 hr CO2R* O NaOMe/MeOH, reflux, 8 h; then oxalic acid, rt, 2 h R N H D.L. Comins, S.P. Joseph, R.R. Goehring. J. Am. Chem. Soc. 1994, 116, 4719. D.L. Comins, S.P. Joseph, R.R. Goehring. J. Am. Chem. Soc. 1994, 116, 4719. 4 Baran Lab T h e C h e m i s t r y o f 1 - A c y l p y r i d i n i u m s D. W. Lin This strategy can also be applied to the 1,2-addition of enolates to define two The postulated transition state for E-enolate addition, yielding anti-stereochemistry: asymmetric centers with anti-stereochemistry: ClZnO O Me OMe O TIPS TIPS Me TIPS Me Me O N H H Cl Me O N THF/toluene N ClZn o H OMe -78 C R CO R* CO2R* 2 O R Me 83% isolated D.L. Comins, J.T. Kuethe, H. Hong, F.J. Lakner. J. Am. Chem. Soc. 1999, 121, 2651. D.L. Comins, J.T. Kuethe, H. Hong, F.J. Lakner. J. Am. Chem. Soc. 1999, 121, 2651. Interestingly, the pyrrole and indole anions can be used as nucleophiles as well: Good enolate facial selectivity is observed: OZnCl O N TIPS MgBr O O O TIPS 74% N Me Me CO2Bn Me H OMe N O H E-enolate Me N H TIPS OMe O CO2R* O Cl TIPS N 9:1 anti O CO Bn Cl 2 TIPS N Zn O O N CO2R* MgBr OBn TIPS N H 72% NH CO2Bn OBn BnO N H Z-enolate BnO CO2R* (also 8% of the C3- O pyrrole adduct) 4:1 syn D.L. Comins, J.T. Kuethe, H. Hong, F.J. Lakner. J. Am. Chem. Soc. 1999, 121, 2651. J.T. Kuethe, D.L. Comins. J. Org. Chem. 2004, 69, 2863. 5 Baran Lab T h e C h e m i s t r y o f 1 - A c y l p y r i d i n i u m s D. W. Lin Applications to Total Synthesis 1. TsOH KOH 2. Na CO Comins and coworkers have applied this chiral auxiliary methodology in a number 2 3 EtOH Me N of elegant, imaginative total syntheses. H 66% Me N reflux O (-)-porantheridine 48 h OH Me 85% O O OMe O O (-)-porantheridine 1. K-Selectride TIPS TIPS O 2. Na2CO3/MeOH D.L. Comins, H. Hong.
Recommended publications
  • NBO Applications, 2020
    NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020.
    [Show full text]
  • FULL PAPER Enantioselective Addition of Alkynyl Ketones To
    This is the peer reviewed version of the following article: T. E. Campano, I. Iriarte, O. Olaizola, J. Etxabe, A. Mielgo, I. Ganboa, J. M. Odriozola, J. M. García, M. Oiarbide, C. Palomo, Chem. Eur. J. 2019, 25, 4390, which has been published in final form at https:// doi.org/10.1002/chem.201805542. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions FULL PAPER Enantioselective Addition of Alkynyl Ketones to Nitroolefins Assisted by Brønsted Base/H-Bonding Catalysis Teresa E. Campano,[a] Igor Iriarte,[a] Olatz Olaizola,[a] Julen Etxabe,[a] Antonia Mielgo,[a] Iñaki Ganboa,[a] José M. Odriozola,[b] Jesús M. García,[b] Mikel Oiarbide*[a] and Claudio Palomo*[a] Abstract: Various sets of enolizable alkynyl ketones (including methyl ideal atom economy and usually broad functional group ynones w ith -aryl, -alkenyl and -alkoxy groups) are able to react tolerance.[8] How ever, a general problem w ith this type of smoothly w ith nitroolefins under the assistance of bifunctional activation is the functional pKa barrier of most catalysts that Brønsted base/H-bond catalysts to provide adducts w ith two compromises their efficiency w ith less acidic carbon consecutive tertiary stereocenters in a highly diastereo- and pronucleophiles.[9] To our know ledge there is a single report on enantioselective fashion. Further transformation of the obtained asymmetric Brønsted base-catalyzed -additions of enolizable adducts into optically active acyclic and polycyclic molecules, ynones, by Peng, Wang and Shao (Scheme 1a, top).[10] Ynone including some w ith intricate carbon skeletons, is also demonstrated.
    [Show full text]
  • The Impact of Nanosciences and Biochemistry 2. Computational
    1. The Changing Landscape of Human Chemistry, Wright State University, Dayton, OH, 2 Performance – The Impact of Nanosciences United States; Department of Mechanical and and Biochemistry Materials Engineering, Wright State University, Dayton, OH, United States; 3Department of Physics, Morley O. Stone. 711th Human Performance Wing, Wright State University, Dayton, OH, United States. Air Force Research Laboratory, Wright-Patterson AFB, OH, United States. The potential application of silicene as a hydrogen storage material is studied by computational In all human endeavors, there is a desire to push the modeling using both first principles calculations and limits of human performance – operations within the classical grand canonical Monte Carlo simulations. Air Force are no exception. From aviation to ground The energetics of the adsorption of hydrogen atoms operations, traditional stressors such as fatigue are on silicene are investigated by DFT calculations. In being compounded by the need to process ever- addition, classical simulations were carried out to increasing amounts of information. This deluge of study the physisorption of molecular hydrogen in a information caused by sensor and bandwidth slit-pore model, constructed using two silicene layers, proliferation makes human-intensive operations, such and whose slit-pore size is varied by changing the as decision making, increasingly complicated. interlayer separation. Traditional approaches to alleviate this problem have relied upon increases in manpower (the 4. Interfacial Friction and Sliding in “brainpower”) to sift, prioritize, and act upon this Amorphous Carbon/Nanotube mountain of information. Increasingly, the Nanocomposites Department of Defense and the Air Force are realizing that this solution is untenable. Within the Zhenhai Xia, Jianbing Niu.
    [Show full text]
  • Reactions of Benzene & Its Derivatives
    Organic Lecture Series ReactionsReactions ofof BenzeneBenzene && ItsIts DerivativesDerivatives Chapter 22 1 Organic Lecture Series Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon: Halogenation: FeCl3 H + Cl2 Cl + HCl Chlorobenzene Nitration: H2 SO4 HNO+ HNO3 2 + H2 O Nitrobenzene 2 Organic Lecture Series Reactions of Benzene Sulfonation: H 2 SO4 HSO+ SO3 3 H Benzenesulfonic acid Alkylation: AlX3 H + RX R + HX An alkylbenzene Acylation: O O AlX H + RCX 3 CR + HX An acylbenzene 3 Organic Lecture Series Carbon-Carbon Bond Formations: R RCl AlCl3 Arenes Alkylbenzenes 4 Organic Lecture Series Electrophilic Aromatic Substitution • Electrophilic aromatic substitution: a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile H E + + + E + H • In this section: – several common types of electrophiles – how each is generated – the mechanism by which each replaces hydrogen 5 Organic Lecture Series EAS: General Mechanism • A general mechanism slow, rate + determining H Step 1: H + E+ E El e ctro - Resonance-stabilized phile cation intermediate + H fast Step 2: E + H+ E • Key question: What is the electrophile and how is it generated? 6 Organic Lecture Series + + 7 Organic Lecture Series Chlorination Step 1: formation of a chloronium ion Cl Cl + + - - Cl Cl+ Fe Cl Cl Cl Fe Cl Cl Fe Cl4 Cl Cl Chlorine Ferric chloride A molecular complex An ion pair (a Lewis (a Lewis with a positive charge containing a base) acid) on ch lorine ch loronium ion Step 2: attack of
    [Show full text]
  • Synthesis of Densely Substituted Pyridine Derivatives from Nitriles by a Non-Classical [4+2] Cycloaddition/1,5-Hydrogen Shift Strategy
    Synthesis of densely substituted pyridine derivatives from nitriles by a non-classical [4+2] cycloaddition/1,5-hydrogen shift strategy Wanqing Wu ( [email protected] ) South China University of Technology https://orcid.org/0000-0001-5151-7788 Dandan He South China University of Technology Kanghui Duan South China University of Technology Yang Zhou South China University of Technology Meng Li South China University of Technology Huanfeng Jiang South China University of Technology Article Keywords: pyridine derivatives, organic synthesis, medicinal chemistry. Posted Date: March 3rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-258126/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract A novel strategy has been established to assemble an array of densely substituted pyridine derivatives from nitriles and o-substituted aryl alkynes or 1-methyl-1,3-enynes via a non-classical [4 + 2] cycloaddition along with 1,5-hydrogen shift process. The well-balanced anities of two different alkali metal salts enable the C(sp3)-H bond activation as well as the excellent chemo- and regioselectivities. This protocol offers a new guide to construct pyridine frameworks from nitriles with sp3-carbon pronucleophiles, and shows potential applications in organic synthesis and medicinal chemistry. Introduction Compounds containing pyridine core structures, not only widely exist in natural products, pharmaceuticals, and functional materials,1–7 but also serve as useful and valuable building blocks for metal ligands.8,9 For instance, pyridine derivative Actos I10 is a famous drug for the treatment of type 2 diabetes; Bi-(or tri-)pyridines II11–15 are often used as ligands in metal-catalyzed reactions; Kv1.5 antagonist III16 and alkaloid papaverine IV17 are two representative isoquinolines as a promising atrial- selective agent and a smooth muscle relaxant, respectively (Fig.
    [Show full text]
  • TR-470: Pyridine (CASRN 110-86-1) in F344/N Rats, Wistar Rats, And
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF PYRIDINE (CAS NO. 110-86-1) IN F344/N RATS, WISTAR RATS, AND B6C3F1 MICE (DRINKING WATER STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 March 2000 NTP TR 470 NIH Publication No. 00-3960 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Robert Burns Woodward
    The Life and Achievements of Robert Burns Woodward Long Literature Seminar July 13, 2009 Erika A. Crane “The structure known, but not yet accessible by synthesis, is to the chemist what the unclimbed mountain, the uncharted sea, the untilled field, the unreached planet, are to other men. The achievement of the objective in itself cannot but thrill all chemists, who even before they know the details of the journey can apprehend from their own experience the joys and elations, the disappointments and false hopes, the obstacles overcome, the frustrations subdued, which they experienced who traversed a road to the goal. The unique challenge which chemical synthesis provides for the creative imagination and the skilled hand ensures that it will endure as long as men write books, paint pictures, and fashion things which are beautiful, or practical, or both.” “Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect,” in Pointers and Pathways in Research (Bombay:CIBA of India, 1963). Robert Burns Woodward • Graduated from MIT with his Ph.D. in chemistry at the age of 20 Woodward taught by example and captivated • A tenured professor at Harvard by the age of 29 the young... “Woodward largely taught principles and values. He showed us by • Published 196 papers before his death at age example and precept that if anything is worth 62 doing, it should be done intelligently, intensely • Received 24 honorary degrees and passionately.” • Received 26 medals & awards including the -Daniel Kemp National Medal of Science in 1964, the Nobel Prize in 1965, and he was one of the first recipients of the Arthur C.
    [Show full text]
  • Toxicological Profile for Pyridine
    TOXICOLOGICAL PROFILE FOR PYRIDINE Agency for Toxic Substances and Disease Registry U.S. Public Health Service September 1992 ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. 1 1. PUBLIC HEALTH STATEMENT This Statement was prepared to give you information about pyridine and to emphasize the human health effects that may result from exposure to it. The Environmental Protection Agency (EPA) has identified 1,177 sites on its National Priorities List (NPL). Pyridine has been found at 4 of these sites. However, we do not know how many of the 1,177 NPL sites have been evaluated for pyridine. As EPA evaluates more sites, the number of sites at which pyridine is found may change. This information is important for you to know because pyridine may cause harmful health effects and because these sites are potential or actual sources of human exposure to pyridine. When a chemical is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment as a chemical emission. This emission, which is also called a release, does not always lead to exposure. You can be exposed to a chemical only when you come into contact with the chemical. You may be exposed to it in the environment by breathing, eating, or drinking substances containing the chemical or from skin contact with it. If you are exposed to a hazardous chemical such as pyridine, several factors will determine whether harmful health effects will occur and what the type and severity of those health effects will be.
    [Show full text]
  • Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of  Electrons Above and Below Its Sigma Bond Framework
    Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product.
    [Show full text]
  • Activation of Pyridinium Salts for Electrophilic Acylation: a Method for Conversion of Pyridines Into 3-Acylpyridines
    Chemistry of Heterocyclic Compounds, Vol. 40, No. 6, 2004 ACTIVATION OF PYRIDINIUM SALTS FOR ELECTROPHILIC ACYLATION: A METHOD FOR CONVERSION OF PYRIDINES INTO 3-ACYLPYRIDINES A. Klapars1 and E. Vedejs2 Cyanide adducts of N-MOM pyridinium salts react with strong acylating reagents to provide 3-acyl-4- cyano-1,4-dihydropyridines that can be aromatized to 3-acylpyridines using ZnCl2 in refluxing ethanol. Keywords: dihydropyridines, pyridine acylation. Electrophilic aromatic substitution reactions of pyridines are extraordinarily challenging. Instead of C-substitution at the pyridine ring, the electrophile typically forms an adduct with the pyridine nitrogen, which even further deactivates the already electron deficient pyridine ring toward electrophilic substitution. For example, the direct nitration of pyridine may require a reaction temperature of 330°C to provide only a 15% yield of 3-nitropyridine [1]. To the best of our knowledge, no direct, intermolecular C-acylations of pyridines have been reported [2]. This seriously limits the choice of methods for the preparation of the ubiquitous 3-substituted pyridines [3, 4]. In a limited number of cases, the lack of reactivity of pyridines toward electrophiles has been addressed by converting the recalcitrant pyridine into a temporarily activated 1,4-dihydropyridine [5-9]. In contrast to the electron poor parent pyridine, the electron rich 1,4-dihydropyridine features strongly enhanced reactivity toward electrophiles at the 3-position. Several steps are typically required including formation of the dihydropyridine, the subsequent reaction with an electrophile, and rearomatization to the desired 3-substituted pyridine. A similar concept has been ingeniously employed in a one pot nitration of pyridines in the presence of sulfite as the nucleophile that temporarily activates the pyridine, and then acts as a leaving group in an aromatization step [10, 11].
    [Show full text]
  • Thiocyanate Pyridine Complexes
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2017 Structural Comparison of Copper(II) Thiocyanate Pyridine Complexes Joseph V. Handy College of WIlliam & Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Inorganic Chemistry Commons Recommended Citation Handy, Joseph V., "Structural Comparison of Copper(II) Thiocyanate Pyridine Complexes" (2017). Undergraduate Honors Theses. Paper 1100. https://scholarworks.wm.edu/honorstheses/1100 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Structural Comparison of Copper(II) Thiocyanate Pyridine Complexes A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Chemistry from The College of William & Mary by Joseph Viau Handy Accepted for ____________________________ ________________________________ Professor Robert D. Pike ________________________________ Professor Deborah C. Bebout ________________________________ Professor David F. Grandis ________________________________ Professor William R. McNamara Williamsburg, VA May 3, 2017 1 Table of Contents Table of Contents…………………………………………………...……………………………2 List of Figures, Tables, and Charts………………………………………...…………………...4 Acknowledgements….…………………...………………………………………………………6
    [Show full text]
  • 1. A. the First Reaction Is a Friedel-Crafts Acylation (FCA), Where the Major Product Is the Para- Isomer (60% Isolated Yield)
    1. a. The first reaction is a Friedel-Crafts Acylation (FCA), where the major product is the para- isomer (60% isolated yield). The second reaction is a nitration, where the incoming electrophile (nitronium ion) is directed to the ortho position of the methoxy group. The last reaction is a Wolff-Kishner reduction that converts the acetyl group into an ethyl group. The nitro group does not react under these conditions. OCH OCH OCH OCH3 3 3 3 NO2 NO2 N2H4/KOH CH3COCl/AlCl3 H2SO4/HNO3 0 oC O CH 3 O CH3 CH3 (A) Reaction 1 (B) Reaction 2 (C) Reaction 3 (P) b. The best solvent for the FC-acylation is dichloromethane. Tetrahydrofuran is a fairly strong Lewis base, which would react and deactivate the AlCl3 catalyst. Ethanol would also react with AlCl3 and form alcoholates, which are inactive at FCA catalyst. Dichloromethane is polar enough to dissolve all three compounds but does not form adducts with AlCl3. Thus, aluminum chloride maintains its Lewis acidity. 3+ c. As discussed in lecture, AlCl3*6 H2O is not suitable as catalyst because the Al is not a strong Lewis acid anymore. In addition, larger amounts of water would destroy the acetyl chloride as well (=hydrolysis, CH3COCl + H2O ---- > CH3COOH + HCl). Consequently, the reaction would not proceed in the desired fashion. 3+ OH2 H2O OH2 Al H2O OH2 OH2 d. In order to determine the yield, one has to calculate the number of moles of the reactant and the product. nA = 1.90 mL * 0.996 g/mL/108.14 g/mol = 17.5 mmol nCH3COCl = 2.49 mL * 1.104 g/mL/78.5 g/mol = 35.0 mmol nAlCl3 = 4.67 g/133.5 g/mol = 35.0 mmol Compound (A) is the limiting reagent.
    [Show full text]