The Mechanism of Pyridine Hydrogenolysis on Molybdenum-Containing Catalysts III
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
Synthesis of Densely Substituted Pyridine Derivatives from Nitriles by a Non-Classical [4+2] Cycloaddition/1,5-Hydrogen Shift Strategy
Synthesis of densely substituted pyridine derivatives from nitriles by a non-classical [4+2] cycloaddition/1,5-hydrogen shift strategy Wanqing Wu ( [email protected] ) South China University of Technology https://orcid.org/0000-0001-5151-7788 Dandan He South China University of Technology Kanghui Duan South China University of Technology Yang Zhou South China University of Technology Meng Li South China University of Technology Huanfeng Jiang South China University of Technology Article Keywords: pyridine derivatives, organic synthesis, medicinal chemistry. Posted Date: March 3rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-258126/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract A novel strategy has been established to assemble an array of densely substituted pyridine derivatives from nitriles and o-substituted aryl alkynes or 1-methyl-1,3-enynes via a non-classical [4 + 2] cycloaddition along with 1,5-hydrogen shift process. The well-balanced anities of two different alkali metal salts enable the C(sp3)-H bond activation as well as the excellent chemo- and regioselectivities. This protocol offers a new guide to construct pyridine frameworks from nitriles with sp3-carbon pronucleophiles, and shows potential applications in organic synthesis and medicinal chemistry. Introduction Compounds containing pyridine core structures, not only widely exist in natural products, pharmaceuticals, and functional materials,1–7 but also serve as useful and valuable building blocks for metal ligands.8,9 For instance, pyridine derivative Actos I10 is a famous drug for the treatment of type 2 diabetes; Bi-(or tri-)pyridines II11–15 are often used as ligands in metal-catalyzed reactions; Kv1.5 antagonist III16 and alkaloid papaverine IV17 are two representative isoquinolines as a promising atrial- selective agent and a smooth muscle relaxant, respectively (Fig. -
TR-470: Pyridine (CASRN 110-86-1) in F344/N Rats, Wistar Rats, And
NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF PYRIDINE (CAS NO. 110-86-1) IN F344/N RATS, WISTAR RATS, AND B6C3F1 MICE (DRINKING WATER STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 March 2000 NTP TR 470 NIH Publication No. 00-3960 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. -
Monoazo Dyes of the Benzothiazole Series, Their Preparation and Use In
Europâisches Patentamt 0 013 809 (ij) QJJJ EuropeanEurooean Patent Office Qj)l'ï> Publication number: V ^- Office européen des brevets (lD EUROPEAN PATENT SPECIFICATION © Date of publication of patent spécification: 10.08.83 © Int. Cl.3: C 09 B 23/00, C 09 B 29/08, D 06 P 1/18 @^ Application number: 79302860.6 @ Dateof filing: 12.12.79 54) Monoazo dyes of the benzothiazole séries, their préparation and use in dyeing or printing hydrophobic fibres. (30) Priority: 25.12.78 JP 163617/78 @ Proprietor: SUMITOMO CHEMICAL COMPANY, 03.10.79 JP 128308/79 LIMITED 1 5 Kitahama 5-chome Higashi-ku Osaka-shi Osaka-fu (JP) © Date of publication of application: 06.08.80 Bulletin 80/16 @ Inventor: Yoshinaga, Kenja 10-3-314, Sonehigashinocho-2-chome @ Publication of the grant of the patent: Tokonaka-shi (JP) 1 0.08.83 Bulletin 83/32 Inventor: Hashimoto, Kiyoyasu 2-40, Hirata-1-chome Ibaraki-shi (JP) (84) Designated Contracting States: Inventor: Okaniwa, Tetsuo CH DE FR GB IT NL 27, Kuisehonmachi-1 -chome Amagasaki-shi (JP) Inventor: Kenmochi, Hirohito @ References cited: 9-1 5, Matsugaoka-4-chome DE - A - 1 959 777 Takatsuki-shi (JP) FR - A - 1 444 036 GB - A - 944 250 GB - A - 1 448 782 @ Representative: Harrison, Michael Robert et al, Urquhart-Dykes & Lord 47 Marylebone Lane London W1 M 6DL(GB) The file contains technical information submitted after the application was filed and not included in this specification Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. -
Robert Burns Woodward
The Life and Achievements of Robert Burns Woodward Long Literature Seminar July 13, 2009 Erika A. Crane “The structure known, but not yet accessible by synthesis, is to the chemist what the unclimbed mountain, the uncharted sea, the untilled field, the unreached planet, are to other men. The achievement of the objective in itself cannot but thrill all chemists, who even before they know the details of the journey can apprehend from their own experience the joys and elations, the disappointments and false hopes, the obstacles overcome, the frustrations subdued, which they experienced who traversed a road to the goal. The unique challenge which chemical synthesis provides for the creative imagination and the skilled hand ensures that it will endure as long as men write books, paint pictures, and fashion things which are beautiful, or practical, or both.” “Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect,” in Pointers and Pathways in Research (Bombay:CIBA of India, 1963). Robert Burns Woodward • Graduated from MIT with his Ph.D. in chemistry at the age of 20 Woodward taught by example and captivated • A tenured professor at Harvard by the age of 29 the young... “Woodward largely taught principles and values. He showed us by • Published 196 papers before his death at age example and precept that if anything is worth 62 doing, it should be done intelligently, intensely • Received 24 honorary degrees and passionately.” • Received 26 medals & awards including the -Daniel Kemp National Medal of Science in 1964, the Nobel Prize in 1965, and he was one of the first recipients of the Arthur C. -
Toxicological Profile for Pyridine
TOXICOLOGICAL PROFILE FOR PYRIDINE Agency for Toxic Substances and Disease Registry U.S. Public Health Service September 1992 ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. 1 1. PUBLIC HEALTH STATEMENT This Statement was prepared to give you information about pyridine and to emphasize the human health effects that may result from exposure to it. The Environmental Protection Agency (EPA) has identified 1,177 sites on its National Priorities List (NPL). Pyridine has been found at 4 of these sites. However, we do not know how many of the 1,177 NPL sites have been evaluated for pyridine. As EPA evaluates more sites, the number of sites at which pyridine is found may change. This information is important for you to know because pyridine may cause harmful health effects and because these sites are potential or actual sources of human exposure to pyridine. When a chemical is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment as a chemical emission. This emission, which is also called a release, does not always lead to exposure. You can be exposed to a chemical only when you come into contact with the chemical. You may be exposed to it in the environment by breathing, eating, or drinking substances containing the chemical or from skin contact with it. If you are exposed to a hazardous chemical such as pyridine, several factors will determine whether harmful health effects will occur and what the type and severity of those health effects will be. -
Thiocyanate Pyridine Complexes
W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2017 Structural Comparison of Copper(II) Thiocyanate Pyridine Complexes Joseph V. Handy College of WIlliam & Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Inorganic Chemistry Commons Recommended Citation Handy, Joseph V., "Structural Comparison of Copper(II) Thiocyanate Pyridine Complexes" (2017). Undergraduate Honors Theses. Paper 1100. https://scholarworks.wm.edu/honorstheses/1100 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Structural Comparison of Copper(II) Thiocyanate Pyridine Complexes A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Chemistry from The College of William & Mary by Joseph Viau Handy Accepted for ____________________________ ________________________________ Professor Robert D. Pike ________________________________ Professor Deborah C. Bebout ________________________________ Professor David F. Grandis ________________________________ Professor William R. McNamara Williamsburg, VA May 3, 2017 1 Table of Contents Table of Contents…………………………………………………...……………………………2 List of Figures, Tables, and Charts………………………………………...…………………...4 Acknowledgements….…………………...………………………………………………………6 -
Efficient Synthesis of Novel Pyridine-Based Derivatives Via
molecules Article Efficient Synthesis of Novel Pyridine-Based Derivatives via Suzuki Cross-Coupling Reaction of Commercially Available 5-Bromo-2-methylpyridin-3-amine: Quantum Mechanical Investigations and Biological Activities Gulraiz Ahmad 1, Nasir Rasool 1,*, Hafiz Mansoor Ikram 1, Samreen Gul Khan 1, Tariq Mahmood 2, Khurshid Ayub 2, Muhammad Zubair 1, Eman Al-Zahrani 3, Usman Ali Rana 4, Muhammad Nadeem Akhtar 5 and Noorjahan Banu Alitheen 6,* 1 Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; [email protected] (G.A.); [email protected] (H.M.I.); [email protected] (S.G.K.); [email protected] (M.Z.) 2 Department of Chemistry, COMSATS Institute of Information Technology, University Road, Tobe Camp, 22060 Abbottabad, Pakistan; [email protected] (T.M.); [email protected] (K.A.) 3 Chemistry Department, Faculty of Science, Taif University, 888-Taif, Saudi Arabia; [email protected] 4 Sustainable Energy Technologies Center, College of Engineering, P.O. Box 800, King Saud University, Riyadh 11421, Saudi Arabia; [email protected] 5 Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun, Razak 26300, Kuantan Pahang, Malaysia; [email protected] 6 Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor Darul Ehsan 43400, Malaysia * Correspondence: [email protected] (N.R.); [email protected] (N.B.A.); Tel.: +92-332-7491790 (N.R.); +60-3-8946-7471 (N.B.A.); Fax: +92-41-9201032 (N.R.); +60-3-8946-7510 (N.B.A.) Academic Editor: Diego Muñoz-Torrero Received: 20 November 2016; Accepted: 6 January 2017; Published: 27 January 2017 Abstract: The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a–2i, 4a–4i. -
Heterocyclic Chemistrychemistry
HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics -
Method for Producing Pyridine Compound
(19) TZZ¥_¥¥_T (11) EP 3 159 339 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 26.04.2017 Bulletin 2017/17 C07D 413/04 (2006.01) C07D 471/04 (2006.01) A01N 43/76 (2006.01) A01N 43/90 (2006.01) (21) Application number: 15806287.7 (86) International application number: (22) Date of filing: 29.05.2015 PCT/JP2015/065512 (87) International publication number: WO 2015/190316 (17.12.2015 Gazette 2015/50) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • WAKAMATSU, Takayuki GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Oita-shi PL PT RO RS SE SI SK SM TR Oita 870-0106 (JP) Designated Extension States: • KASAI, Rika BA ME Osaka-shi Designated Validation States: Osaka 554-8558 (JP) MA (74) Representative: Vossius & Partner (30) Priority: 09.06.2014 JP 2014118457 Patentanwälte Rechtsanwälte mbB Siebertstrasse 3 (71) Applicant: Sumitomo Chemical Company, Limited 81675 München (DE) Tokyo 104-8260 (JP) (54) METHOD FOR PRODUCING PYRIDINE COMPOUND (57) To make it possible to produce a pyridine compound represented by formula (1) that is useful as an insecticide by reacting a compound represented by formula. (2) and a compound represented by formula (3). (In the formula, 1L represents a halogen atom; R2, R3, R4, R5, and R6 represent chain hydrocarbon groups, etc., having 1-6 carbon atoms optionally substituted by fluorine atoms. A 1 represents-NR7-, an oxygen atom, or a sulfur atom; A 2 represents a nitrogen atom or =CR8-. -
Hydrophobically Modified Polyethyleneimines And
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2007 Hydrophobically Modified olyP ethyleneimines and Ethoxylated Polyethyleneimines Michael Joseph Simons Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Chemistry Commons Repository Citation Simons, Michael Joseph, "Hydrophobically Modified olyP ethyleneimines and Ethoxylated Polyethyleneimines" (2007). Browse all Theses and Dissertations. 162. https://corescholar.libraries.wright.edu/etd_all/162 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By MICHAEL J. SIMONS B.A., Columbia University, 1985 2007 Wright State University Wright State University School of Graduate Studies August 8, 2007 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Michael J. Simons ENTITLED Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. _______________________________ Eric Fossum, Ph. D. Thesis Director _______________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination _______________________________ Eric Fossum, Ph. D. _______________________________ Daniel Ketcha, Ph. D. _______________________________ Kenneth Turnbull, Ph.D. _______________________________ Joseph F. Thomas, Jr. Ph.D. Dean, School of Graduate Studies Abstract Michael Simons. M.S., Department of Chemistry, Wright State University, 2007. Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines. -
Investigations of the Reactivity of Pyridine Carboxylic Acids with Diazodiphenylmethane in Protic and Aprotic Solvents. Part I
J. Serb. Chem. Soc. 70 (4) 557–567 (2005) UDC 547.821+547.595:543.878 JSCS – 3288 Original scientific paper Investigations of the reactivity of pyridine carboxylic acids with diazodiphenylmethane in protic and aprotic solvents. Part I. Pyridine mono-carboxylic acids ALEKSANDAR D. MARINKOVI]*#, SA[A @. DRMANI]#, BRATISLAV @. JOVANOVI]# and MILICA MI[I]-VUKOVI]# Department of Organic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P. O. Box 3503, 11120 Belgrade, Serbia and Montenegro (e-mail: [email protected]) (Received 14 May, revised 26 July 2004) Abstract: Rate constants for the reaction of diazodiphenylmethane with isomeric pyridine carboxylic acids were determined in chosen protic and aprotic solvents at 30 °C, using the well known UV spectrophotometric method. The values of the rate constants of the investigated acids in protic solvents were higher than those in aprotic solvents. The second order rate constants were correlated with solvent pa- rameters using the Kamlet-Taft solvatochromic equation in the form: log k =logk0 + sp*+aa + bb. The correlation of the obtained kinetic data were performed by means of multiple linear regression analysis taking appropriate solvent parameters. The signs of the equation coefficients were in agreement with the postulated reaction mechanism. The mode of the influence of the solvent on the reaction rate in all the investigated acids are discussed on the basis of the correlation results. Keywords: pyridine carboxylic acids, diazodiphenylmethane, rate constants, solvent parameters, protic and aprotic solvents. INTRODUCTION The relationship between the structure of carboxylic acids and their reactivity with diazodiphenylmethane (DDM) has been studied by many authors,1,2 with particular regard to the influence of the solvent.