Chem 215 F11 Notes – Dr. Masato Koreeda - Page 1 of 14

Total Page:16

File Type:pdf, Size:1020Kb

Chem 215 F11 Notes – Dr. Masato Koreeda - Page 1 of 14 Chem 215 F11 Notes – Dr. Masato Koreeda - Page 1 of 14. Date: September 30, 2011 Chapter 15: Carboxylic Acids and Their Derivatives – Acyl Transfer Reactions I. Introduction Examples: note: R could be "H" R Z R O H R O R' ester O carboxylic acid O O an acyl group bonded to R X R S acid halide* R' an electronegative atom (Z) thioester O X = halogen O R' R, R', R": alkyl, alkenyl, alkynyl, R O R' R N or aryl group R" amide O O O acid anhydride one of or both of R' and R" * acid halides could be "H" R F R Cl R Br R I O O O O acid fluoride acid chloride acid bromide acid iodide R Z sp2 hybridized; trigonal planar making it relatively "uncrowded" O The electronegative O atom polarizes the C=O group, making the C=O carbon "electrophilic." Resonance contribution by Z δ * R Z R Z R Z R Z C C C C O O O δ O hybrid structure The basicity and size of Z determine how much this resonance structure contributes to the hybrid. * The more basic Z is, the more it donates its electron pair, and the more resonance structure * contributes to the hybrid. similar basicity O R' Cl OH OR' NR'R" Trends in basicity: O weakest increasing basiciy strongest base base Check the pKa values of the conjugate acids of these bases. Chem 215 F11 Notes –Dr. Masato Koreeda - Page 2 of 14. Date: September 30, 2011 Relative stabilities of carboxylic acid derivatives against nucleophiles R Z As the basicity of Z increases, the stability of increases because of added resonance stabilization. O less stable (i.e., more reactive) R Cl toward R O R' nucleophiles O O O R OH acid halide R OR' acid anhydride O O ester carboxylic R NR'R" R O acid O O amide carboxylate R Z Relative stabilities of 's against nucleophiles most stable O (i.e., least reactive) toward nucleophiles A few naming issues R • The group obtained from a carboxylic acid an acyl group, i.e., by the removal of the OH is called O e.g., H3C acetyl group; C6H5 benzoyl group; O often abbreviated as Ac O often abbreviated as Bz • Names of the C2 C=O derivatives [IUPAC names in parentheses] H C OH H C O Na H C O CH 3 3 3 C 3 O acetic acid O sodium acetate O H2 ethyl acetate (ethanoic acid) (sodium ethanoate) (ethyl ethanoate) H3C NH2 H3C Cl H3C O CH3 O acetamide O acetyl chloride O O acetic anhydride (ethanamide) (ethanoyl chloride) (ethanoic anhydride) [abbreviated as Ac2O] • C N cyano group: considered to be an acid derivative as it can be hydrolyzed to form an amide and carboxylic acid H3C C N acetonitrile [IUPAC name: ethanenitrile] The suffix -nitrile is added to the name of the hydrocarbon containing the same number of carbon atoms, including the carbon atom of the CN group. For example, 5 4 3 2 1 benzonitrile H3C-CH2-CH2-CH2-C N pentanenitrile C N [IUPAC name] [IUPAC name] Chem 215 F11 Notes – Dr. Masato Koreeda - Page 3 of 14. Date: September 30, 2011 II. Acyl-transfer Reactions – Acylation Reactions "acylating" agent O O For this reaction to occur, Z must O be a better leaving group than Nu. R C Z R C Z R C Nu Nucleophilic attack Nu Two possible leaving groups Nu Overall, "The acyl group, R-C(=O)-, has been transferred from Z to Nu." Leaving group ability and pKa values of the conjugate acids of leaving groups The better the leaving group, the more reactive R C Z is in nucleophilic acyl substitution. O O C R' Cl > >> OR, OH >> NH2 O better leaving group Compare pKa values of the conjugate acids of these leaving groups: H-Cl (pKa -6); H-O(O=C)-R' (pKa ~ 4.7); H-OH (pKa 15.7)H-OR (pKa 16-19); H-NH2 (pKa 35) Acyl-transfer reactions of carboxylic acid derivatives Most reactive! O O HO O Cl or O O O Na SOCl2 O O NaSCH2CH3 or HSCH2CH3 CH NH SCH2CH3 3 2 O (2 or more mol. O equiv.*) OH CH3CH2OH/base *2nd mol equiv needed to do OCH2CH3 or CH3CH2ONa O + CH3 H3O CH3NH2 N O (1 mol. equiv.) H Represents an acylation H H CH reaction of H2O. N 3 N H H3C H O [can be prepated from any of the above O by treatment with OH] Chem 215 F11 Notes – Dr. Masato Koreeda - Page 4 of 14. Date: September 30, 2011 III. Synthesis of Carboxylic Acids (1) With the same number of carbon atoms as the starting material: H H H OH a. oxidation oxidation R OH e.g., pyridinium chloro- R O R O chromate (PCC) 1°-alcohol or Swern method aldehyde carboxylic acid e.g., Jones' reagent [CrO3, H2SO4, H2O, acetone] *A potential byproduct in the Jones oxidation of a primary alcohol: O CH2-R (ester) R O H O+ H Ag2O, NaOH, H2O O Na 3 OH (Tollens reagent) (to pH ~2) b. R R O R O O aldehyde sodium carboxylic acid carboxylate Selective for aldehyde! Ag0 (silver mirror) OH H OH H H OH OH R R O O Ag O Ag R O Ag An example of the selective oxidation of an aldehyde group: O O H H + H H Ag2O, NaOH, H2O H3O H (Tollens reagent) (to pH ~2) O-H H H H-O H H-O H (2) Fewer carbon atoms than the starting material: OH OH 1. O3 O + 2. oxidative work-up O - (e.g., Ag2O, HO + then H3O ) (3) One more carbon atom than the starting material: a. Use of organometallic reagents MgBr O-H δ O H O+ Br MgBr C 3 C Mg O (to pH ~2) O δ O C O Chem 215 F11 Notes – Dr. Masato Koreeda - Page 5 of 14. Date: September 30, 2011 III Synthesis of carboxylic acid (continued) (3) b. By an SN2 reaction with C N , followed by hydrolysis Cl Na C N C phenylacetonitrile N ethanol or directly with benzyl chloride H2O, H2SO4, 100 °C H2O, HCl NH2 OH + (NH4)2SO4 O H2O, H2SO4, 100 °C O phenylacetamide phenylacetic acid Mechanism for the acid-catalyzed hydrolysis of nitriles: H H H O R N pKa ~ -10 C H δ δ O R C N H H O H H R C N H H H O nitrile H H H O H R N H R NH H H R N C 2 C H C H O R N O O O C H H H amide O H From an amide: H H H O H H O O H H H H H H O O H O R N C H R C NH2 R C N H R C NH3 O O O H O H H H H amide O H O H R C R C H carboxylic O O H O H acid Note: Nitriles can be hydrolyzed to the corresponding carboxylates under strongly basic conditions (e.g., NaOH, - H2O, Δ). Mechanism? Avoid the formation of a RR’N species. Chem 215 F11 Notes – Dr. Masato Koreeda - Page 6 of 14. Date: September 30, 2011 III Synthesis of Carboxylic Acids (cont’d) Hydrolysis of nitriles under basic conditions: Under milder basic conditions, an amide is obtained. Mechanism for the base-catalyzed hydrolysis of nitriles: H O O H O O H H H H O * O O * O H H H H H H R C N C N R C N R C N R O R H H H C O O nitrile H H H O H O O H Alternatively, O H H H O H O R O O O O C C N ** C C N C N R NH2 R R O H H R H amide carboxylate * This is to avoid the generation of highly unfavorable R-NH species. The pKa of R-NH2 is at ~35. ** This N is stabilized by resonance with C=O, thus allowable! The pKa of an amide H is at ~12. IV. Synthesis of Acid Chlorides and Acid Anhydrides (1) Acid Chlorides: highly electrophilic C=O carbons; react with even weak nucleophiles such as ROH; need to be prepared under anhydrous conditions. Prepared from carboxylic acids. O a. O With SOCl2: + SOCl Δ + SO + HCl (more common) 2 2 H3C OH H3C Cl (gas) (gas) mechanism: O O O O S S S Cl O Cl -SO2 H -HCl O S O Cl O Cl O O Cl Cl R OH Cl R OH -Cl R R OH R OH R Cl Cl Cl Cl b. With PCl3: O Δ O 3 + PCl3 3 + H3PO3 H3C OH H3C Cl (2) Acid Anhydrides O Δ O O removed by 2 + H O high 2 heating at ~100 °C H3C OH H C O CH temperatures 3 3 (800 °C) bp higher than H2O O O O O Δ H3C (H2C)10 O 2 H3C (H2C)10 + O + 2 OH H C O CH 3 3 H3C (H2C)10 H3C OH An "acyl transfer reaction" at C=O carbons via intermediate mp 42 °C O bp 118 °C O (decanoic anhydride) (can be selectively distilled off from the mixture) H3C R-COOH becomes highly acidic upon O heating at hight emperatures, thus H3C (H2C)10 (mixed anhydride) catalyzes anhydride formation by O protonating the C=Os.
Recommended publications
  • Alkyldihydropyrones, New Polyketides Synthesized by a Type III Polyketide Synthase from Streptomyces Reveromyceticus
    The Journal of Antibiotics (2014) 67, 819–823 & 2014 Japan Antibiotics Research Association All rights reserved 0021-8820/14 www.nature.com/ja ORIGINAL ARTICLE Alkyldihydropyrones, new polyketides synthesized by a type III polyketide synthase from Streptomyces reveromyceticus Teruki Aizawa1, Seung-Young Kim1, Shunji Takahashi2,3, Masahiko Koshita1, Mioka Tani1, Yushi Futamura3, Hiroyuki Osada2,3 and Nobutaka Funa1 Genome sequencing allows a rapid and efficient identification of novel catalysts that produce novel secondary metabolites. Here we describe the catalytic properties of dihydropyrone synthase A (DpyA), a novel type III polyketide synthase encoded in a linear plasmid of Streptomyces reveromyceticus. Heterologous expression of dpyA led to the accumulation of alkyldihydropyrones A (1), B (2), C (3) and D (4), which are novel dihydropyran compounds that exhibit weak cytotoxicity against the leukemia cell line HL-60. DpyA catalyzes the condensation of b-hydroxyl acid thioester and methylmalonyl-CoA to yield a triketide intermediate that then undergoes lactonization of a secondary alcohol and a thioester to give alkyldihydropyrone. The Journal of Antibiotics (2014) 67, 819–823; doi:10.1038/ja.2014.80; published online 2 July 2014 INTRODUCTION Very recently, Tang et al.11 discovered that presulficidin, which is Type III polyketide synthase (PKS), which is widely distributed synthesized by Cpz6, a type III PKS from the caprazamycin among higher plants, fungi and bacteria, catalyzes the assembly of biosynthetic cluster, relays sulfonate from 30-phosphoadenine-50- primary metabolites such as acyl-CoA compounds to synthesize phosphosulfate to caprazamycin. structurally complex polyketides.1 The reaction catalyzed by type III Genome sequence analyses of Streptomyces species have shown that PKS starts with the formation of a thioester bond between the the number of biosynthetic gene clusters encoded on the chromosome catalytic center cysteine and an acyl group derived from a starter is much higher than the number of secondary metabolites isolated substrate.
    [Show full text]
  • The Reaction of Aminonitriles with Aminothiols: a Way to Thiol-Containing Peptides and Nitrogen Heterocycles in the Primitive Earth Ocean
    life Article The Reaction of Aminonitriles with Aminothiols: A Way to Thiol-Containing Peptides and Nitrogen Heterocycles in the Primitive Earth Ocean Ibrahim Shalayel , Seydou Coulibaly, Kieu Dung Ly, Anne Milet and Yannick Vallée * Univ. Grenoble Alpes, CNRS, Département de Chimie Moléculaire, Campus, F-38058 Grenoble, France; [email protected] (I.S.); [email protected] (S.C.); [email protected] (K.D.L.); [email protected] (A.M.) * Correspondence: [email protected] Received: 28 September 2018; Accepted: 18 October 2018; Published: 19 October 2018 Abstract: The Strecker reaction of aldehydes with ammonia and hydrogen cyanide first leads to α-aminonitriles, which are then hydrolyzed to α-amino acids. However, before reacting with water, these aminonitriles can be trapped by aminothiols, such as cysteine or homocysteine, to give 5- or 6-membered ring heterocycles, which in turn are hydrolyzed to dipeptides. We propose that this two-step process enabled the formation of thiol-containing dipeptides in the primitive ocean. These small peptides are able to promote the formation of other peptide bonds and of heterocyclic molecules. Theoretical calculations support our experimental results. They predict that α-aminonitriles should be more reactive than other nitriles, and that imidazoles should be formed from transiently formed amidinonitriles. Overall, this set of reactions delineates a possible early stage of the development of organic chemistry, hence of life, on Earth dominated by nitriles and thiol-rich peptides (TRP). Keywords: origin of life; prebiotic chemistry; thiol-rich peptides; cysteine; aminonitriles; imidazoles 1. Introduction In ribosomes, peptide bonds are formed by the reaction of the amine group of an amino acid with an ester function.
    [Show full text]
  • Solvent Effects on Structure and Reaction Mechanism: a Theoretical Study of [2 + 2] Polar Cycloaddition Between Ketene and Imine
    J. Phys. Chem. B 1998, 102, 7877-7881 7877 Solvent Effects on Structure and Reaction Mechanism: A Theoretical Study of [2 + 2] Polar Cycloaddition between Ketene and Imine Thanh N. Truong Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112 ReceiVed: March 25, 1998; In Final Form: July 17, 1998 The effects of aqueous solvent on structures and mechanism of the [2 + 2] cycloaddition between ketene and imine were investigated by using correlated MP2 and MP4 levels of ab initio molecular orbital theory in conjunction with the dielectric continuum Generalized Conductor-like Screening Model (GCOSMO) for solvation. We found that reactions in the gas phase and in aqueous solution have very different topology on the free energy surfaces but have similar characteristic motion along the reaction coordinate. First, it involves formation of a planar trans-conformation zwitterionic complex, then a rotation of the two moieties to form the cycloaddition product. Aqueous solvent significantly stabilizes the zwitterionic complex, consequently changing the topology of the free energy surface from a gas-phase single barrier (one-step) process to a double barrier (two-step) one with a stable intermediate. Electrostatic solvent-solute interaction was found to be the dominant factor in lowering the activation energy by 4.5 kcal/mol. The present calculated results are consistent with previous experimental data. Introduction Lim and Jorgensen have also carried out free energy perturbation (FEP) theory simulations with accurate force field that includes + [2 2] cycloaddition reactions are useful synthetic routes to solute polarization effects and found even much larger solvent - formation of four-membered rings.
    [Show full text]
  • The Relative Rates of Thiol–Thioester Exchange and Hydrolysis for Alkyl and Aryl Thioalkanoates in Water
    Orig Life Evol Biosph (2011) 41:399–412 DOI 10.1007/s11084-011-9243-4 PREBIOTIC CHEMISTRY The Relative Rates of Thiol–Thioester Exchange and Hydrolysis for Alkyl and Aryl Thioalkanoates in Water Paul J. Bracher & Phillip W. Snyder & Brooks R. Bohall & George M. Whitesides Received: 14 April 2011 /Accepted: 16 June 2011 / Published online: 5 July 2011 # Springer Science+Business Media B.V. 2011 Abstract This article reports rate constants for thiol–thioester exchange (kex), and for acid- mediated (ka), base-mediated (kb), and pH-independent (kw) hydrolysis of S-methyl thioacetate and S-phenyl 5-dimethylamino-5-oxo-thiopentanoate—model alkyl and aryl thioalkanoates, respectively—in water. Reactions such as thiol–thioester exchange or aminolysis could have generated molecular complexity on early Earth, but for thioesters to have played important roles in the origin of life, constructive reactions would have needed to compete effectively with hydrolysis under prebiotic conditions. Knowledge of the kinetics of competition between exchange and hydrolysis is also useful in the optimization of systems where exchange is used in applications such as self-assembly or reversible binding. For the alkyl thioester S-methyl thioacetate, which has been synthesized in −5 −1 −1 −1 −1 −1 simulated prebiotic hydrothermal vents, ka = 1.5×10 M s , kb = 1.6×10 M s , and −8 −1 kw = 3.6×10 s . At pH 7 and 23°C, the half-life for hydrolysis is 155 days. The second- order rate constant for thiol–thioester exchange between S-methyl thioacetate and 2- −1 −1 sulfonatoethanethiolate is kex = 1.7 M s .
    [Show full text]
  • Reaction Mechanism
    Reaction Mechanism A detailed sequence of steps for a reaction Reasonable mechanism: 1. Elementary steps sum to the overall reaction 2. Elementary steps are physically reasonable 3. Mechanism is consistent with rate law and other experimental observations (generally found from rate limiting (slow) step(s) A mechanism can be supported but never proven NO2 + CO NO + CO2 2 Observed rate = k [NO2] Deduce a possible and reasonable mechanism NO2 + NO2 NO3 + NO slow NO3 + CO NO2 + CO2 fast Overall, NO2 + CO NO + CO2 Is the rate law for this sequence consistent with observation? Yes Does this prove that this must be what is actually happening? No! NO2 + CO NO + CO2 2 Observed rate = k [NO2] Deduce a possible and reasonable mechanism NO2 + NO2 NO3 + NO slow NO3 + CO NO2 + CO2 fast Overall, NO2 + CO NO + CO2 Is the rate law for this sequence consistent with observation? Yes Does this prove that this must be what is actually happening? No! Note the NO3 intermediate product! Arrhenius Equation Temperature dependence of k kAe E/RTa A = pre-exponential factor Ea= activation energy Now let’s look at the NO2 + CO reaction pathway* (1D). Just what IS a reaction coordinate? NO2 + CO NO + CO2 High barrier TS for step 1 Reactants: Lower barrier TS for step 2 NO2 +NO2 +CO Products Products Bottleneck NO +CO2 NO +CO2 Potential Energy Step 1 Step 2 Reaction Coordinate NO2 + CO NO + CO2 NO22 NO NO 3 NO NO CO NO CO 222In this two-step reaction, there are two barriers, one for each elementary step. The well between the two transition states holds a reactive intermediate.
    [Show full text]
  • Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution
    CH. 13 Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution Electrophiles add to aromatic rings in a fashion somewhat similar to the addition of electrophiles to alkenes. Recall: R3 R4 E Y E Y C C + E Y R1 C C R4 R1 C C R4 − R2 R1 δ+ δ R2 R3 R2 R3 In aromatic rings, however, we see substitution of one of the benzene ring hydrogens for an electrophile. H E + E Y + Y H δ+ δ− The mechanism is the same regardless of the electrophile. It involves two steps: (1) Addition of the electrophile to form a high-energy carbocation. (2) Elimination of the proton to restore the aromatic ring system. H H H H slow E Y + Y step 1 + E δ+ δ− high energy arenium ion H H step 2 fast E E + Y + Y H The first step is the slow step since the aromaticity of the benzene ring system is destroyed on formation of the arenium ion intermediate. This is a high energy species but it is stabilized by resonance with the remaining two double bonds. The second step is very fast since it restores the aromatic stabilization. 1 CH. 13 H H H H H H E E E There are five electrophilic aromatic substitution reactions that we will study. (1) Nitration H NO2 H2SO4 + HNO3 (2) Sulfonation H SO3H + H2SO4 (3) Halogenation with bromine or chlorine H X FeX3 X = Br, Cl + X2 (4) Friedel-Crafts Alkylation H R AlX + RX 3 (5) Friedel-Crafts Acylation O H O C AlX3 R + Cl C R 2 CH.
    [Show full text]
  • Fatty Acid Biosynthesis
    BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism Anaplerotic reactions Biosynthesis of Fatty Acids and Lipids Fatty Acids contrasts Diversification of fatty acids location & transport Eicosanoids Synthesis Prostaglandins and Thromboxane acetyl-CoA carboxylase Triacylglycerides fatty acid synthase ACP priming Membrane lipids 4 steps Glycerophospholipids Control of fatty acid metabolism Sphingolipids Isoprene lipids: Cholesterol ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1 ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Assembly of fatty acids into triacylglycerol and phospholipids 4. Metabolism of isoprenes a. Ketone bodies and Isoprene biosynthesis b. Isoprene polymerization i. Cholesterol ii. Steroids & other molecules iii. Regulation iv. Role of cholesterol in human disease ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Degradation Synthesis Ketone body Isoprene Utilization Biosynthesis 2 Catabolism Fatty Acid Biosynthesis Anabolism • Contrast with Sugars – Lipids have have hydro-carbons not carbo-hydrates – more reduced=more energy – Long-term storage vs short-term storage – Lipids are essential for structure in ALL organisms: membrane phospholipids • Catabolism of fatty acids –produces acetyl-CoA –produces reducing
    [Show full text]
  • Reactions of Benzene & Its Derivatives
    Organic Lecture Series ReactionsReactions ofof BenzeneBenzene && ItsIts DerivativesDerivatives Chapter 22 1 Organic Lecture Series Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon: Halogenation: FeCl3 H + Cl2 Cl + HCl Chlorobenzene Nitration: H2 SO4 HNO+ HNO3 2 + H2 O Nitrobenzene 2 Organic Lecture Series Reactions of Benzene Sulfonation: H 2 SO4 HSO+ SO3 3 H Benzenesulfonic acid Alkylation: AlX3 H + RX R + HX An alkylbenzene Acylation: O O AlX H + RCX 3 CR + HX An acylbenzene 3 Organic Lecture Series Carbon-Carbon Bond Formations: R RCl AlCl3 Arenes Alkylbenzenes 4 Organic Lecture Series Electrophilic Aromatic Substitution • Electrophilic aromatic substitution: a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile H E + + + E + H • In this section: – several common types of electrophiles – how each is generated – the mechanism by which each replaces hydrogen 5 Organic Lecture Series EAS: General Mechanism • A general mechanism slow, rate + determining H Step 1: H + E+ E El e ctro - Resonance-stabilized phile cation intermediate + H fast Step 2: E + H+ E • Key question: What is the electrophile and how is it generated? 6 Organic Lecture Series + + 7 Organic Lecture Series Chlorination Step 1: formation of a chloronium ion Cl Cl + + - - Cl Cl+ Fe Cl Cl Cl Fe Cl Cl Fe Cl4 Cl Cl Chlorine Ferric chloride A molecular complex An ion pair (a Lewis (a Lewis with a positive charge containing a base) acid) on ch lorine ch loronium ion Step 2: attack of
    [Show full text]
  • Chapter 14 Chemical Kinetics
    Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate of formation of products and the rate of disappearance of reactants given the balanced chemical equation for the reaction. Understand the form and meaning of a rate law including the ideas of reaction order and rate constant. Determine the rate law and rate constant for a reaction from a series of experiments given the measured rates for various concentrations of reactants. Use the integrated form of a rate law to determine the concentration of a reactant at a given time. Explain how the activation energy affects a rate and be able to use the Arrhenius Equation. Predict a rate law for a reaction having multistep mechanism given the individual steps in the mechanism. Explain how a catalyst works. C (diamond) → C (graphite) DG°rxn = -2.84 kJ spontaneous! C (graphite) + O2 (g) → CO2 (g) DG°rxn = -394.4 kJ spontaneous! 1 Chemical kinetics is the study of how fast chemical reactions occur. Factors that affect rates of reactions: 1) physical state of the reactants. 2) concentration of the reactants. 3) temperature of the reaction. 4) presence or absence of a catalyst. 1) Physical State of the Reactants • The more readily the reactants collide, the more rapidly they react. – Homogeneous reactions are often faster. – Heterogeneous reactions that involve solids are faster if the surface area is increased; i.e., a fine powder reacts faster than a pellet. 2) Concentration • Increasing reactant concentration generally increases reaction rate since there are more molecules/vol., more collisions occur.
    [Show full text]
  • Reaction Kinetics in Organic Reactions
    Autumn 2004 Reaction Kinetics in Organic Reactions Why are kinetic analyses important? • Consider two classic examples in asymmetric catalysis: geraniol epoxidation 5-10% Ti(O-i-C3H7)4 O DET OH * * OH + TBHP CH2Cl2 3A mol sieve OH COOH5C2 L-(+)-DET = OH COOH5C2 * OH geraniol hydrogenation OH 0.1% Ru(II)-BINAP + H2 CH3OH P(C6H5)2 (S)-BINAP = P(C6 H5)2 • In both cases, high enantioselectivities may be achieved. However, there are fundamental differences between these two reactions which kinetics can inform us about. 1 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions geraniol epoxidation: • enantioselectivity is controlled primarily by the preferred mode of initial binding of the prochiral substrate and, therefore, the relative stability of intermediate species. The transition state resembles the intermediate species. Finn and Sharpless in Asymmetric Synthesis, Morrison, J.D., ed., Academic Press: New York, 1986, v. 5, p. 247. geraniol hydrogenation: • enantioselectivity may be dictated by the relative reactivity rather than the stability of the intermediate species. The transition state may not resemble the intermediate species. for example, hydrogenation of enamides using Rh+(dipamp) studied by Landis and Halpern (JACS, 1987, 109,1746) 2 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions “Asymmetric catalysis is four-dimensional chemistry. Simple stereochemical scrutiny of the substrate or reagent is not enough. The high efficiency that these reactions provide can only be achieved through a combination of both an ideal three-dimensional structure (x,y,z) and suitable kinetics (t).” R. Noyori, Asymmetric Catalysis in Organic Synthesis,Wiley-Interscience: New York, 1994, p.3. “Studying the photograph of a racehorse cannot tell you how fast it can run.” J.
    [Show full text]
  • Identification of a Thioesterase Bottleneck in the Pikromycin Pathway Through Full-Module Processing of Unnatural Pentaketides
    Article pubs.acs.org/JACS Identification of a Thioesterase Bottleneck in the Pikromycin Pathway through Full-Module Processing of Unnatural Pentaketides † ‡ † § † ‡ ⊥ ∥ Douglas A. Hansen, , Aaron A. Koch, , and David H. Sherman*, , , , † ‡ § ⊥ Life Sciences Institute, Department of Medicinal Chemistry, Cancer Biology Graduate Program, Department of Chemistry, and ∥ Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States *S Supporting Information ABSTRACT: Polyketide biosynthetic pathways have been engineered to generate natural product analogs for over two decades. However, manipulation of modular type I polyketide synthases (PKSs) to make unnatural metabolites commonly results in attenuated yields or entirely inactive pathways, and the mechanistic basis for compromised production is rarely elucidated since rate-limiting or inactive domain(s) remain unidentified. Accordingly, we synthesized and assayed a series of modified pikromycin (Pik) pentaketides that mimic early pathway engineering to probe the substrate tolerance of the PikAIII-TE module in vitro. Truncated pentaketides were processed with varying efficiencies to corresponding macrolactones, while pentaketides with epimerized chiral centers were poorly processed by PikAIII-TE and failed to generate 12-membered ring products. Isolation and identification of extended but prematurely offloaded shunt products suggested that the Pik thioesterase (TE) domain has limited substrate flexibility and functions as a gatekeeper in the processing of
    [Show full text]
  • Ganic Compounds
    6-1 SECTION 6 NOMENCLATURE AND STRUCTURE OF ORGANIC COMPOUNDS Many organic compounds have common names which have arisen historically, or have been given to them when the compound has been isolated from a natural product or first synthesised. As there are so many organic compounds chemists have developed rules for naming a compound systematically, so that it structure can be deduced from its name. This section introduces this systematic nomenclature, and the ways the structure of organic compounds can be depicted more simply than by full Lewis structures. The language is based on Latin, Greek and German in addition to English, so a classical education is beneficial for chemists! Greek and Latin prefixes play an important role in nomenclature: Greek Latin ½ hemi semi 1 mono uni 1½ sesqui 2 di bi 3 tri ter 4 tetra quadri 5 penta quinque 6 hexa sexi 7 hepta septi 8 octa octo 9 ennea nona 10 deca deci Organic compounds: Compounds containing the element carbon [e.g. methane, butanol]. (CO, CO2 and carbonates are classified as inorganic.) See page 1-4. Special characteristics of many organic compounds are chains or rings of carbon atoms bonded together, which provides the basis for naming, and the presence of many carbon- hydrogen bonds. The valency of carbon in organic compounds is 4. Hydrocarbons: Compounds containing only the elements C and H. Straight chain hydrocarbons are named according to the number of carbon atoms: CH4, methane; C2H6 or H3C-CH3, ethane; C3H8 or H3C-CH2-CH3, propane; C4H10 or H3C-CH2- CH2-CH3, butane; C5H12 or CH3CH2CH2CH2CH3, pentane; C6H14 or CH3(CH2)4CH3, hexane; C7H16, heptane; C8H18, octane; C9H20, nonane; C10H22, CH3(CH2)8CH3, decane.
    [Show full text]