AP42 Section: 11.1

Reference Number: 49

Title: Test Report For Air Pollution Source Testing At Macasphalt, Melbourne, Florida,

Rarncon Environmental Corporation, Memphis, TN,

December 24,1992. MA2 Section & Reference __ RepoltSect. Reference -49

Test Report for Air Pollution Source Testing

at

MACASPHALT MELBOURNE, FLORIDA

and

NATIONAL ASPHALT PAVEMENT ASSOCIATION 5100 FORBES BLVD., NAPA BUILDING LANHAM, MARYLAND

submitted by:

RAMCON ENVIRONMENTAL CORPORATION 6707 FLETCHER CREEK COVE MEMPHIS. TENNESSEE 38133

December 2-4, 1992

Mr. Tom Brumagin National Asphalt Pavement Association Test Report for Air Pollution Source Testing

at i MACASPHALT MELBOURNE, FLORIDA . and

NATIONAL ASPHALT PAVEMENT ASSOCIATION 5100 FORBES BLVD., NAPA BUILDING LANHAM, MARYLAND

I

submitted by:

RAMCON ENVIRONMENTAL CORPORATION 6707 FLETCHER CREEK COVE MEMPHIS, TENNESSEE 38133

December 2-4, 1992

Mr. Tom Brumagin National Asphalt Pavement Association

WilliambbseDh Sewell. II Vice Presidenf , , ,. ..

TABLE OF CONTENTS

1 . INTRODUCTION ...... 1

II . TESTRESULTS ...... 2

111 . SAMPLING AND ANALYTICAL PROCEDURES ...... 7

IV . SOURCE INFORMATION ...... 21

V . EQUIPMENT USED ...... 22 VI . CALCULATIONS . A . Particulate - Condensibles ...... 29 B. Formaldehyde ...... 44 C . PAH ...... 57 D. SO,. THC. CO. NO. and CH, ...... 69

VI1. LABORATORY ANALYSIS RESULTS

A . Formaldehyde Analysis Results ...... 79 B. PAH.Analysis Results ...... 80 C . Particulate Analysis Results ...... 159 D. Fuel Analysis Results ...... 161

VIII . EQUIPMENT CALIBRATION DATA

A . GC CALIBRATION DATA ...... 162 B . CEMS CALIBRATION DATA ...... 177 C . PARTICULATE CALIBRATION DATA ...... 186

IX . FIELD DATA

A . CEMS ...... 195 B . GAS CHROMATOGRAPHY ...... 213 C . PAH ...... 220 D. PARTICULATE ...... 226 E. FORMALDEHYDE ...... 232

X . PLANT OPERATING DATA ...... 238

XI. RAMCON PERSONNEL ...... 243 1. INTRODUCTION

On January 2, 3 and 4, 1993, personnel from RAMCON Environmental Corporation conducted source emissions determinations at Macasphalt located in Melbourne, Florida. The testing was conducted according to the National Asphalt Pavement Association (NAPA) guidelines entitled, "Protocol for Air Pollution Source Testing".

The scope of work involved testing this facility for filterable and condensible particulate matter, formaldehyde, and polynuclear aromatic hydrocarbons. These compounds were sampled according to specified isokinetic testing procedures. Reference Method302 was employed for the particulate matter including condensibles. Method 001 1/a315 issued in SW-846 was utilized for the formaldehyde extraction, collection, and analysis. The polynuclear aromatic hydrocarbons were sampled using Modified Method 5.

In addition, "real-time" continuous emission monitor (CEM) instrumentation was utilized to conduct on-site analysis for oxygen, carbon dioxide, total volatile organics, sulfur dioxide, carbon monoxide, and NOx. Reference Methods 3A, 6C, 7E, 10, and 25A were employed for the analysis of oxygen and carbon dioxide, sulfur dioxide, nitrogen oxides, carbon monoxide, and total hydrocarbons respectively. These testing procedures utilize a sampling system to continuously extract sample gas from the source. This sample stream is routed to individual CEM's for analysis of the various targeted pollutants and diluent gases. The test results are based on the average value of one minute averages generated by the CEM instrument data acquisition during the test periods.

Methane, benzene, toluene, ethyl benzene, and xylene compounds were analyzed on a semi-continuous basis by employing a gas chromatograph to the sampling location. Reference Method 18 was used for these determinations. The gas stream is continuously sampled during the testing period(s). Periodically, a sample of the extracted gas stream is injected into the gas chromatograph for analysis. The test results are based on the average value of the injections performed during each test period. 02

Additionally stack gas moisture, velocity, and volumetric flow rate were determined to 0 provide data enabling conversion of flue gas concentrations to emission data. These determinations were conducted in conjunction with each of the isokinetic testing procedures.

Where possible, the testing was conducted simultaneously. This provides correlations of the various stack effluents relationships with one another. Three (3) test runs were conducted for each isokinetic testing procedure. Eleven test runs were conducted utilizing the CEM instrumental procedures for SO,, CO, THC, NOx, CO,, and 0,. Nine (9) test periods were conducted for the semi-continuous GC procedure. .

The purpose of the testing project was to provide air emissions information for developing a database of information using various types of hot mix asphalt plants.

Mr. Thomas E. Brumagin representing the National Asphalt Pavement Association was present during the testing procedure(s) conducted by RAMCON Environmental 0 Corporation.

II. TEST RESULTS

The test results are summarized in Tables I through 111. Each summary table represents the test results for particulate, formaldehyde, and PAH’s respectively. The gaseous pollutants of interest, THC, SO,, CO,, CO, NOx, 0,, CH,, and BTEX, test results are listed in each summary table. The test results for these gaseous compounds listed on each summary table were correlated to the isokinetic tests according to date and times. This provides a direct comparison of the test data for a specific targeted pollutant to other operational and emission data.

The summary tables provide the test results in concentration values of milligrams per dry standard cubic meter (mg/dscm) and parts per million (ppm), volume basis. The emission values of all targeted compounds are listed in pounds per hour (lb/hr). n$ c: pq ZG a rr pTp 9

m

m

- 07

111. SAMPLING & ANALYTICAL PROCEDURES 0) The following is a description of each of the test methods that were conducted during the performance test@). In this description, a discussion of the pertinent segments including preparation, sampling, and analysis is addressed. This section will provide information supporting the validity of the samples.

A. Determination of Carbon Dioxide and Oxygen Emissions From Stationary Sources (Instrumental Analyzer Procedure) - US EPA Method 3A: . The collection and analysis of carbon dioxide and oxygen content at the test location was performed by US EPA Reference Method 3A. This procedure utilizes continuous emissions monitors that provide the data results from the source on a "real-time" or instantaneous basis.

All of the CEM instrumental procedures that were conducted at the outlet testing location 0 were extracted and analyzed with similar testing strategies. Because of this similarity, a detailed description of the calibration and operation procedures of the CEM procedures is provided in the discussion of Method 3A and is referred to in the other sections concerning the additional procedures.

1, Calibration.

The calibration of the instruments is performed using certified gas standards composed of a known concentration of carbon dioxide and oxygen in zero grade nitrogen. These gas standards are prepared using partial pressure/volumetric and gravimetric methods.

The prepared gas mixture is analyzed and the certification tolerance is not greater than 2% of the pollutant component. A copy of the analysis certificate for each of the certified gas mixtures used during the testing is included in the test report. 08

The oxygen instrument utilizes an paramagnetic detector and the carbon dioxide 0 instrument utilizes a nondispersive infrared detector. The minimum detection limit for both gas analyzers is 0.1 %. The fullscale limitations of the oxygen and carbon dioxide analyzers is 25 and 20 % respectively.

Immediately prior to each compliance test series, a complete calibration of the instrument is performed. Each instrument has zero grade nitrogen injected into it and the zero potentiometer is adjusted, if necessary, until the proper voltage output from the analyzer is achieved.

Then a high range pollutant gas mixture, that has been prepared in the specified range percentage of the span or fullscale, is injected. After the system stabilizes, the span or fullscale potentiometer is adjusted until the voltage output from analyzer corresponds to the certification of analysis for the respective calibration gas.

When this procedure is complete and the system has responded properly to a zero and e fullscale reading, a mid and/or low range certified calibration gas is injected into the system. No adjustments are made to the system except to achieve proper flow rate through the analyzer. The analyzer, after reaching a stable value, must correspond to the certified value of the calibration gas within a specified percentage of the fullscale.

This mid range calibration gas serves two purposes of quality control and quality assurance. The first is to show that the instrument analyzes and outputs data on a linear scale. The second purpose is to validate that the zero and fullscale values of the instrument are properly set.

Prior to sampling, a single calibration gas was injected into the probe inlet. This calibration gas is usually a mixture of oxygen and carbon dioxide in a balance of zero nitrogen. The system is not adjusted except to achieve proper flow through the analyzers. The calibration standard is allowed to traverse the sampling system. The response of the analyzer during this bias check must agree with the initial analyzer 09 response of this standard within the specified tolerances set forth in the test method. This system bias check serves to demonstrate that the sample train is leak free and causes no interference to the integrity of the sample.

2. Samolinq.

After calibration, the system is purged with zero grade nitrogen to remove any pollutants that were injected as calibration gas. Once the system indicates that the pollutant gases have been removed, the calibration valve assembly is positioned to allow stack gas to flow through the instrument.

The sample gas is filtered at the stack position to remove any particulate matter. This prevents instruments from being contaminated and ensures reliable data acquisition.

All samples injected to the instruments are removed from the stack and delivered to the instruments via a heated probe and sample line. This prevents any condensation of water vapor and/or pollutant in the gas stream. Once the sample gas exits the sample line, the stream is separated in a sample gas manifold. The split stream enables analysis of the CEM instrumentation on both wet and dry basis as necessary.

The portion of the sample gas dedicated to the dry basis analyzers is directed into a gas conditioning system where the moisture content of the stream is removed. The sample gas that exits the gas conditioning system is then routed to the instruments for analysis on a dry basis.

To demonstrate that the instrument did not exhibit any deviation from the calibrated values set at the beginning of a test period, a sample of certified calibration gas is injected into the sampling system at the conclusion of each test run. The sample system must respond within specified tolerance limits according to the initial system bias check. 10

This post-test calibration serves two purposes: (1) it demonstrates that excessive calibration drift of the instrument(s) did not occur during the test period and, (2) that the system was not contaminated with any foreign material from the source to alter any results during the test period.

3. Data Acquisition.

The CEM monitors utilized in the testing project output a voltage signal corresponding to the pollutant concentration determined by the detector. This signal is relayed to a computerized datalogger system. This system retrieves the output signal frh each monitor every 10 seconds. This data is then averaged on a per minute basis and stored on the hard drive of the computer. Additionally, a strip chart recorder is employed to record the data. This device records the instrument output on a one minute, instantaneous basis.

The data listing for all of the analyzers, for each testing period, is provided in another section. This listing provides the data results as recorded by the computerized datalogger system.

6. Determination of Nitrogen Oxides Emissions From Stationary Sources (Instrumental Analyzer Procedure) - US EPA Method 7E:

The calibration, sampling, and data acquisition procedures are similar to that of Method 3A. Listed below are any deviations or differences that were incurred specifically in this testing procedure.

The calibration of the instruments is petformed using certified gas standards composed of a known concentration of nitrogen oxide in zero grade nitrogen. These gas standards are prepared using partial pressure/volumetric and gravimetric methods. 11

The prepared gas mixture is analyzed and the certification tolerance is not greater than 0 2% of the pollutant component. A copy of the analysis certificate for each of the certified gas mixtures used during the testing is included in the test report.

The instrument utilizes an chemiluminescent detector. The detection limitation of the analyzer is 0.1 ppm. Multiple fullscale ranges are available for operation. A 250, 1000, 2500, and 10,000 ppm fullscale be selected according to the concentrations of NOx present in the gas steam. The analyzers were calibrated using standards that were the appropriate percentage of fullscale according to Method 7E. .

The pre-test calibration, system bias, and post-test calibration procedures are identical to those discussed in Reference Method 3A.

C. Determination of Carbon Monoxide Emissions From Stationary Sources (Instrumental Analyzer Procedure) - US EPA Method 10:

1. Calibration.

The calibration of the instruments is performed using certified gas standards composed of a known concentration of carbon monoxide in zero grade nitrogen. These gas standards are prepared using partial pressure/volumetric and gravimetric methods.

The prepared gas mixture is analyzed and the certification tolerance is not greater than 2% of the pollutant component. A copy of the analysis certificate for each of the certified gas mixtures used during the testing is included in the test report.

The instrument utilizes a Luft-type nondispersive infrared detector. Immediately prior to each compliance test series, a complete calibration of the instrument is performed. Each instrument has zero grade nitrogen injected into it and the zero potentiometer is adjusted, if necessary, until the proper voltage output from the analyzer is achieved. 0 12

Then a high range pollutant gas mixture, that has been prepared in the specified range percentage of the span or fullscale, is injected. After the system stabilizes, the span or fullscale potentiometer is adjusted until the voltage output from analyzer corresponds to the certification of analysis for the respective calibration gas.

When this procedure is complete and the system has responded properly to a zero and fullscale reading, a mid and low range certified calibration gas is injected into the system. No adjustments are made to the system except to achieve proper flow rate through the analyzer. The analyzer, after reaching a stable value, must correspond to the certified value of the calibration gas within a specified percentage of the fullscale. This-mid and low range calibration gas serves two purposes of quality control and quality assurance. The first is to show that the instrument analyzes and outputs data on a linear scale. The second purpose is to validate that the zero and fullscale values of the instrument are properly set.

2. Samoling.

After calibration of the instrument(s) has been completed, a sample bias check is performed. This involves injecting calibration gas into the sample probe inlet and allowing the calibration gas to traverse through the sample train to the analyzer(s) where it is analyzed. This analysis will correspond to the pre-test calibration analysis value of the standard within the tolerances set forth in the reference method.

Once the system indicates that the calibration gases have been removed, the calibration valve assembly is positioned to allow stack gas to flow through the instrument. The sample gas is filtered at the stack position to remove any particulate matter. This prevents instruments from being contaminated and ensures reliable data acquisition.

All samples injected to the instruments are removed from the stack and delivered to the instruments via a heated probe and sample line. This prevents any condensation of water vapor and/or pollutant in the gas stream. 13

To demonstrate that the instrument did not exhibit any deviation from the calibrated values 0 set at the beginning of a test period, a sample of certified calibration gas is injected into the sampling system at the conclusion of each test run. The sample system must respond within specified tolerance limits according to the initial system bias check.

This post-test calibration serves two purposes: (1) it demonstrates that excessive calibration drift of the instrument(s) did not occur during the test period and, (2) that the system was not contaminated with any foreign material from the source to alter any results during the test period. .

D. Determination of Total Gaseous Oraanic Emissions From Stationary Sources (Instrumental Analyzer Procedure) - US EPA Method 25A:

1. Calibration,

The calibration of the instruments is performed using certified gas standards composed 0 of a known-concentrationof methane in-zero.gradenitrogen. These gas standards are prepared using partial pressure/volumetric and gravimetric methods.

The prepared gas mixture is analyzed and the certification tolerance is not greater than 2% of the pollutant component. A copy of the analysis certificate for each of the certified gas mixtures used during the testing is included in the test report.

The instrument utilizes an flame ionization detector. Immediately prior to each compliance test series, a complete calibration of the instrument is performed. Each instrument has zero grade nitrogen injected into it and the zero potentiometer is adjusted, if necessary, until the proper voltage output from the analyzer is achieved.

Then a high range pollutant gas mixture, that has been prepared in the specified range percentage of the span or fullscale, is injected. After the system stabilizes, the span or 14 fullscale potentiometer is adjusted until the voltage output from analyzer corresponds to 0 the certification of analysis for the respective calibration gas.

When this procedure is complete and the system has responded properly to a zero and fullscale reading, a mid and low range certified calibration gas is injected into the system. No adjustments are made to the system except to achieve proper flow rate through the analyzer. The analyzer, after reaching a stable value, must correspond to the certified value of the calibration gas within a specified percentage of the fullscale. This mid and low range calibration gas serves two purposes of quality control and quality assurance. The first is to show that the instrument analyzes and outputs data on a linear scale. The second purpose is to validate that the zero and fullscale values of the instrument are properly set.

2. Samoling.

After calibration, the system is purged with zero grade nitrogen to remove any pollutants e that were injected as calibration gas. Once the system indicates that the pollutant gases have been removed, the calibration valve assembly is positioned to allow stack gas to flow through the instrument.

The sample gas is filtered at the stack position to remove any particulate matter. This prevents instruments from being contaminated and ensures reliable data acquisition. All samples injected to the instruments are removed from the stack and delivered to the instruments via a heated probe and sample line. This prevents any condensation of water vapor and/or pollutant in the gas stream. The data obtained from the THC analyzer is therefore on a "wet basis". The data listing must be corrected to a "dry basis" for use in emission determinations, e.g. Ib/hr. This correction is conducted utilizing the moisture percentage of the flue gas stream as determined during the test run.

To demonstrate that the instrument did not exhibit any deviation from the calibrated values set at the beginning of a test period, a sample of certified calibration gas is injected into 15

the sampling system at the conclusion of each test run. The sample system must respond within specified tolerance limits according to the initial system bias check.

This post-test calibration serves two purposes: (1) it demonstrates that excessive calibration drift of the instrument(s) did not occur during the test period and, (2) that the system was not contaminated with any foreign material from the source to alter any results during the test period.

E. Total Particulate - US EPA Reference Methods 5: .

1. maration.

All glassware utilized in each sampling train was thoroughly cleaned and dried prior to each test series. A glass fiber filter was used that had been labeled, desiccated for a minimum of 24 hours and pre-weighed. e The impinger system configuration was assembled using the procedure outlined in Method 5. One hundred ml of deionized water was placed in the first two impingers. The third impinger was initially empty and the fourth impinger contained a pre-weighedamount of silica gel for complete moisture removal.

A stainless steel probe liner and nozzle system was utilized for the total particulate determinations. The probe housed a set of calibrated S-type pitot tubes and a calibrated thermocouple for monitoring stack temperature.

2. SamDling.

The probe and sample box were heated to an approximate temperature of 250 F. These temperatures were monitored throughout the testing. An ice bath was prepared to submerse the impinger system. The temperature of the last impinger was monitored 16 throughout the testing to ensure adequate condensation of the water vapor in the flue gases.

A leak check was performed prior to each test run. The sample train system was subjected to a vacuum that did not exceed 0.02 cfm leakage rate. The vacuum that was established during the pre-test leak check was not exceeded during the test period@).

When a test run had been completed, a post-test leak check was conducted prior to dismantling of the sampling train. Once this had been successfully achieved, the sample train was dismantled for sample recovery.

The probe and connecting glassware were washed with acetone. The contents of the impingers were volumetrically measured for moisture gain and transferred to a labeled sample container. The glass fiber filter was carefully transferred to its sample container.

3. Analysis.

The glass fiber filter was desiccated for 24 hours prior to any weighing. The acetone probe wash was transferred to a tared beaker and evaporated to dryness. The resultant residue was also desiccated prior to gravimetric analysis.

The first weighing was performed after this initial period of drying. The weights were recorded to 0.0001 '9. After a minimum of 6 additional hours of desiccating, a second weighing was conducted. The weights must agree within 0.0005 g or further desiccation must be conducted until the weights stabilize.

Sample field blanks of acetone were collected, contained, labeled and analyzed in conjunction with the samples. The blank weight was deducted from the acetone probe wash residue weight determinations. 17

F. EPA Draft Method 202. "Determination of Filterable and Condensible Particulate Matter"

The testing procedure was conducted according to Reference Method 5 for particulate matter determination. This testing procedure was covered in a previous section. The filterable portion of the particulate matter was determined via this procedure. The condensible fraction of the sample was determined by analyzing the back half impinger catch with a methylene chloride extraction.

This extraction procedure will yield fractions of inorganic and organic condensible matter. The concentrations and emission values of both filterable particulate and condensible particulate matter have been summarized in the test results section.

G. mnuclear Aromatic Hydrocarbons - Method SW846 8270 "Semivolatile manic Comoounds by Gas Chromatogwhy/Mass Soectrometry (GC/MS): Caoillary Column Technique

1. maration.

All glassware utilized in each sampling train was thoroughly cleaned with hot soapy water and dried prior to each test series. All residue silicon grease was removed from glassware upstream of the absorbent module. A glass fiber filter was used that has been properly labeled.

The absorbent traps was packed by the analytical laboratory that conducted the final analysis.

The impinger system was assembled using 100 ml of D.I. water in impingers 1 and 2. The third impinger was initially empty and the fourth impinger contained silica gel. 18 In assembling the sample train, teflon tape was placed on the ball joints to ensure '0 adequate sealing upstream of the absorbent module. All connections downstream of the module were sealed with silicon grease.

A glass probe liner and nozzle system was utilized for the collection train. The probe housed a set of calibrated S-type pitot tubes and a calibrated thermocouple for monitoring stack temperature.

2. Samding.

The probe and sample box was heated to an approximate temperature of 250 F. These temperatures were monitored throughout the testing.

The probe was connected to the heated filter system with connecting glassware. This filter system was connected to the condenser by a teflon line. The condenser and 0 absorbent module are directly connected via ground glass ball and socket.

An ice bath was prepared to submerse the impinger system into. The temperature of the last impinger was monitored throughout the testing to ensure adequate condensation of the water vapor in the flue gases.

The condenser cooling fluid was recirculated through the system by a veristaltic pump. This pump is to be started prior to the start up of the sampling system to ensure that the temperature of the absorbent material in the module does not exceed its thermal decomposition temperature. The temperature of gas entering the module was monitored to ensure that the temperature did not exceed the recommended limitation for efficient capture.

A leak check was performed prior to each test run. The entire sample train system was subjected to a vacuum that did not exceed 0.02 cfm leakage rate. The vacuum that was established during the pre-test leak check was not exceeded during the test period. 19

Three sample runs were conducted to constitute a complete test. The sample time was '0 be a minimum of one hour.

When a test run had been completed, a post-test leak check was conducted prior to any dismantling of the sampling train. Once this had been successfully achieved, the sample train was dismantled for sample recovery.

3. SamDle Analysis.

Method 8270 is used to determine the concentration of semivolatile organic coipounds in extracts prepared from all types of solid waste matrices. Each compound present in the sample is separated by gas chromatography and quantified by mass spectrometry.

The detection limitation of this type of sample has been determined to be 1.0 microgram. If the samples are separated for further analysis, the detection limit will be 2.0 e micrograms.

H. EPA Draft Method 001 1. "Determination of Formaldehyw

This sampling procedure is similar to the operational procedures found in Reference Method 5. Described in this section are the differences set forth from Method 5 to ensure that the integrity of the formaldehyde sample is maintained.

Prior to any sampling, all glassware shall be rinsed with methylene chloride to remove any contamination that may be initially on the glassware such as stopcock grease. This includes the rinsing of the glass probe liner material required for the collection of the sample.

In collecting the sample, a minimum of 45 cubic feet must be pulled isokinetically such e that the extracted sample is transferred through the DNPH absorption solution. All 20

samples should be placed into glass amber sample containers to avoid the alteration of '0 the sample by sunlight.

The analysis of the formaldehyde samples shall be conducted according to the procedures outlined in Method 8315. This analysis procedure provides guidance in the evaluation of formaldehyde samples by High Performance Liquid Chromatography (H PLC) .

I. Determination of Gaseous Oraanic Emissions From Stationary Sources By Gas Chromatogwhy - US EPA Method 18: .

This procedure utilizes the technology of gas chromatography to separate, identify, and quantitate various volatile organic compounds that co-exist in a flue gas stream. In this testing project, methane and the BTEX compounds were targeted.

The gas chromatograph was first conditioned in the laboratory where ideal conditions 0 exist for this initial calibration. This consists of conditioning the Column, if necessary, and creating calibration curves based on actual data from the GC with known concentration standards. As required by EPA, three (3) standards of known concentration were used in creating the calibration curves. The concentrations of the standards bracketed the expected concentration of pollutant at the source level.

A field calibration check was performed prior to introducing any sample into the gas chromatograph. This is performed by injecting one of the known standards into the GC and comparing the result to the calibration curve. It must agree within 5 % of the previously determined response.

Analysis of the samples follow a successful field calibration. Collecting the sample consisted of extracting the sample from the stack via a heated sample line. The sample was introduced directly into the sample loop, where it was injected to the instrument for analysis. This type of sampling is termed "semi-continuous". 21

IV. SOURCE INFORMATION

The emissions test was conducted on a round stack with a diameter of 58.5. Two (2) ' sample ports are positioned at 90" apart in the same test plane. The sample port location is positioned such that the minimum requirements for sampling in a non-turbulent zone are met. Twenty-four (24) points were sampled, twelve (12) through each traverse for 2.5 minutes each for a total testing time of sixty (60) minutes.

Points on a Probe Diameter Mark T 1 *8.7" 2 11.4" 3 14.4 4 17.8 5 22.1 " 0 6 28.2 7 45.2 8 51 3' 9 55.6" 10 59.0" 11 62.0" 12 65.0"

*Measurements include a 7.5 standoff. EQUIPMENT USED

Equipment used to conduct the particulate emissions test was:

A. A Lear Siegler PM-100 stack sampler with appropriate auxiliary equipment and glassware (with train set up according to the schematic on the next page).

0. An Airguide Instruments Model 21 1-B (uncorrected) aneroid barometer for checking the barometric pressure.

C. Weston dial thermometers to check meter temperatures or an Analogic Model 2572 Digital Thermocouple to check stack temperatures.

D. A Hays 621 Analyzer to measure the oxygen, carbon dioxide and carbon monoxide content of the stack gases or, for non-combustionsources, a Bacharach Instrument Company Fyrite for gas analysis.

E. Schleicher and Schuell Type 1-HV filters with a porosity of .03 microns.

F. Reagent- or ACS-grade acetone with a residue of 5 ,001.

REC #0001-M5 I

U

--- W -1 "I I I 7 I "I

$===I- ' 1-b- ----I

I 1 0 W 0 3 7

.. t J.U.M-@ 2 3 ENGINEERING I HEATED TOTAL HYDROCARBON ANALYZER MODEL VE7

The J.U.M. Engineering Model VE7 is a high accuracy Total Hydrocarbon Analyzer for the measurement and analysis of organic vapors.

The VE7 utilizes a Hydrogen Flame Ionization Detector (FID) in a thermostatically controlled oven to prevent the loss of high molecular weight hydrocarbons. . Options Digital display with BCD output/without BCD output Remote range control and range I.D. Recorder output of oven temperature

All heated components Integrated heated sample pump Permanent heated stainless steel 2 micron sample filter Built in burner air supply - no extra bottles needed Automatic fuel enrichment for ignition 79 inch relay rack mount 7% precision full scale Response time - 90% full scale within 1 second

STANDARD SPEClFlCATlONS: Analysis Method: Flame Ionization Detecmr (FID) Sensitivity: Max. 1 ppm CH Response Time: 90% of full scale in less than one second Zero DM: 1% of full scale per 24 hours Span Drift: 1% of full scale psr 24 hours Line*: within 1% Oxygen Synergism: Less than 1% of selecred range Ranges: Any thm of the following: o - io, 100, im, 10,ooo. 10o.000 ppm Outpuls: 0 - 10 VohD.C. Display: Analog Meter in ppm Hydnxarbun or in % EL Zero/Span Adjust: Manual on hont panel Fuel Consumption: Hydrogen 20 cc/min at 22 psig (1.5 Ear) Hydrcgen/Helium 40/60 mix: 80 cc/min. Air Consumption: None Integral Air generamr Zero & Span Gas: 3 psig (200 m Bar) Sample Pump: AI1 Stainless Steel, heated, 3 liten per minute at operating temperature Sample Pressure: By Integral Pump 3 psig (200 m Bar) Sample Filter: Permanent all sfainless sfeel2 micron back-purged for cleaning Analysis Temperature: Adjustable 200 m 400'F (93 to 204'C) Powr Requirements: 110 Volts, 60 Hem AC 800 Wans (others on request) AmBient Temperature: 32'~m iio°F (0 to 43'C) e Dimensions: Width 483 mm (19 inches), Depth 460 mm (lEl/8 inches), Height 227 mm (&3/4 inches) Weight 38.6 Ibs (17.5 kgj Shipping Weight: 53 Ibs (24 kg)

D: \DONNA \ JUM.DJB 24 PRINCIPLES OF OPERATION

SERVOMEX 1400 SERIES I \

I

c .;#i.r. . SPECIFICATION OXYGEN

Principle Magnetodynamic linearity +0.2% 0, Repeatability +0.2% , _. _..- . . Zero Drift <0.2% 0, L (Per Week) I Signal Output 0-1V non-isolated for 0-100% 3 02 PARAMAGNETIC OXYGEN Alarms Flow alarm. 4 sets of changeover relay contacts The oxygen analyzer measures the paramagnetic rated at 3A/120V AC, susceptibility of the sample gas by means of a magneto- 1A/240V AC or 1A/28V DC dynamic type measuring cell.

Display 3% digit LCD reading 0 to Oxygen is virtually unique in being a paramagnetic gas, 100% 0, this means that it is attracted into a magnetic field. In the Servomex measuring cell, the oxygen concentration is Response Time Less than 15 -seconds to detected by means of a dumb-bell mounted on a torque 90% suspension in a strong, non-linear magnetic field. The higher the concentration of oxygen, the greater the dumb- Operating Ambient ,bell is deflected from ts rest position. this deflection is Temperature 32 - 104'F (040°C) detected by an optical system and twin photocells connected to an amplifier. Around the dumb-beit is a coil Relative Humidlty 0 - 85%. non-condensing of wire. A current is passed through this coil to return the dumb-bell to its original position. The current is measured Sample Pressure 0.2 to 0.6 barg and is proporlional to the oxygen concentration.

Sample Contact Materials Stainless steel, Pyrex. glass, brass, platinum. epoxy resin, viton, . polypropylene and glass fibre

AC Supply 110 to 120V AC, or 220 to 240V AC, 2 10%. 48 to 62Hz. 15VA maximum Gas Flow Diagram

Dimensions 19 Rack ~ 4U case Bench top - 7.1" (180mm) hi gh, 10.1" (256mm) wide, Advantages 15.4 (390mm) deep 0 Not cross sensitive to most common gases 22 tbs (10kg) approximately o Long lifetime o Rugged Design

0 No routine cell maintenance 25 P8670 GAS CHROMATOGRAPH

Minkium LaB GC Low cost GC a Free Data System/lntegrator At a fraction of me cost, the SRI 8610 Gas Chromatograph provides the capabilities and sophistication ofvastly larger and more expensive Field Portable Built-In Purge and Trap insbuments in a smali, lighfwight and amactive package. More of a miniature laboratory GC than a me porrable. the 8610 is the petfed sire and wgM Temperature Programmable Multiple Detectors for easy field use wimout sacrificing big GC features. In the lab or in the field, the 8610 Gas DgM Gas Flar canndh Chmmatcgraph gives puup to fns detecton plus a The cmer gas flow rate is regulated by a unique Digiral Flow CQnmller. buin-in purge and trap in a simple to operate. easy Precise and reprw'ucibie even a capillary flow rat6s below 1 cc/per to mubie.shwt, and unbeliembly low cost package. minute, the cm'er gas flow conmller is standard equipment on every SRI And, me Peaksimple Data System, pmvided free wim 8610 GC (except lowulst rmdent model). DigM dial allows flow rams to every 8610 GC hlms pur 18M PC into a poweni~i be adjusted wimouf having to measure actual flows with a bubblemeter. A chromatcgqhy inmgmtar which also conmls the column head pressure gauge is provided io der?the operator to leaks or 8610's temperature program and purge and trap. bloclrages in the column. The same flow conmller is optionally available for hydrogen and air combustion gas flows (recommended for NPD MUMTemperahm, P- operation). In addition, inlet pressure regulaton am supplied for each gas Tempermure programming is a standard feature on to isolate me GC hmfluctuations in gas supply pressure. every 8610 GC. Up to 15 ramp/plateau segments permit maximum flexibiiity. Because the temperature Direc! cod Ch column InjecLiw program iS confrolled by the dafa System, an The redead volume oncolumn injector is designed for state ofMe ar?, unlimited number of different temperature programs cool oncolumn injections using both packed and widebore capillary (.53 may be pemanentiy stored on disk and activated mm). A special wide-bore adapter positions the 53 mm column so the wm a few keysfrokes. me 8610's temperatun, syringe smoothly deposits the sample in the mre of me column inelf. prcgrdm can be confrofled eimer by the Peaksimple This provides a totally iner?, metal and glass free sample path. Peaks am Data System (included free wim every GC) or by any exceptionally shqand well resolved. other data system or inlegrator which has the &iIky to close relay contacts at speciried times during the DeedDls Nn. Thermal Conductivity (7120) Photc-lonim'on (PlO) UmaLarMasscolumn(xen Flame Ionization (FID) Necfron Capture (€CD) The SRI 8670's large easily accessible column omn Nhgen-Phosphoms (NPD) Hall Detector (HALL or ELCD) Is designed to fifall standard packed and capillary Thermionic Ionization PID) Flame Photometic (FPD) columns wifh diameten up to eight inches. The uhlow mass design allows rapid heat-up and Up to 3 detectors may be mounted simultaneously and plumbed in series cwk'own hmambient to 250 degrees centigrade. so that one injection passes through each detector and into the ned Interchangeable scre~wlnheater elements allow CQmmon series configurations include: power consumption to be reduced for low tempermure baftery powered applications. or easy (PIC-FID), (7CC-FID). (PlC-€CD), heater replacement in the event of a failure. (PIC-HALL) and (PIC-ECDFID). Squirmkage type omn fan insures uniform heat dim'bution and stability to within .1 degree.

D:\DONNA\8610GAS:DJB --._- - 26

......

This unique Mass Flow Sensor used in the Fuji 730 Single Gas Analyzer provides significant advantages over other sensors used for this purpose. The design of the Mass Flow Defector minimizes the adverse effects of vibration which is often present in harsh environments. In addition the Mass Flow Sensor System virtually eliminates interference making the Fuji 730 a powerful analytical tool for monitoring burner and boiler efficiency heat treatment fermentation well logging and many other applications which require exceptional accuracy stability high sensitivity and reliabililty. . PwNcaDLEQFmm SPEcmm wrw ~0.5%ofluii scale (low range) The Fuji 730 Series Analpn use the infared adsotption 2 7.0% of fuN scale (high range) characteri& of gases to measure the concenbafion of gas samples. An efficient single beam design which lero m.: 2 1% of full scale per 24 hours incorporates a unique mass flow sensor system insures accum and interference free anwis for a wide varieiy span om: :1% of lull scale per 24 hours of appkations. ~2%of lull scale (diniinearizerj A single beam of infrared energy is chopped and passed thmugh a sample cell conm'ning the flowing as sample. Noisr M: 0.5% of full scale Due io the adr;orpbbn characteristic, the amount of energy in the beam is reduced by the concenbation of Speed ofbkqxmse: 90% indication the measured gas in the sample. Ths amnuate3 infrared beam is passed se"aliy thmugh the twcavitias of the s3echka: 2, 3 or s seconds (field selecradle) mass f?ow sensor which conm'n a high concenbafion of me gas species the ana!yzer is intended m measure. Plmwnak Less than 75 seconds (depending on cell The huo cavity sensorpenbms hm functions in the length) anwngpmess. if first eliminates interference caused by Omer gases and water Mpor by detscijng and WafdJp: Tm hours (to 12% full scale) subm'ng the interference component from the demcmr output, and secondly, produces an outpul signal which lndsmalspan mpmsenk an accurate duplication of the relative infrared Umck Manually activated from front panel energy adsorption. This resultant signal is electronically processed anu lineraintd to pmvids an electrical signal outpua: 0 to 7V OC, linear & 4-2OmA DC, linear which drives meters and other output devices. miem STMrnGlSEs: CM?on Monoxide (CO) Range:Temper;dunt 23 m in0F (-5 to 45oc) WonDioxide (COJ Methane (CHJ Ambient Humidity: To 90% R.H. (nonzondensing)

STANDARD WES: Wk* O-SW/lOOO ppm Tempeminre: 32 io 122'F (0 m 50'C) o-l0€0/2WO ppm 0-20€0/5000 ppm sample Gas 0-2500/5000 ppm Flov Rate: 2 2 7 scfh (7.0 2 .OS slpm)

04.5/7.0% Pup? Gas Rate o.l;z?b (where necessay): 2 scfh (I slpm) when required 0-2/5% 0-5/10% pouer 1-10/20% Requirements: 11% AC I 70%, 60 HI. 30VA 0 PUffiEGASrnffi Gas Conneciions: AN %' compression-rype fube fmings Standard Equipment Size and W@it I.9 (Hj x 9.8 (Wj x 21.3 (D) inches I"N. PAN WEUFEATURE [zoo x 250 x 54 1 mm) Caf;braion check wifhoui the use of span gases. 24.2 pounds (1 7 kg) Consems gas and reduces operating cosis. %vnsant condibbns ~~ ~ ...... 'FlJi1'760.. 27 I' ""' ''' NDlR GAS ANALYZER ' I

0 Unique Mass Flow Sensor System Eliminates 0 Measures: Interference + Carbon Monoxide (CO) + Carbon Dioxide (COJ

0 Wide Dynamic Range Permits Ultra-Sensitive and + Sulfur Dioxide (SOJ High Concentration Gas Analysis + Nitric Oxide (NO) +Methane (CHJ

0 Designed for Continuous Operation and Low Maintenance 0 Insensitive to Vibration

This inmment is designed for stack moniiuring andpnxess conml appiicaions. If% remarkable accuracy and fasf response makes il an ideal inmmenf for CEMS, toiler conml equipment, reseanh labs and many other moniiuring applications. For usage mluiring ubsensM measurement, the Fuji 760 deliven superior peffonnance. Using the Non-Dispersive Infrared (NDIR) Mass Flow htedvr, low concentrarion measuremenls are accurme and reliable. The Fuji 760 incoIporates an Interference Compensating DeWrwhich minimiles the effecn of other gases, mculady when operating in ranges Of high sensitiv@.

FEANRS ff THE WmO Specificatiom The Fuji 760 AnaIyzm uses infrared adsorption techniques m measure gas (standard configuration) concentrabbns, howver, many innodpatented feaiures make this inmmenf RBpeafaDility: t 0.5% Of fuil scale far superior m conventional Non Dispersive Infrared Analylers. Among its unique ,?em Dfi t2% of full scale per wek feaiures are an optical chopper design which virtually eliminates the effecfs of s+w ~fi22% of full scale per wek vibm'on and resultant optical noise; a mass flow sensor system which reduces the tineerily: 22% Of full scale eflecrs of interfering gases m insignificant levels, thus permining gas analysis af speed ofResponse: 90% indication low concenmion ranges; and a dual beam optical system derived from a single wiibin 5 seconds (€lecfmnic Response) intrarsd soune which enhances long term sfaLW. Range Skciim: Eiitmr of funranges selected by front panel swtch or exremal e PRlNcPAL ff opERATI(yy contact closure. A single beam of infrared energy is modulated and splii inlo fw parallel beams by WamFUp: Four hours minimum a dirnibubon cell. One beam is passed through a reference cell containing a non- -: 0 m 1V DC, linear and 4-2OmA absorbing gas, and the other beam is passed thmugh a cell confaining Me sample OC, linear gas being measuntd. The beam passing through the sample cell is anenuated by ~emper;mrrewnge: 23 m Lim amount of gas concenmon in the sample and compared against the IWF(-5 m 45°C) unanenuated reference beam by the mass flow defecmr system. One set of AmbientHumKi To 90% R.H. (non- dsrecton sense the amount of sample gas as compared against the reference. Me condensing) second set of detecmrs measure and cancel inmrferents in the sample. The sample i as ~emperahrre:32 m izzoF ouiputs of the detectors are electronically processed and conditioned into useable (0 m so"^) signals for indicamrs and other outpot devices. Samok. Gas Fknv-; 1.0 r0.5 scIh (0.50-0.25 slpm) for standard DmCfABLE GAS RANGES configuration Mawials in contln lvim Sample: 304 Minimum Range Stainless steel, neoprene Nbber, ----Camon Monoxide (CO) 0 to 100 ppm silicone Nbber, CaF2/ sapphire, Teflon' Camon Dioxide (Cod o m 50 ppm po*er Requirwnentr: 119AC r 10%. Nmic Odd8 (NO) om rmppm 50/60 Hz (switch selectable) Sulfur Dioxide (SO9 0 m 100 ppm 110 VA max. (2OOVA max wifh convener) TOW Hydnxarimns 0 m 500 ppm 220V AC available Gas Connsctons: All %* compression- ~Gapsr~bemsawned rype iube fmings she and weght 8.66 (H) x 17.44 (W) x 16.78 (0)inches (zzo x 443 x 350 mm) 37.4 pounds (17 kg) 28

MODEL 10 CHEMILUMINESCENT FOR CONTINUOUS NO/NO, ANALYZER I " I SOURCE GAS I I MONl7ORING

Thermo Electfun's Model 10 NO/NO Analyzer is based on the chemiluminescentreaction beiween nirric oxide (NO) and omne (Odaccording to the reaction: NO + O3 - NO2 + h2 + hv Light emission results when the electronically excited NOz molecules reven to their ground state.

A front panel mode swirch provides for either a direct readout of the NO concenmtion in the sample being analyzed ('NO' mode) or the total NO, concentration rN0; mode). When the Model 10 is placed in the 'NO,' mode, the sample stream passes through a NO,--NO convener prior m entering the reaction chamber for subsequent analyris.

Key Features Model 10 Specifications' Ranges 02.5 ppm 0250 ppm . *Selective dekfion of NO or NO, 010 ..DOm 0Im ..DDm a Eight ranges, from 2.5 to 10,WO pprn FS 025 . ppm 02500 ppm .Continuous monitoring with rapid response 0100 ppm 010,oW pprn

0 Linear on all ranges Minimum Detectable .OS ppm -Field proven reliability Concentration

.Insensitive m changes in sample flow Noise Less than 1% of FS

As illustrantd in the diagram, sample gas enfen the Reprcducibilily 1% of FS Model 10, flow through the bypass capillary, and divides. Most of the sample flows thmugh the operating WO'C f7owmeter. accumulator, bypass pump, and Temperalure Emmes exhausts. On& a small amount of sample flows thmugh tfm sample capillary for analysis. The Res~nsTime -lS No mode 90%) - 1.7 second NO, mode bwss.. ..Dum0 in conjunction with the samde ~~ regulamr maintain a consmt pressure differential zero sQbil~ t I ppm in 24 hours across the sample capillary. thus maintahing constant sample flow br anwis. This plumbing span sQb;l~ I1% in 24 hours new* makes the an-r insensitive m pressure fluciuabbn in the sample inlet Lineariiy I 1% from 0.05 m lO,mppm**

From the sample capillary, the sample to be PorverRequirements 1WO warn, 115 I 10 wb,60 Hzsialdad. analyled is either directed through the NOx to NO Also available in 17% 50 Hz, conmrter or around it, depending on the choice of and 210 2 15 wb. 50 Mvenions fhe operafor. In the reaction chamber the sample with p,,,&ce ljgj,,emiss;on and Physical Dimensions 19' wide x IT high x 20' deep is exhausted. The ozone is prcduced infernally Instrument Weght 75 Ibs. (including pump) from dry air eniering through tfm owen regulator and omnamr. The light emission is sensed by the ouauts T!m standad outputs supplied; I) 01OV; phommutlipller lube and amplified. 2) Field selectable from 0 tOV, SV, lV, 700mV or 1OmV. (ma options available.)

*Spscifications am iypical and subject m change withoui notice. *With O2 Feed; Wm dry air, lineariiy to 2000 ppm. VI. CALCULATIONS a A. Particulate - Condensibles MACASPHALT MELBOURNE, FLORIDA 29 SUMMARY OF TEST DATA

12-02-92 12-03-92 12-04-92 RUN #1 RUN #2 RUN #3 SAMPLING TRAIN DATA start 14: 18 14:59 08:26 finish 15:21 16:18 10:58 1. Sampling time, minutes 8 60.0 60.0 60.0 2. Sampling nozzle diameter, in. Dn .3000 .3000 .3000 3. Sampling nozzle cross-sect. area, ft2 An .000490 .000490 .000490 4. Isokinetic variation I 100.1 90.9 100.3 5. Sample gas volume - meter cond., cf. Vm 42.036 39.562 41.821 0 6. Average meter temperature, R Tm 548 545 537 7. Avg. oriface pressure drop, in. H20 dH 1.38 1.56 1.39 8. Total particulate collected, mg. Mn 149.10 131.80 188.30

VELOCITY TRAVERSE DATA 9. Stack area, ft.2 A 18.60 18.60 18.60 10. Absolute stack gas pressure, in. Hg. Ps 30.01 30.02 30.00 11. Barometric pressure, in. Hg. 'bar 30.01 30.02 30.00 . Avg. absolute stack temperature, Ro 732 724 724 ------TS Average -\/vel. head, ( C = .84) -\/dF- 0.59 0.58 0.57 a. P 14. Average stack gas velocity, ft./sec. vs 40.30 39.09 38.47

STACK MOISTURE CONTENT

15. Total water collected by train, ml. V. 239.10 164.90 189.70 1C % 16. Moisture in stack gas, Bws 21.78 16.83 18.07 EMISSIONS DATA

17. Stack gas flow rate, dscf/hr.(OOO's) QSd 1527 1592 1543 18. Stack gas flow rate, cfm acfm 44975 43624 42933 19. Particulate concentration, gr/dscf 0.0571 0.0533 cS 0.0710 20. Particulate concentration, lb/hr E 12.46 12.13 15.65 21. Particulate concentration, lb/mBtu E ' 0.00000 0.00000 0.00000

ORSAT DATA

22. Percent C02 by volume c02 5.50 4.20 4.80 . Percent O2 by volume O2 14.40 15.10 15.10 c4. Percent CO by volume co .oo .oo .oo 25. Percent N2 by volume N2 80.10 80.70 80.10 Format: summryR3 MACASPHALT MELBOURNE, FLORIDA 30 Dry Gas Volume

'bar + 13.6dH 0 = -R 'm(std)' 17.64 in.Hg 'rn -rn

L -I

Dry Gas Volume through meter at standard conditions, cu. ft. Dry Gas Volume measured by meter, cu. ft. Barometric pressure at oriface meter, in. Hg. Standard absolute pressure,(29.92 in. Hg.). Absolute temperature at meter 0 R.

Standard absolute temperature ( 528'R). Average pressure drop across oriface meter, in n20. Dry gas meter calibration factor. Inches water per inches Hg.

RUN 1:

- 'm( 'm( std) (17.64)( .987)( 42.036) 40.215 dscf I 548 I=

RUN 2:

(30.02) + 13.626 - (17.64)( .987)( 39.562) I 38.058 dscf 'm(std) 545 I=

RUN 3: 1.39 (30'00) + 13.6 (17.64)( .987)( 41.821) - 40.816 dscf 537 L 2

Format: dgmR3 MACASPHALT MELBOURNE, FLORIDA 31 Total Contaminants by Weight: GRAIN LOADING

Particulate concentration C gr. /dscf . * S

Where:

= Concentration of particulate matter in stack gas, dry cS basis, corrected to standard conditions,gr./dscfr

= Mn Total amount of particulate matter collected, mg.

= Dry gas volume through meter at standard conditions, 'm(std) cu. ft.

Run 1:

Run 2:

- = 0.0533 gr./dscf. cs - 38.058

Run 3:

Ci = E.0154 4 [~~~,~~] = 0.0710 gr./dscf.

Format: csR3 NAME: MACASPHALT 32 LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

Particulate CONVERSION TO mg/m3

C,mg/m3 = ( C,gr/dscf ) ( 35.31 ft’ m3

Where: C,mg/m’ = Concentration as milligrams per cubic meter C,gr/dscf = Concentration as grains per cubic foot 35.31 = Conversion of ft to m 0.0154 = Conversion from grains to milligrams

Run#1:

C,mg/m3 = (0.0571 ) )i3g-) = 130.9 i”“.:?.”’0.0154 gr

Run #2:

C,mg/m3 = (0.0533) (35~31~3][~-)= 122.2 m 0.0154 gr

Run #3:

~,mg/rn’ = (0.0710) 35.31 ft’ ( m3

Format: 03-009 NAME: MACASPHALT 33 LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

TOTAL CONTAMINANTS BY WEIGHT: GRAIN LOADING

Condensible Particulate Concentration: Ci gr/dscf

C,' - [0.0154 "1 [-] M" mg "InCstd)

Where:

cs = Concentration of condensibles in stack gas, dry basis, corrected to standard conditions, gr/dscf.

M, = Total amount of condensible matter collected, mg.

- ft. "rn(Std) - Dry gas volume through meter at standard conditions, cu.

Run #1: r ir 1 CS = 0.0154 gr- 101.7 = 0.0389 gr/dscf I mg ' I 40.215

Run #2: CS = [ 0.0154 Kg]- [ 3i':8 ] = 0.0178gr/dscf

Run #3: 92.1 e

Format: csR3103-004 NAME: MACASPHALT 34 LOCATION: MELBOURNE, FLORlDA DATE: December 2-4, 1992

Condensible Particulate CONVERSION TO mg/m3

C,mg/m’ = ( C,gr/dscf ) ( 35.31 ft’ m3

. Where: C,mg/m = Concentration as milligrams per cubic meter C,gr/dscf = Concentration as grains per cubic foot 35.31 = Conversion of ft3 to m’ 0.0154 = Conversion from grains to milligrams

Run#1:

= (0.0389) [ 35.31 ft’ ][ ma ] = 89.2 m3 0.0154 gr

Run #2:

C,mg/m3 = (0.0178) ( 35.31 ft’ ] (3-)= 40.8 m3 0.0154 gr

Run #3:

35.31 ft’ ][ 3-1 = 79.6 C,mg/m’ = (0.0347) ( m, 0.0154 gr

Format: 03-009 MACASPHALT MELBOURNE, FLORIDA 35 Dry Molecular Weight

Md = 0.44(%C02) + 0.32(%02) + 0.28(%CO + %N2)

Where:

Md = Dry molecular weight,lb./lb.-mole. %C02 = Percent carbon dioxide by volume (dry basis).

= Percent oxygen by volume (dry basis). %O2 . = %N2 Percent nitrogen by volume (dry basis). %CO = Percent carbon monoxide by volume (dry basis). 0.264 = Ratio of O2 to N2 in air, v/v.

0.28 = Molecular weight of N2 or CO, divided by 100.

0.32 = Molecular weight of O2 divided by 100. e 0.44 = Molecular weight of C02 divided by 100.

Run 1:

Md = 0.44( 5.50%) + 0.32(14.40%) + 0.28( .OO% + 80.10%) = 29.46 lb lb-mole

Run 2:

Md = 0.44( 4.20%) + 0.32(15.10%) + 0.28( .OO% + 80.70%) = 29.28 lb lb-mole

Run 3:

Md = 0.44( 4.80%) + 0.32(15.10%) + 0.28( .oo% + 80.10%) = 29.37 lb 1b-mo 1e

Format: mdR3 MACASPHALT MELBOURNE, FLORIDA 36 Water Vapor Condensed

r- 1

V = 0.04715 - W] WSgstd pf

Where: 3 0.04707 = Conversion factor, ft. /ml. 3 0.04715 = Conversion factor, ft. /g.

= Volume of water vapor condensed (standard conditions), scf vwc std V = volume of water vapor collected in silica gel (standard WSgstd conditions), ml. - = V f1V. Final volume of impinger contents less initial volume, ml. Wf- W i = Final weight of silica gel less initial weight, g. = Density of water, 0.002201 lb/ml. epw R = Ideal gas co,nstant, 21.85 in.Hg. (cu.ft./lb.-mole)(OR).

= Molecular weight of water vapor, 18.0 lb/lb-mole. MW = *std Absolute temperature at standard conditions, 528OR. = 'std Absolute pressure at standard conditions, 29.92 inches Hg.

Run 1: = (0.04707) ( 232.0) = 10.9 cu.ft 'wc ( std) = (0.04715) ( 7.1) = 0.3 cu.ft 'ws g ( s td )

Run 2: = 'wcf std) = (0.04707) ( 160.0) 7.5 cu.ft = (0.04715) ( 4.9) = 0.2 cu.ft 'ws g ( s td )

Run 3: = (0.04707) ( 182.0) = 8.6 cu.ft 'wc [ std) 'wsg( std) = (0.04715) ( 7.7) = 0.4 cu.ft

Format: vaporR3 MACASPHALT 37 MELBOURNE, FLORIDA Moisture Content of Stack Gases

vwc +v - std Wsgstd +v X 100 BWS vwc std WSgstd + 'rn std

Where:

= BWS Proportion of water vapor, by volume, in the gas stream. vm = Dry gas volume measured by dry gas meter,(dcf). . = Volume of water vapor condensed corrected to standard vwc std conditions (scf).

V = Volume of water vapor collected in silica gel corrected to WSgstd standard conditions (scf).

Run 1:

- + 0.3 - 10.9 X' 100 = 21.78 % BWS 10.9 + 0.3 + 40.215

Run 2:

- 7.5 + 0.2 - X 100 = 16.83 % BWS 7.5 + 0.2 + 38.058

Run 3:

- 8.6 + - 0.4 X 100 = 18.07 % BWS 8.6 + 0.4 + 40.816

Format: bwsR3 MACASPHALT 38 MELBOURNE, FLORIDA Molecular Weight of Stack Gases

Where :

Ms = Molecular weight of stack gas, wet basis, (lb./lb.-mole).

Md = Molecular weight of stack gas, dry basis, (lb./lb.-mole).

Run 1:

= 29.46 ( 1 - 21.78 ) + 18 ( 21.78 ) = 26.96 (lb./lb.-mole) MS

= 29.28 ( 1 - 16.83 ) + 18 ( 16.83 ) = 27.38 (lb./lb.-mole) MS

Run 3:

Ms = 29.37 ( 1 - 18.07 ) + 18 ( 18.07 ) = 27.32 (lb./lb.-mole)

Format: msR3 MACASPHALT 39 MELBOURNE, FLORIDA Stack Gas Velocity

Where:

= Average velocity of gas stream in stack, ft./sec. vS K = 85.49 ft/sec Eg-mole)-(mm Hg) / (OK)( mm P C = Pitot tube coefficient, (dimensionless). P dP = Velocity head of stack gas, in. H20. .

= 'bar Barometric pressure at measurement site, (in. Hg). P = Stack static pressure, (in. Hg). 9 = Absolute stack gas pressure, (in. Hg) = Pbar+ Pg pS = Standard absolute pressure, ( 29.92 in. Hg ). 'std = Stack temperature, (Of). tS eTs = Absolute stack temperature, (OR). = 460 + ts. = Molecular weight of stack gas, wet basis, (lb/lb-mole). MS

Run 1:

I~ 732 v= (85.49) ( .84) ( 0.59) -\ = 40.30 ft/sec. \\ (30.01)(26.96)

Run 2:

724 v= (85.49) ( .84) ( 0.58) -\ = 39.09 ft/sec. \\ (30.02) (27.38)

Run 3:

724 v= (85.49) ( .84) ( 0.57) -\ = 38.47 ft/sec. \\ (30 .OO) (27.32)

Format: vsR3 MACASPHALT 40 MELBOURNE, FLORIDA Stack Gas Flow Rate e Qsd = 3600 [l - Bwc] Vs A [z][k] Where: Dry volumetric stack gas flow rate corrected to Qsd standard conditions, (dscf/hr). 2 A Cross sectional area of stack, (ft. ).

3600 Conversion factor, (sec./hr.).

Stack temperature, (Of). tS (OR). TS Absolute stack temperature,

Tstd Standard absolute temperature, (528'R). 'bar Barometric pressure at measurement site, (in.Hg.). P Stack static pressure, (in.Hg.). 9 Absolute stack gas pressure, (in.Hg.); - +P 'S 'S - 'bar 9 Standard absolute pressure, (29.92 in.Hg.). 0 'std Run 1: Qsd=3600(1- .2178 )( 40.30)( 18.60) [*I pt:;g = 1527093.2 hrdscf

Run 2:

dscf Qsd=3600(1- .1683 )( 39.09)( 18.60)

Run 3:

Q =3600(1- .la07 )( 38.47)( 18.60) [;zi1 pt:tg=1543247.6 hrdscf sd

Format: qR3 MACASPHALT MELBOURNE, FLORIDA 41 Emissions Rate from Stack

7000 gr./lb.

Where:

E = Emissions rate, lb/hr.

= Cs Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, gr/dscf. . Dry volumetric stack gas flow rate corrected to Qsd = standard conditions, dsc€/hr.

Run 1:

( 0.0571) ( 1527093.2) E - - 12.46 lb. / hr. 7000

Run 2:

( 0.0533) ( 1592913.8) E - - 12.13 lb. / hr. 7000

Run 3:

( 0.0710) ( 1543247.6) E - - 15.65 lb. / hr. 7000

Format: eR3 42 NAME: MACASPHALT LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

Condensible Particulate EMISSIONS RATE FROM STACK

E - (") (Qd)] - 0.0000 Ib/hr [ 7,000 gr/lb . Where:

E = Emissions rate, Ibs/hr.

C, = Concentration of condensibles in stack gas, dry basis, corrected to standard conditions, gr/dscf.

Q,, = Dry volumetric stack gas flow rate corrected to standard conditions, dscf/hr.

Run #1:

(0.0389) (1527093.2) E= = 8.49 7,000

Run #2: (0.0178) (1592913.8) E= - = 4.05 7.000

Run #3:

(0.0347) (1543247.6) E= = 7.65 7,000

Format: csR3/05-005

~~ ~ MACASPHALT 43 MELBOURNE, FLORIDA Isokinetic Variation

0.002669 vic + (Vm / Tm) (Pbar + dH / 13.6) I = 100 Ts L 60 e vs pS An

Percent isokinetic sampling. Conversion to percent. 0 Absolute average stack gas temperature, R. 3 Conversion factor, Hg - ft /ml - OR. Ttl vol of liquid collected in impingers and silica gel, ml. Absolute average dry gas meter temperature, 0 R. . Barometric pressure at sampling site, (in. Hg). Av pressure differential across the oriface meter, (in.H20). Specific gravity of mercury. Conversion seconds to minutes. Total sampling time, minutes. Stack gas velocity, ft./sec. Absolute stack gas pressure, in. Hq. 2 Cross sectional area of nozzle, ft .

Run 1: - - (0.002669)(239.:10) + 42.036548 p.01 + = 732 ) = I (loo)( 60 ( 60.0 ) ( 40.30 ) ( 30.01 ) ( .000490 ) 100.1% L 2

Run 2: 7 7 (0.002669)(164.90) + 39.562545 p.02 + = 724 ) = 90.9% I (loo)( 60 ( 60.0 ) ( 39.09 ) ( 30.02 ) ( .000490 )

Run 3:

(0.002669)(189.70) + 537 = 724 ) = 100.3% I (loo)( 60.0 ) ( 38.47 ) ( 30.00 ) ( .000490 ) L

Format: iR3 VI. CALCULATIONS

6. Formaldehyde NAME: MACASPHALT (Formaldehyde) 44 LOCATION: MELBOURNE. FLORIDA DATE: December 2-4, 1992

SUMMARY OF TEST DATA Run #1 Run 82 Run #3 12-04-92 12-04-92 120492 SAMPUNG TRAIN DATA Start 11:49 13:03 14:48 Finish 13:04 14:04 16:02

1. Sampling time, minutes 8 72.0 60.0 72.0

2. Sampling nozzle diameter, in. Dn ,3000 ,3200 ,3000 3. Sampling nozzle cross-sect. area, ft2 An .000490 ,000576 .000490 4. lsokinetic variation I 100.8 91.9 99.9 5. Sample gas volume - meter cond., cf. 49.675 50.155 52.085 6. Average meter temperature, "R Tm 557 567 562 7. Avg. oriiice pressure drop, in. H,O AH 1.29 2.68 1.46 8. Total formaldehyde collected, mg. M" ,063 4.30 ,600 MLOClM TRAVERSE DATA 9. Stack area, ft! 18.60 18.60 18.60 10. Absolute stack gas pressure, in. Hg. 30.00 30.00 30.00 11. Barometric pressure, in. Hg. 30.00 30.00 30.00 12. Avg. absolute stack temperature, R" 728 744 724 13. Average Jvel. head, (C, = .&I) 0.55 0.62 0.59 14. Average stack gas velocity, ft./sec. 37.31 42.60 40.14 STACK MOISTURE CONTENT 15. Total water collected by train, ml. 236.90 246.30 285.40 16. Moisture in stack gas, % 19.19 20.08 21.75 EMISSION DATA

17. Stack gas flow rate, dsd/hr. Q*d 1468 1622 1537 18. Stack gas flow rate, cfm acfm 41638 47542 44796 19. Formaldehyde concentration, gr/dscf c, 0.00002 0.00140 0.00020 20. Formaldehyde concentration, Ib/hr E 0.004 0.320 0.040 ORSAT DATA 21. Percent CO, by volume 4.80 4.80 4.70 22. Percent 0, by volume 15.00 15.00 15.30 23. Percent CO bv volume .oo .oo .oo 24. Percent N, by volume 80.20 80.20 80.00

Format: summryR3/19-000 45 NAME: MACASPHALT (Formaldehyde) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

MOISTURE DETERMINATION DRY GAS VOLUME

AH AH Pbar+ -13.6 "R p,+13.6 - 17.64 -Y Vm 'sld E. Hg Tm

Where: - . 'm(std) - Dry gas volume through meter at standard conditions, ft'. v, = Dry gas volume measured by meter, ft'. Pbar = Barometric pressure at orifice meter, in. Hg. 'std = Standard absolute pressure, (29.92 in. Hg.). T, T, = Absolute temperature at meter, R.

Tstd = Standard absolute temperature, (528" R). AH = Avg. pressure drop across orifice meter, in. H,O. Y= Dry gas meter 'calibration factor. 13.6 = Inches of water per Hg.

Run #1:

1.29 30.00 + - 13.6 "m(.td, - (17.64)(.987)(49.675) - 46.729 dsd 557

Run #2:

2.68 30.00+ - 13.6 Vm(* - (17.64)(.980)(50.155) - 46.176 dSd 567

Run #3: 1.46 30.00 + - 13.6 Vm(.td, - (17.64) (.987) (52.085) - 48.581 dsd 562

Format: dgmP/13-001 NAME: MACASPHALT (Formaldehyde) 46 LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

TOTAL CONTAMINANTS BY WEIGHT: GRAIN LOADING

Formaldehyde Concentration: Cs gr/dscf

c; - [0.0154 "1 [-I M" mg "rn,std) . Where:

C, = Concentration of formaldehyde in stack gas, dry basis, corrected to standard conditions, gr/dscf.

M, = Total amount of formaldehyde collected, mg.

Vm(std)= Dry gas volume through meter at standard conditions, cu. ft.

Run #1: CS = [ 0.0154 Eg]- [ 46,7290.063 ] = 0.00002 gr/dscf

Run #2: CS = [ 0.0154 Eg]- [ 46.1764.200 ] = 0.00140gr/dscf

Run #3: CS = [ 0.0154 Eg]- [ 48,5810.600 ] = 0.00020gr/dscf

Format: csR3/03-004

~~~~~ 47 NAME: MACASPHALT (Formaldehyde) LOCATION: MELBOURNE, FLORl DA DATE: December 2-4, 1992

Formaldehyde CONVERSION TO mg/m

C,mg/m3 = ( C,gr/dscf ) ( 35.31 (_.g--) rn’ ’’1 0.0154 gr . Where: C,mg/m’ = Concentration as milligrams per cubic meter C,gr/dscf = Concentration as grains per cubic foot 35.31 = Conversion of ft’ to m3 0.01 54 = Conversion from grains to milligrams

Run #1:

C,mg/m3 = ( 0.00002 (35.31 ft’ ) ( mo- = 0.046 m3 0.0154 gr

Run X2:

C,mg/m3 = ( 0.00140 ) = 3.210 ( 35.31F’m ) (a-) 0.0154 gr

Run #3:

C,mg/m3 = ( 0.00020 ) 35.31 2- = 0.459 ( m F31 ( 0.0154 gr )

Format: 03-009 48 MAME: MACASPHALT (Formaldehyde) LOCATON: MELBOURNE, FLORIDA DATE: December 2-4, 1992

Emissions of Formaldehyde: PPM (PARTS PER MILLION)

E= CS 9 MOL 22.4 2 293°K ft' 1,000,000 1,000 mg 30.039 MOL 273°K 28.317

Where: . Cs = Concentration of formaldehyde in mg/dscf. 1000 mg/g = Conversion to grams. 30.03 g/MOL = Molar conversion for formaldehyde. 22.4 a/MOL = Volumetric molar conversion @ 273OK. 293" K/273O K = Temperature correction to standard conditions. 28.317/ft3 = Conversion to liters. 1,000,000 = Conversion to parts per million.

Run X1:

0.063 mg 9 MOL I 22.4 e 293°K i,ooo.ooo = 0.04 ppm 46.729 dscf I 1,000 mg 273°K 28.317

Run #2:

4.20 mg 9 293°K 1,000,000 = 2.60 ppm 46.176dscf I 1,000 mg I 30.03 g I MOL I 273°K 28.31 7

0.60 mg 9 MOL 22.4 e 293°K n' 1,000,000 = 0.30 ppm 48.501 dscf 1,000 mg 30.03 g MOL 273°K 28.317

Format: 05-03003.ppm 49 NAME: MACASPHALT (Formaldehyde) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

DRY MOLECULAR WEIGHT

M, - 0.44 ( %C02) + 0.32 [ %Oz) + 0.28 (%CO + %Nz)

Where:

M, = Dry molecular weight, Ib/lbmole. %CO, = Percent carbon dioxide by volume, dry basis. . %O, = Percent oxygen by volume, dry basis. %N, = Percent nitrogen by volume, dry basis. %CO = Percent carbon monoxide by volume, dry basis. 0.264 = Ratio of 0, to N, in air, v/v. 0.28 = Molecular weight of N, or CO, divided by 100. 0.32 = Molecular weight of 0, divided by 100. 0.44 = Molecular weight of CO, divided by 100. 0 Run #1: Ib Md - 0.44 (4.80%) + 0.32 (15.00%) + 0.28 (0.00% + 80.20%) - 29.37 Ib-mole

Run #2: Ib M, - 0.44 (4.80%) + 0.32 (15.00%) + 0.28 (0.00% + 80.20%) - 29.37 Ib-mole

Run #3: Ib Md * 0.44 (4.70%) + 0.32 (15.30%) + 0.28 (0.00% + 29.36%) - 29.36 Ib 'mole

Format: mdR3/13-002 50 NAME: MACASPHALT (Formaldehyde) LOCATION: MELBOURNE. FLORIDA DATE: December 2-4, 1992

WATER VAPOR CONDENSED

Vw, - [V, - VI] [ pw - 0.04707 [V, - VI] w '(std)

Where: .

0.04707 = Conversion factor, ft /ml. 0.04715 = Conversion factor, ft /g. VWC,, = Volume of water vapor condensed (std. cond.), ml. vwsgstd = Volume of water vapor collected in silica gel (standard conditions), ml. v, - VI = Final volume of impinger contents less initial volume, ml. w, -wi = Final weight of silica gel less initial weight, g. P, = Density of water, 0.002201 Ib/ml. R= Ideal gas constant, 21.85 in.Hg. (cu.ft./Ib-mole)("R). M, = Molecular weight of water vapor, 18.0 Ib/lb-mole.

Tstd = Absolute temperature at standard conditions, 528" R. 'std = Absolute pressure at standard conditions, 29.92 inches Hg.

Run 1: Vwc, - (0.04707) (230.0) - 10.8 cU.ft (0.04715) (6.9) 0.3 CU.ft "wsg, - -

Run 2: vwc, - (0.04707) (240.0) - 11.3 CU.ft (0.04715) (6.3) 0.3 CU.ft vwsg* - -

Run 3: vwc, - (0.04707) (280.0) - 13.2 ~.ft vwsg, - (0.04715) (5.4) - 0.3 C~ft

Format: vaporR3/24-001 51 NAME: MACASPHALT (Formaldehyde) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992 e MOISTURE CONTENT OF STACK GASES

Where: .

B,, B,, = Proportion of water vapor, by volume, in the gas stream.

V, V, = Dry gas volume measured by dry gas meter, dcf.

Vwc,, = Volume of water vapor condensed, corrected to standard conditions, scf.

Vwsg,,, = Volume of water vapor collected in silica gel corrected to std. cond., scf.

Run 1: e 10.8 + 0.3 ] x 100 - 19.19% - [ 10.8 + 0.3 + 46.729

Run 2:

11.3 + 0.3 ] x 100 - 20.08% Bw - [ 11.3 + 0.3 + 46.176

Run 3: 13.2 + 0.3 ] x 100 - 21.75% Bwa - [ 13.2 + 0.3 + 48.581

Format: bwsR3/19-001 52 MAME: MACASPHALT (Formaldehyde) LOCATION: MELBOURNE. FLORIDA DATE: December 2-4, 1992

0 MOLECULAR WEIGHT OF STACK GASES

M, - M, (1 - B,) + 18 (B,)

Where:

M, = Molecular weight of stack gas, wet basis (Ib./lb.-mole).

M, = Molecular weight of stack gas, dry basis (Ib./lb.-mole).

Run X1: M, - 29.37 (1 - 19.19) + 18 (19.19) - 27.19 (Ib./lb.-mole)

0 Run X2: M, - 29.37 (1 - 20.08) + 18 (20.08) - 27.09 (Ib./lb.-mole)

Run #1: M, - 29.36 (1 - 21.75) + 18 (21.75) - 26.89 (Ib./lb.-mole)

Format: msR3/19-002 NAME: MACASPHALT (Formaldehyde) 53 LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

STACK GAS VELOCITY

Where: v, = Average velocity of gas stream in stack, ft/sec. K, = 85.49 ft/sec [(g/g-mole) - (mrn Hg)/("K)(mm H,O]" c, = Pitot tube coefficient, dimensionless. AP = Velocity head of stack gas, in. H,O.

'bar = Barometric pressure at measurement site, in. Hg. P, = Stack static pressure, in. Hg. P, = Absolute stack gas pressure, in. Hg. = Pbar + P,

PStd = Standard absolute pressure, 29.92 in. Hg. t, = Stack temperature, OF.

T, = Absolute stack temperature, OR. = 460 + t,. M, = Molecular weight of stack gas, wet basis, Ib/lb-mole.

Run #1:

Run #2:

744 V - (85.49) (.84) (0.62) - 42.60 ft/SeC 4 (30.00)(27.09)

Run #3:

724 V - (85.49) (.84) (0.59) - 40.14 ft/SeC 4 (30.00)(26.89)

Format: vsR3/19-003

~~ ~~~~ ~~ 54 HAM: MACASPHALT (Formaldehyde) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

STACK GAS FLOW RATE

Q, Q, - 3600 [ 1 - B,, ] V, A [?][2]

Where:

Dry volumetric stack gas flow rate corrected to standard conditions (dscf/hr). A= Cross sectional area of stack (ft'). 3600 = Conversion factor (sec/hr). Tstk = Absolute stack temperature (OR). Tstd = Standard absolute temperature (528O R). Pbar = Barometric pressure at measurement site (in. Hg.). Pg = Stack static pressure (in. Hg.). Ps = Absolute stack gas pressure (in. Hg.) = Pbar + Pg Pstd = Standard absolute pressure (29.92 in. Hg.).

Run X1: 528 30.00 dsd Q, Q, - 3600 (1 -.1919) (37.31) (18.60) - - - 1468141.8 - [ 7281 [ 29.921 hr

Run X2: 528 30.00 dscf Q, - 3600 (1 -.2008) (42.60) (18.60) - - - 1622188.0 - [ 7441 [ 29.921 hr

Run X3: 528 30.00 dsd Q, Q, - 3600 (1-.2175) (40.14) (18.60) - - - 1537914.5 - [ 7241 [ 29.921 hr

Format: qR3/19-004 NAME: MACASPHALT (Formaldehyde) 55 LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

Formaldehyde EMISSIONS RATE FROM STACK

E - [(") (Qd)] - 0.0000 Ib/hr 7,000 gr/lb

Where:

E = Emissions rate, Ibs/hr.

C, = Concentration of formaldehyde in stack gas, dry basis, corrected to standard conditions, gr/dscf.

Q,, = Dry volumetric stack gas flow rate corrected to standard conditions, dscf/hr.

Run #1:

(0.00002)~(1468141.8) E= = 0.004 7,000

Run #2: (0.001 40)-(1622188.0) E= = 0.320 7,000

Run #3:

(0.000201 (1537914.5) E= = 0.040 7,000

Format: csR3/05-005 56 NAME: MACASPHALT (Formaldehyde) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992 a ISOKINETIC VARIATION

(0.002669) (V, + (V,/T,) (Ph + AH/13.6)] I - 100T, 60 e v, P, A,

Where: I= Percent isokinetic sampling. 100 = Conversion to percent.

T, = Absolute average stack gas temperature, OR.

0.002669 = Conversion factor, Hg - ft3/ml - OR. vi, = Total volume of liquid collected in impingers and silica gel, ml.

T,,, = Absolute average dry gas meter temperature, OR. - Pbar - Barometric pressure at sampling site, in. Hg. AH = Average pressure differential across the orifice meter, in. H,O. 13.6 = Specific gravity of mercury. 60 = Conversion seconds to minutes. e= Total sampling time, minutes. v, = Stack gas velocity, ft/sec. P, = Absolute stack gas pressure, in. Hg. a A, = Cross sectional area of nozzle, fl I. Run X1:

49.675 (0.002669)' (236.90) + 30.00 + - 557 I - (100) (728) "1 - 100.8% 60 (72.0) (37.31 ) (30.00) (.000490)

Run X2:

(0.002669) (246.30) + 50.155567 130.00 + -13.6 I (100) (744) - 91.9% - 60 (60.0) (42.60) (30.00) (.000576)

Run X3:

52.085 (0.002669) (285.40) + 562 I - (100) (724) 60 (72.oj (40.14) (30.00) (.000490)

Format: iR3/09-001 .

VI. CALCULATIONS e C. PAH

e 57 NAME: MACASPHALT (PAH) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4. 1992

SUMMARY OF TEST DATA Run #1 Run #2 Run #3 12-03-92 12-03-92 12-04-92 SAMPLING TRAJN DATA Start 10:25 12:55 08:11 Finish 12:22 11339 11 :26 1. Sampling time, minutes e 90.0 90.0 90.0

2. Sampling nozzle diameter, in. "n ,3250 ,3100 ,3250 3. Sampling nozzle cross-sect. area, fi2 An ,000576 ,000525 ,000576 4. isokinetic variation I 93.8 92.8 87.1 5. Sample gas volume - meter cond., cf. vnl 79.821 71.546 70.457 6. Average meter temperature, "R Tm 566 564 555 7. Avg. orifice pressure drop, in. H,O AH 2.70 2.12 2.64

8. Total PAH collected, mg. Mn .oo .oo .oo VELOCITY TRAVERSE DATA 9. Stack area, ft.' 18.60 18.60 18.60 10. Absolute stack gas pressure, in. Hg. 30.02 30.02 30.00 11. Barometric pressure, in. Hg. 30.02 30.02 30.00 12. Avg. absolute stack temperature, R" 740 726 726

13. Average Jvel. head, (C, 2 .W) 0.64 0.63 0.62 14. Average stack gas velocity, ft./sec. 43.82 42.69 42.10 STACK MOISTURE CONTENT 15. Total water collected by train, ml. 378.30 331.40 358.80 16. Moisture in stack gas, % 19.46 19.08 20.32 EMISSION DATA

17. Stack gas flow rate, dscf/hr. Q,, 1691 1687 1637 18. Stack gas flow rate, dm adm 48903 47642 46984

19. PAH concentration, gr/dscf cs 0.00010 0.00020 0.00009 20. PAH concentration, Ib/hr E 0.024 0.048 0.021 ORSAT DATA 21. Percent CO, by volume 4.60 4.50 4.80 22. Percent 0, by volume 14.40 14.90 15.10 23. Percent CO by volume .oo .oo .oo 24. Percent N, by volume 81 .oo 80.60 80.10

Format: summryR3/19-000 NAME: MACASPHALT (PAH) 58 LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

MOISTURE DETERMINATION DRY GAS VOLUME

Pm+- AH "R 13.6 - 17.64 -Y vrn E. Hg Trn Where: - 'm(std) - Dry gas volume through meter at standard conditions, ft'. v, = Dry gas volume measured by meter, ft '.

Pbar = Barometric pressure at orifice meter, in. Hg.

'std = Standard absolute pressure, (29.92 in. Hg.). T, = Absolute temperature at meter, OR.

Tstd = Standard absolute temperature, (528" R). AH = Avg. pressure drop across orifice meter, in. H,O. Y= Dry gas meter calibration factor. 13.6 = Inches of water per Hg.

Run #1:

2.70 30.02 + - 13.6 "m(,) "m(,) - (17.64) (.980) (79.821) - 73.671 dscf 566

Run #2:

30.02 + -2.12 13.6 'Jm(q - (1 7.64) (.980) (71.546) - 66.175 dscf 564

Run #3: 2.64 30.00 + - 13.6 - (1 7.64) (.980) (70.457) - 66.264 dscf 'Jm(.td, 555

Format: dgmP/13-001 59 NAME: MACASPHALT (PAH) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

TOTAL CONTAMINANTS BY WEIGHT: GRAIN LOADING

PAH Concentration: Cs gr/dscf

C,' - [0.0154 "1 [ -] M" mg "rn(std) . Where:

C, = Concentration of PAH in stack gas, dry basis, corrected to standard conditions, gr/dscf.

M, = Total amount of PAH's collected, mg.

Vm(nd) = Dry gas volume through meter at standard conditions, cu. ft

Run #I: Cb - [0.0154 $1 - 0.00010 grldsd

i Run #2: Cs*- [0.0154 $1 [ :y5] - 0.00020 gr/dscf

Run #3:

~ c,' - [0.0154 $1 [ 60$?&] - 0.00009 grldsd

Format: csR3/03-004 60 NAME: MACASPHALT (PAH) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

PAH CONVERSION TO rng/ma

C,mg/m3 = ( C,gr/dscf ) ( 35.31 ft’ m3

Where: C,mg/m = Concentration as milligrams per cubic meter C,gr/dscf = Concentration as grains per cubic foot 35.31 = Conversion of ft to m 0.0154 = Conversion from grains to milligrams

0 Run X1: ~,mg/rn’ = (O.OOOIO) ( 35.31 ft’ m3

Run #2:

= 0.459

Run #3:

C,mg/m’ = ( o.oo009 35.31 ft’ [ m3

Format: 03-009 61 NAME: MACASPHALT (PAH) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

DRY MOLECULAR WEIGHT

M, - 0.44 (%CO,) + 0.32 (%Oo,) + 0.28 (%CO + %No,)

Where:

M, = Dry molecular weight, Ib/lbmole. %CO, = Percent carbon dioxide by volume, dry basis. . %O, = Percent oxygen by volume, dry basis. %N, = Percent nitrogen by volume, dry basis. %CO = Percent carbon monoxide by volume, dry basis. 0.264 = Ratio of 0, to N, in air, v/v. 0.28 = Molecular weight of N, or CO, divided by 100. 0.32 = Molecular weight of 0, divided by 100. 0.44 = Molecular weight of CO, divided by 100.

Run #1: Ib M, - 0.44 (4.60%) + 0.32 (14.40%) + 0.28 (0.00% + 81.00%) - 29.31 Ib-mole

Run +2: Ib M, - 0.44 (4.50%) + 0.32 14.90%) + 0.28 (0.00% + 80.60%) - 29.32 Ib-mole

Run #3: Ib M, - 0.44 (4.80%) + 0.32 (15.10%) + 0.28 (0.00% + 80.10%) - 29.37 Ib mole

Format: mdR3113-002 62 NAME: MACASPHALT (PAH) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

WATER VAPOR CONDENSED

- 0.04707 [V, - Vi]

- [W, - Wi] l3 '(std) - 0.04715 [W, - Wi] Vmg, [ ] Mw P(Std) Where:

0.04707 = Conversion factor, ft'/ml. 0.04715 = Conversion factor, ft3/g. VWCStd = Volume of water vapor condensed (std. cond.), ml. vwsgstd = Volume of water vapor collected in silica gel (standard conditions), ml. v, - vi = Final volume of impinger contents less initial volume, ml. w,- wi = Final weight of silica gel less initial weight, g. P, = Density of water, 0.002201 Ib/ml. R= Ideal gas constant, 21.85 in.Hg. (cu.ft./lb-mole)(oR). M, = Molecular weight of water vapor, 18.0 Ib/lb-mole.

Tstd = Absolute temperature at standard conditions, 528OR.

PStd = Absolute pressure at standard conditions, 29.92 inches Hg.

Run 1: Vwcd- (0.04707) (370.0) - 17.4 ~.ft VWd - (0.04715) (8.3) - 0.4 cu.ft Run 2: Vwcd - (0.04707) (325.0) - 15.3 ~.ft VWm - (0.04715) (6.4) - 0.3 cu.ft Run 3: Vwcd - (0.04707) (353.0) - 16.6 cu.ft VWM - (0.04715) (5.8) - 0.3 CUA

Format: vaporR3/24-001 63 NAME: MACASPHALT (PAH) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

e MOISTURE CONTENT OF STACK GASES

Where: .

B,, B,, = Proportion of water vapor, by volume, in the gas stream.

V, = Dry gas volume measured by dry gas meter, dcf.

Vwc, = Volume of water vapor condensed, corrected to standard conditions, scf.

Vwsg, = Volume of water vapor collected in silica gel corrected to std. cond., scf.

Run 1: e 17.4 + 0.4 ] x 100 - 19.46% Bm * [ 17.4 + 0.4 + 73.671

Run 2:

15.3 + 0.3 ] x 100 - 19.08% Bws [ 15.3 + 0.3 + 66.175

Run 3:

16.6 + 0.3 ] x 100 - 20.32% Bws - [ 16.6 + 0.3 + 66.264

Format: bwsR3/19-001

~~~ ~ 64 NAME: MACASPHALT (PAH) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

e MOLECULAR WEIGHT OF STACK GASES

M, - M, (1 - B,) + 18 (B,)

Where:

Molecular weight of stack gas, wet basis (Ib./lb.-mole). M, = . M, = Molecular weight of stack gas, dry basis (Ib./lb.-mole).

Run #1: M, - 29.31 (1 - 19.46) + 18 (19.46) - 27.11 (Ib./lb.-mole)

a Run X2: M, - 29.32 (1 - 19.08) + 18 (19.08) - 27.16 (Ib./lb.-mole)

Run #I: M, - 29.37 (1 - 20.32) + 18 (20.32) - 27.06 (Ib./lb.-mole)

Format: msR3/19-002 65 NAME: MACASPHALT (PAH) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

e STACK GAS VELOCITY

Where: v, = Average velocity of gas stream in stack, ft/sec. . Kp= 85.49 ft/sec [(g/g-mole) - (mm Hg)/("K)(mm H,O]" c, = Pitot tube coefficient, dimensionless. AP = Velocity head of stack gas, in. H,O.

'bar = Barometric pressure at measurement site, in. Hg. P, = Stack static pressure, in. Hg. P, = Absolute stack gas pressure, in. Hg. = Pba, + P,

'std = Standard absolute pressure, 29.92 in. Hg. t, = Stack temperature, F. T, = Absolute stack temperature, "R. = 460 + t,. M, = Molecular weight of stack gas, wet basis, Ib/lb-mole.

Run #1:

740 v - (85.49)(.84) (0.64) - 43.82 ft/~e~ 4 (30.02)(27.11)

Run #2:

726 V - (85.49) (.84) (0.63) 4 (30.02)(27.16)

Run #3:

726 V - (85.49) (.84) (0.62) 42.10 Wsec 4 (30.00)(27.06)

Format: vsR3/19-003 NAME: MACASPHALT (PAH) 66 LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992 0 STACK GAS FLOW RATE

Q, Q, - 3600 [ 1 - B,, ] V, A [k][$]

Where:

Dry volumetric stack gas flow rate corrected to standard conditions (dscf/hr). A= Cross sectional area of stack (ft'). 3600 = Conversion factor (sec/hr). Tstk = Absolute stack temperature ( R). Tstd = Standard absolute temperature (528" R). Pbar = Barometric pressure at measurement site (in. Hg.). Pg = Stack static pressure (in. Hg.). P, = Absolute stack gas pressure (in. Hg.) = Pbar + Pg Pstd = Standard absolute pressure (29.92 in. Hg.).

Run #1: dsd Q, Q, - 3600 (1 -.1!346) (43.82)(18.60) - 1691806.7 - hr

Run #2: dsd Q, Q, - 3600 (1 - .1W)(42.69) (18.60) - 1687889.0 - hr

Run #3: dsd Q, Q, - 3600 (1 -.2032) (42.10) (18.60) -528 -30.00 - 1638962.0 - [ 7261 [ 29.92] hr

Format: qR3/19-004 67 NAME: MACASPHALT (PAH) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

EMISSIONS RATE FROM STACK

E - [(") (Qd)] - 0.0000 Ib/hr 7,000 gr/lb . Where:

E = Emissions rate, Ibs/hr.

C, = Concentration of PAH's in stack gas, dry basis, corrected to standard conditions, gr/dscf.

Q,, = Dry volumetric stack gas flow rate corrected to standard conditions, dscf/hr.

Run #1:

E [ (0.00010) (1 691 806.7) 0.024 Ibs/hr 7,000

Run #2:

E [ (0.00020) (1 687889.0) 0.048 Ibs/hr 7,000 1

Run #3:

E (0.00009) (1637962.0) 0.021 Ibs/hr [ 7,000

Format: csR3/05-005 68 NAME: MACASPHALT (PAH) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

ISOKINETIC VARIATION

(0.002669)(V, + (VJT,) (Pbar+ A”113.6) I - lWT, 60 0 V, P, A, 1 Where: I= Percent isokinetic sampling. 100 = Conversion to percent. T, = Absolute average stack gas temperature, OR. 0.002669 = Conversion factor, Hg - ft3/ml - OR. vi, = Total volume of liquid collected in impingers and silica gel, ml.

T, = Absolute average dry gas meter temperature, OR.

Pbar = Barometric pressure at sampling site, in. Hg. AH = Average pressure differential across the orifice meter, in. H,O. 13.6 = Specific gravity of mercury. 60 = Conversion seconds to minutes. e= Total sampling time, minutes. v, = Stack gas velocity, ft/sec. P, = Absolute stack gas pressure, in. Hg. A, = Cross sectional area of nozzle, ft I.

Run #1: 79.821 (0.002669)(378.30) + 30.02 + - 566 I - (100) (740) - 938% 60 (90.0) (43.82) (30.02) (.000576)

Run #2: 71.546 (0.002669)(331.40) + 30.02 + - I - (100) (726) 564 1 - 92.8% 60 (90.0) (42.69) (30.02) (.000524)

Run #3: 70.457 (0.002669) (358.80)+ 30.00 + - 555 I - (100) (726) :‘I 87.1% 60 (90.0) (42.10) (30.00) ( .000576)

Format: iR3/09-001 a

.

VI. CALCULATIONS

D. SO,, THC, CO, NO, and CH,

e 69 NAME: MACASPHALT (Gaseous Compounds) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

co GASEOUS CONCENTRATION CONVERSION TO mg/m3

1 28.317 P 35.3145 ft* 273’K mole 28.01 1,000 mg g _-- mg ppm m’ lxloe n’ m’ 293’~ 22.4 P mole 9

Where: . PPm = Parts per million, dry basis 1x106 = Conversion form parts per million 28.317 = Conversion of liters to ft’ 35,3145 = Conversion of ft) to m’ 2731293°K = Temperature correction to standard conditions 22.41 = Volumetric molar conversion @ 273” K 28.01 g/mole = Molecular weight of pollutant 1,000 mg/g = Conversion to milligrams

1 28.317 P 35.3145 ft’ 273°K mole 28.01 g 1000 mg 138.4 = 161.2 m, ppm lxloa n’ ms 293’~ 22.4 e mole 9

Run #2:

138.4 1 28.317 P 35.3145 ft’ 273°K mole 28.01 g 1000 mg = 161.2 mm, ppm lxlo-e n’ nv 293’K 22.4 e mole 9

P mole mg m 172.9 1 28.317 35.3145 ft’ 273°K 28.01 g 1000 - 201.4 m’ ppm lXIOB ft’ rnj 293°K 22.4~ mole 9

Format: 03-02801.mg NAME: MACASPHALT (Gaseous Compounds) 70 LOCATION: MELBOURNE, FLORlDA DATE: December 2-4, 1992

so2 GASEOUS CONCENTRATION CONVERSION TO mg/m

1 28.317 P 35.3145 ft’ 273°K mole 64.07 g 1,000 mg - --- mg PPm mi lxlo-s ft’ mi 293°K 22.4 P mole 9

Where: .

PPm = Parts per million, dry basis 1x104 = Conversion form parts per million 28.317 = Conversion of liters to ft’ 35,3145 = Conversion of ft to m 2731293°K = Temperature correction to standard conditions 22.41 = Volumetric molar conversion @ 273°K 64.07 glmole = Molecular weight of pollutant 1,000 mg/g = Conversion to milligrams

1 28.317 P 35.3145 fti 273°K mole 64.07 g 1000 mg 146.1 . - 389.4 !XIm’ ppm 1x10-6 rt’ mi 293’K 22.4 P mole 9

Run #2:

1 28.317 P 35.3145 ft’ 273°K mole 64.07 g 1000 mg - 389.4 rnm,

1 28.317 P 35.3145 ft’ 273°K mole 64.07 g 1000 mg - 346.2m mi

Format: 03-06407.mg 71 NAME: MACASPHALT (Gaseous Compounds) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

NO, GASEOUS CONCENTRATION CONVERSION TO mg/m

1 28.317 P 35.3145 ft’ 273°K mole 46.01 g 1,000 mg -__ mg PPm m’ lXIOd it’ m’ 293’~ 22.4 P mole 9

Where: . PPm = Parts per million, dry basis 1x106 = Conversion form parts per million 28.317 = Conversion of liters to ft’ 35,3145 = Conversion of ft to m 2731293°K = Temperature correction to standard conditions 22.42 = Volumetric molar conversion @ 273°K 46.01 glmole = Molecular weight of pollutant 1,000 mglg = Conversion to milligrams

1 28.317 P 35.3145 ftJ 273’K mole 46.01 g 1000 mg 128.1 = 245.2 E4m, ppm 1x10-e ft’ mi ~93% 22.4 e mole 9

Run #2:

1 28.317 P 35.3145 ft’ 273°K mole 46.01 g 1000 mg 128.1 - 245.2 mm, PPm 1XlO6 n’ mi 293% 22.4 P mole 9

1 28.317 35.3145 ft’ 273‘K mole 46.01 g 1000 mg 212.8mJ 111.2 P - m’ ppm lxlo-6 ft’ m’ 293”~ 22.4 P mole 9

Format: 03-04601.mg NAME: MACASPHALT (Gaseous Compounds) 72 LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

e TOTAL HYDROCARBON EMISSIONS - Convert ppm (wet) to ppm (dry)

Where:

ppm, = Parts per million, dry basis, as carbon.

ppm, = Parts per million, wet basis, as carbon.

B,, B,, = Proportion of water vapor, by volume, in the gas stream.

Run#1 =

(96.5) ( 100 ) = 119.4 ppm, ( 100 - 19.19 )

Run #2 =

(96.5) ( 100 ) = 120.7 ppm, ( 100 - 20.08 )

Run #3 =

(112.1) ( 100 ) = 143.3 ppm, ( 100 - 21.75 )

Format: 05-001 NAME: MACASPHALT (Gaseous Compounds) 73 I LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992

THC GASEOUS CONCENTRATION CONVERSION TO mg/m

1 28.317 P 35.3145 ft' 273°K mole 16.04 g 1,000 mg --- mg PPm mi 1x10.e R' m' 293"~ 22.4 P mole 9

Where: . PPm = Parts per million, dry basis lXlO* = Conversion form parts per million 28.317 = Conversion of liters to ft' 35,3145 = Conversion of ft' to m3 273/293"K = Temperature correction to standard conditions 22.4i = Volumetric molar conversion @ 273" K 16.04 g/mole = Molecular weight of pollutant (CH,) 1,000 mg/g = Conversion to milligrams

1 28.317 P 35.3145 ft' 273°K mole 16.04 g 1000 mg 119.4 = 79.7 LxIm' ppm lXIOB ft' m' 293% 22.4~ mole 9

1 28.317 P 35.3145 ft' 273°K mole 16.04 g 1000 mg LxI 120.7 = 80.5 m' PPm lxlo-6 ftz m* 293"~ 22.4 P mole 9

1 28.317 35.3145 ft' 273°K mole 16.04 g 1000 mg - 956~x1 143.3 P - m' ppm lXlOB ft' mi 293"~ 22.40 mole 9

Format: 03-01604.mg 74 NAME: MACASPHALT (Gaseous Compounds) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4,1992

TOTAL CARBON MONOXIDE EMISSIONS: POUNDS PER HOUR

Where:

E = CO emissions rate, Ibs/hr .

2.59 x 10.’ = Conversion factor, Ibs/dscf.

M, = Dry molecular weight (CO = 28.01).

Q,, = Dry volumetric stack gas flow rate corrected to standard conditions, dscf/hr.

ppmd = Parts per million, dry basis. K = Constant (typically 1).

Run #1:

E = (2.59x 10”) (28.01)(138.4) (1,468,141.8) = 14.74 Ibs/hr

Run #2:

E = (2.59x lo-’) (28.01)(138.4) (1,622,188.0) = 16.29Ibs/hr

Run #3:

E = (2.59x lo-’) (28.01)(172.9) (1,537,914.5) = 19.29 Ibs/hr

Format: 05-028.01 NAME: MACASPHALT (Gaseous Compounds) 75 LOCATION: MELBOURNE, FLORl DA DATE: December 2-4,1992 0 TOTAL SULFUR DIOXIDE EMISSIONS: POUNDS PER HOUR

Where:

E = SO, emissions rate, Ibs/hr.

2.59 x lo9 = Conversion factor, Ibs/dscf.

M, = Dry molecular weight (SO, = 64.07).

Q,, = Dry volumetric stack gas flow rate corrected to standard conditions, dscf/hr.

ppm, = Parts per million, dry basis.

K = Constant (typically 1).

Run #1:

E = (2.59x lo9) (64.07)(146.1) 1,468,141.8 = 35.59 Ibs/hr

Run #2:

E = (2.59x lo”) (64.07)(146.1) 1,622,188.0 = 39.33 Ibs/hr

Run #3:

E = (2.59x lo-’) (64.07)(129.9) 1,537,914.5 = 33.15 Ibs/hr

Format: 05-064.07 76 NAME: MACASPHALT (Gaseous Compounds) LOCATION: MELBOURNE, FLORIDA DATE: December 2-4,1992

e TOTAL NO, EMISSIONS: POUNDS PER HOUR

Where:

E = NO, as NO, emissions rate, Ibs/hr.

2.59 x IO-’ = Conversion factor, Ibs/dscf.

Md = Dry molecular weight (NO, = 46.01).

Qsd = Dry volumetric stack gas flow rate corrected to standard conditions, dscf/hr

ppm, = Parts per million, dry basis.

K = Constant (typically 1).

Run #I:

E = (2.59x 10’’) (46.01)(128.1) (1,468,141.8) = 22.41 Ibs/hr

Run #2:

E = (2.59x IO-’) (46.01)(128.1) (1,622,180.0) = 24.76 Ibs/hr

Run #3:

E = (2.59x IO-’) (46.01)(111.2) (1,537,914.5) = 20.38Ibs/hr

Format: 05-046.01 NAME: MACASPHALT (Gaseous Compounds) 77 LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992 e TOTAL HYDROCARBON EMISSIONS: POUNDS PER HOUR

Where: E = THC as CH4 emissions rate, Ibs/hr. . 2.59 x lo” = Conversion factor, Ibs/dscf.

M, = Dry molecular weight (CH4 = 16.04).

Q,, = Dry volumetric stack gas flow rate corrected to standard conditions, dscf/hr.

ppm, = Parts per million, dry basis.

K = Constant (typically 1).

Run #I:

E = (2.59 x 10”) (16.04) (119.4) (1,468,141.8) = 7.28 Ibs/hr

Run #2:

E = (2.59 x lo-’) (16.04) (120.7) (1,622,180.0) = 8.13 Ibs/hr

Run #3:

E = (2.59 x IO”) (16.04) (143.3) (1,537,914.5) = 9.16 Ibs/hr

Format: 05-01604.ch4 NAME: MACASPHALT (Gaseous Compounds) 78 LOCATION: MELBOURNE, FLORIDA DATE: December 2-4, 1992 0 TOTAL METHANE EMISSIONS: POUNDS PER HOUR

Where: E = CH4 emissions rate, Ibs/hr. . 2.59 x 10” = Conversion factor, Ibs/dscf.

M, = Dry molecular weight (CH4 = 16.04).

Q,, = Dry volumetric stack gas flow rate corrected to standard conditions, dscf/hr.

ppm, = Parts per million, dry basis.

K = Constant (typically 1).

Run #1:

E = (2.59 x lo-’) (16.04) ( 6.27 ) (1,468,141.8) = 0.38 Ibs/hr

Run #2:

E = (2.59 x lo9) (16.04) (21.02) (1,622,180.0) = 1.42 Ibs/hr

Run #3:

E = (2.59 x lo-’) (16.04) (22.50) (1,537,914.5) = 1.44 Ibs/hr ;e

Format: 05-01604.mth e

.

VII. LABORATORY ANALYSIS RESULTS e A. Formaldehyde Analysis Results AM ER ICAN 79 INTERPLEX 8600 Kanis Road CORPORATION I Little Rock, AR 72204-2322 LABORATORIES (501)224-5060

Ramcon Envi ronment a1 Corporation (C - 488) December 28, 1992 6707 Fletcher Creek Cove Memphis, TN 38134

ATTN: Mr. Joe Sewell Control No. 11643

Sample Description: Six (6) impinger solutions received on 12/17/92 . Plant: Mac Asphalt - NAPA; P.O. Nos. 080102, 080103

Results:

Sample Identification Volume, ml Formaldehyde, mq

Run 1, 12/9/92 530 8.8

Run 2, 12/9/92 700 8.8

Run 3, 12/9/92 685 5.8

Run 1, 12/4/92 495 0.063

Run 2, 12/4/92 495 4.2 Run 3, 12/4/92 575 0.60

Method: 40 CFR Part 266, Appendix IX Section 3.6 Method OOllA

AMERICAN INTERPLEX CORPORATION

SUtd BY Technical Director

0 Chemistry - Materials Science - Environmental Analyses .

VII. LABORATORY ANALYSIS RESULTS

B. PAH Analysis Results 1.4-0ichlorobsn2ena-d4 3692 420 1 I Naphthalene-d6 16696 599 2 I 2-Methy lnaphtha lene 1,2192 0,679 705 2 170.01 0 40.0 - Naphthalene 12447 1.001 602 2 117.74 0 40.0 - Acenaphthsne-dlO 7682 657 3 I Acensphthene 0 0.957 03 0.42 NO 40.0 - Fluorene 0 1.160 03 0.34 NO 40.0 - 2-Ch loronaphtha Lena 0 0.971 03 0.42 NO 40.0 - Acanaph thy Lana 0 1.680 03 0.24 NO 40.0 - Phsnanthrens-dlO 12369 1076 4 I Phenanthrene 0 0.921 04 0.28 NO 40.0 -

Anthracene 0 0.944 04 0.27 NO 40.0 ,- F luoranthena 2581 1.115 1256 4 29.95 E 40.0 - Chryssna-dl2 15209 1471 5 I Chrysena 0 0.995 05 0.21 NO 40.0 - Pyrena 4322 1.167 1266 5 36.97 E 40.0 - Benzo(a)anthraoene 0 0.976 05 0.22 NO 40.0 - Pery lena-dl2 13417 1741 6 I Benro(b)fluoranthane 0 1.380 06 0.17 NO 40.0 - Benzo(k)fluoranthene 0 1.765 06 0.13 NO 40.0 - mzo(s)pyro"o 0 1.423 06 0.17 NO 40.0 - eBenzo(a)pyrene 0 1.321 06 0.16 NO 40.0 - Pery Lena 0 0.666 06 0.35 NO 40.0 - Indsno(l.2.3-cd)pyrene 0 0.676 06 0.27 NO 40.0 - Oibsnz(a.h)anthracane 0 0.675 06 0.27 NO 40.0 -

Bsnzo(g,h.i)perylene 1004 1.068 2016 6 11.22 E 40.0 -'

Date - - - mated: I-Internal Standard Orgrep v2.5

6 100 66 '?4 0 1341700 bk 1741 2$4 Perylen+d 12 7000 0 0 0 112 2- F;UOrfipiEncl OOCl0 0 0 0 132 :-Chloroph~?riol.-di 0000 0 0 0 09 Phenol-d5 10000 0 0 0 15: 1,2-Uir:hioroberizene-d-r .ll 0 0 0 0 0 0 82 N 5. t robeti ;e iie-6 5 12000 0 0 0 135 1,3,5-Trichlor~~~enzene-d3 13 0 0 0 0 0 0 240 1. 4 -Uibi"nsr~)snzeni?-d*i 14000 0 0 0 Li2 2- Fluo-nbiphenyl 15000 0 0 0 330 2,4,6-T ribi:ooicpIienol 16 65 2h 8: -1 425370 \/\I 1084 188 Anthi-acene-dl0 . 1.7 81. 38 92 0 617930 vv 1286 212 Pyrene-dl0 1s 0 0 0 0 0 0 244 Tcrphenyl-dl4 :tlj n4 38 ,97 0 124.~80D VL. 602 12F; Naphtiialsn? 20 8:l 54 87 0 121?200 vb 705 142 ?-neth~/liiaphthalene 21 0 o 0 0 0 0 1-62 2-2hiuronephthalene 22 0-, 0 0 0 0 0 152 Ace napht hy lene --L.? n > o o 0 0 0 I54 &cenap ht ihene 24000 0 0 0 164 Fluorene 25 0 0 0 0 0 0 266 Pentachlorophenol 26000 0 0 0 173 2 tienanth rene 0 0 0 178 hn'thracenr -1 '258180 vb 1256 202 Fluoranthene -1. 432270 vv 1288 30000 0 0 0 31' 0 0 0 0 0 .O 32000 0 0 0 33000 0 0 D 34000 0 0 0 35000 0 0 0 36000 0 0 0 37000 0 0 0 38000 0 0 0 33 42 21. e3 -d 300470 bb 2016 83

- ... . L. 85 86 87

J i 3 .

L. QJ

.C Triangle Laboratories of RTP. Inc. Sample File : 01506 Sample IO: RUNPZ 601 Capitoh or. Rcsponra File : GL500 88 Durham. NC 27713 Date Analyzed : 01/04/93 TLI IO: 62.51.2A-1 (919) 544-5729 Oats Reported : 01/05/93 Dilution Factor: 4.00

Project Number: ' 22680 Results Method 6270

~.. .- .__ ~ .- -~. I. .. ._ __ Analyte .- Area ...... RF . .. SCAN IS10 .. Amt r Code 'Ouan .FLAG . . . (W) Limit

...... 1,4-0ichlorobenzsna-d4 4012 420 1 I Naphthalene-d6 17425 599 . 2 I 2-Methylnaphtha lens 9652 0.679 705 2 133.23 0 40.0 - Naphthalene 9987 1.001 602 2 91.61 0 40.0 - Acsnaphthena-dlO 7635 657 3 I Acsnaphthsna 0 0.957 03 0.43 NO 40.0 - F Luorsna 0 1.160 03 0.35 NO 40.0 - 2-Ch loronaphtha lens 0 0.971 0 3 . 0.42 NO 40.0 - Acenaphthylene 0 1.680 03 0.24 NO 40.0 - . Phenanthrene-dlO 13104 1076 4 I Phenanthrene 9763 0.921 1060 4 129.43 0 40.0 - Anthracene 0 0.944 04 0.26 NO 40.0 - Fluoranthena 11941 1.115 1256 4 130.76 0 40.0 - Chryrens-dl2 661 2 1471 5 I

Chr ysenc 0 ' 0.995 05 0.38 NO 40.0 - Pyrans 23332 1.167 1289 5 363.00 0 40.0 - Benzo(a)anthracans 0 0.978 05 0.37 NO 40.0 - Parylene-dl2 6499 1742 6 I Benzo(b)flvoranthena 0 1.360 06 0.27 NO 40.0 - Bsnzo(k)fLunranthene 0 1.765 06 0.21 NO 40.0 - anro(*)pyra"s 0 1.423 06 0.26 NO 40.0 - eBanzo(a)pyra"a 0 1.321 06 0.28 NO 40.0 - Psry lane 0 0.688 06 0.55 NO 40.0 - Indeno(l.2.3-cd)pyrana 0 0.676 06 0.43 NO 40.0 - Oibenz(a,h)snthracene 0. 0.875 06 0.43 NO 40.0 - Benzo(g .h, i)pry lane 0 1.068 06 0.35 NO 40.0 - ...... Surrogate Summary Area RF SCAN IS10 Amount Code XREC (US)

s==l~=sij~?ll======lIlii======l====i=i======Anthracene-dlO 4487 0.508 1064 4 107.66 0 107.9 Pyrsns-dlO 6062 1.066 1266 5 103.25 0 103.3

Rsvaiwsd by orgrap "2.5

~~~ - -. . .;;I&<{ ljli : i;i,5c,!> i~4-.Iari-')Z (j:j: ib 90 N.2, 110: FOR RE'S! i1clt.z Area P.Flag-r Sc.3n 211 tlallle -.____-__-_-_____.______.-.______.______I______.______.______-_-

i $7., 52 57 0 40i:'%0 !h 4'20 15: .L ;l-Dl.:hLo

'),j 5.* I?-J I? 7 13,; ~l~~~~~,ti~~i,~~.l~~rie-~~ _. /Y 3: 27 7 LC.4 iic-e,lapntn~,lr-ciJ.O

..P Ii'/.__48~34 o ~ 1710400v- VY LO i 6 153 P tie tian threne-d 10 -

i .2T . .gj 1 SSj.?$O bo .~4ij..

1.5 0 , 0 0 0 0 0 330 2,4 ,h-Tribromophenol 16 71 21 e: -1 443730 V'I 1084 185 Anthracene-dl0 . 17 71: 35 90 0 1>0~,200 VY 1286 213 Pyrene-d1.0 18004 0 0 0 244 Tevphenyl-dl4 19 81 34 ?6 0 9598720 vv 602 129 Napl?-thalcne 20 57 53 86 0 185210 vh 705 142 2-Hethylnaph'thnlene 2 i. 0 0 ii 0 0 '0 3.62 2-Ch lnron?.phthai.ene 22000 0 0 0 15: Acenaphthylene 23 0 i) 0 0 0 0 1.54 Acenaphthene 2s 0 0 0.' 0 0 0 166 Fluorene 0-'3 0 0 0 0 0 0 26 6 Pen tacn lompheno!.

26 .i5 21 91 0 ' 976310 vv 1080 178 Phenanthrene 0 0 0 178 Anthracene 6 3; 5: 907 -1 1194100 vh 1256 202 Fluorarithene 29 51: 62 95 0 2333200 vv 1289 202 Pyrene 30000 0 0 0 228 Senzo(a)anthraccne 31000 0 0 0 228 Chrysene 32000 0 0 0 252 Benzo(:b)iluornnthenc 33 . 0 0 .TJ 0 0 o 2.w Benzo(k)ri.uoranthene

34000 0 0 0 ' 25: Berizo(e jpyrene 35000 0 0 0 252 8enzo(a jpyrene 36000 0 0 0 252 Perylen:? 37000 0 0 0 ,276 Tndeno(l,2, 3-cd)pyrene 38000 0 0 0 278 Oihenzi:a, h)anthracene 39 0 0 0'0 0 0 276 eenzojg,h,i)peryLene .

b s 93

3

. I'M Y I. 94

,. e 95 Triangle Laboratories of RTP, Inc. sample File : CL515 Sample ID: RUN#3 96 801 Capitola or. Response File : GL509 Ourham. NC 27713 Oats Analyzed : 01/04/93 TLI ID: 62.51.3A-I (919) 544-5729 Date Reported : 01/05/93 Dilution Factor: 10.00 Project Number: 22680 Results Method 8270

1,4-0ichlorobeniena-d4 6076 420 1 I Naphtha lme-d8 24949 599 2 I 2-Msthy (naphtha lane 7919 0.675 705 2 188.10 0 100.0 - Naphthalene 9273 0.940 602 2 158.17 0 100.0 - Assnaphthsns-dl0 13174 857 3 I Acenaphthsns 0 0.969 03 0.63 NO 100.0 - Fluorene 0 1.170 03 0.52 NO 100.0 - 2-Ch loronaphtha Lena 0 1.006 03 0.60 NO 100.0 - Acsnaphthy lene 0 1.697 03 0.36 NO 100.0 - . Phenanthrene-dl0 26096 1076 4 I Phenanthrene 4259 0.915 1080 4 71.35 E 100.0 - Anthracene 0 0.959 04 0.32 NO 100.0 - F luoranthans 2726 1,099 1256 4 38.02 E 100.0 - Chryrena-dl2 29098 1471 5 I Chr yssna 0 0.935 05 0.29 NU 100.0 - Pyrene 3172 0.996 1289 5 43.78 E 100.0 - Banro(a)snthracens 0 0.982 05 0.29 NO 100.0 - Perylena-dl2 20907 1742 8 I Benzo(b)fluoranthens 0 1.331 06 0.29 NO 100.0 - Bsnzo(k)fluorantheno 0 1.524 06 0.25 NO 100.0 - anro(s)pyrene 0 1.341 06 0.29 NO 100.0 - eBsnzo(a)pyrens 0 1.269 06 0.30 NO 100.0 - Psrylens 0 0.669 06 0.57 NO 100.0 - Indeno(l.2.3-cd)pyrane 0 1.271 06 0.30 NO 100.0 - Oibsnr(a,h)anthracene 0 0.984 06 0.39 NO 100.0 - Benzo(g.h.i )perylans 0 1.053 06 0.36 NO 100.0 -

"ar* 1 I I -- NO .Not Oetsctw 0- Opf/sctad: E- Estimated: I- Internal Standard Orgrsp "2.5 97

S k-c 9 mr VI mu

c L.7 m

I

L c - w.. U

i 5% c c- 2c-

w VI 6 c !ti e I 000 (b 71 23 00 99

A D 5 3 . 4 100 101

c N p: p: Q: .-c

L. P s e

w e 102 e ......

e

e 103

...... Triangle Laboratories of RTP, Inc. sample Fils : GL472 Sample IO: BLANK 104 801 Capitala or. Response File : GL467 Durham. NC 27713 Oate Analyzed : 12/30/92 TLI IO: 62.51.4A-I (919) 544-5729 Data Reported : 01/06/93 Oi lutian Factor: 1 .oo Project Number: 22660 Results Method 6270

__l__-l-----__- ==_=?=-E_=_ --______-______- --il .. ... ~~ .- .. . .. Analyta ...... RF SCAN.-ISID-Y--Amt .- Coda -Puan FLAG .. ... - . . . (WJ) Limit

1.4-Dichloi~bon2.ns-d4 11477 433 1 I Naphthalene-d8 47513 612 2 I 2-Mothy [naphtha lens 3709 0.449 718 2 6.96 E 10.0 Naphthalene 4404 0.574 615 2 6.46 E 10.0 Acenaphthsna-dlO 32562 871 3 I Acenaphthens 0 0.576 03 0.04 NO 10.0 Fluorene 0 0.745 03 0.03 NU 10.0 2-Ch loronaphtha lens 0 0.600 03 0.04 NO 10.0 Acenaphthylene 0 1.001 03 0.02 NO 10.0 . Phenanthrene-dlO 45344 1091 4 I Phenanthrene 5534 0.552 1095 4 6.64 E 10.0 Anthracene 0 0.566 04 0.03 NO 10.0 Fluoranthane 0 0.653 04 0.03 NO 10.0 Chryssne-dl2 24560 1486 5 I Chrysene 0 0.539 05 0.06 NO 10.0 Pyrsns 0 0.759 05 0.04 NO 10.0 Bsnzo(a)anthracens 0 0.576 05 0.06 NO 10.0 Perylsns-dl2 14917 1769 6 I Bsnzo(b)fluoranthans 0 0.709 06 0.06 NO 10.0 enzo(k)f luoranthene 0 0.870 06 0.06 NO 10.0 nzo(alpyrene 0 0.691 06 0.08 NU 10.0 Benzo(a)pyrsne 9 0 0.666 06 0.08 NO 10.0 Perylens 0 0.395 06 0.14 NO 10.0 Indano(l.2.3-cd)pyrane 0 0.612 06 0.09 .NO 10.0 Dibenz(a.h)anthracene 0 0.446 06 0.12 NO 10.0 Bsnzo(g.h,i)psrylene 0 0.540 06 0.10 NO 10.0

Reveivsd by nata 1 I b/ 73 NO -Not noted?; Oj/Ostscted: E- Eetimatad: I-Internal Standard Orgrep v2.5 105 7') 100 l 8~3 34 0 :? 90 1 53 96 0 .- 5 100 65 -;yt-- " ...... o 6 37 56 93 1 1491700 bv 1769 264 Pei"yLene-dl2 70 00 0 0 0 112 2-Fluorophenol 8000 0 0 0 132 2-Chlorcphenol-d4 90 00 0 0 0 99 Phenol-65 10 0 00 0 0 0 152 1,2-0ichlor(~ennzene-ci? 11 0 00 0 0 0 82 Nitlr&enzeiie-d5 12 0 00 0 0 0 le5 1,3,5-Trichlorobenzone-d3 13 0 00 0 0 0 240 1,4-0ibrom&~enzene-d.i 14 0 00 0 0 0 172 2-Fluorobiphenyl 35 0 00 0 0 0 330 2,4,6-iribromcphenol 16 94 66 ?6 1 3074600 vv 1100 183 nnthracene-dl0 . 17 85 55 91 I. 3502500 vv 1302 212 Pyrens-dlO 18 0 00 0 0 0 244 Te rpheny I-d 14 19 100 63 99 0 440420 bv 615 128 Naphthalene 20 95 62 90 0 370940 vb 718 142 2-nethylnaphthalene LJ 0 00 0 0 0 162 2-Chloronaphthnlene 22 0 00 0 0 0 152 Acenaphthy Lene 23 0 00 0 0 0 154 Acenaphthene 24 0 00 0 0 0 156 Fluorene 25 0 00 0 0 0 266 Pentachlorophenol. 26 68 28 89 1 553470 vv 1095 178 Phenanthrene 00 0 0 0 1.78 Anthracene 00 0 0 0 202 Fluoranthene 00 0 0 0 202 Pyrene 30 0 0 0' 0 0 0 228 Benzo(a)anthracene 31 a 00 0 0 228 Clirysene I(0L 32 26 18 24 -1 -A_.,- 252 Benzo(b jfl.uoranthene 33 0 00 0 0 2.52 Henzo(k)fl.uornnthene 34 0 00 0 0 252 &nzo(:e jpyrene 35 0 00 0 0 252 Eenzo(a)pyrene 36 0 00 0 0 252 Perylene 0 7.76 Itideno(l,2,3-cdjpyrene 37 , 0 00 0 38 0 00 0 0 278 Dibenz(.a ,h)anthracene 39 0 00 0 0 276 Ranzo(g,h,i)perylene

e r- I r-(3O/- 107

109

__ - ._.

. Triangle Laboratories of RTP, Inc. sample Fi Le : GL470 sample IO: SBLK 122492 110 801 Capitola or. Response Fils : GL467 Durham. NC 27713 Oats Analyzed : 12130192 TLI IO: NIA (919) 544-5729 Date Reported : 01105193 Dilution Factor: 1 .OO Project Number: 22680 antitation Results Method 8270 a.E=5ijl=_=II=_====E====-==---- ...... _-...... - . __ Analyte .- . RF ' . . SCAN "ISID -r.ht.-.Coda ..Quan FLAG .~ __ .. (U9) Limit

1.4-0ichloroban2ans-d4 9751 433 1 1 Naphthalene-d8 33764 612 2 I 2-Methy Lnaphthalans 0 0.449 0 2 0.05 NO 10.0 - Naphthalene 849 0.574 615 2 1.75 E 10.0 - Acensphthens-dlO 25723 870 3 I Acsnaphthens 0 0.578 0 3 0.05 NO 10.0 - Fluorene 0 0.745 0 3 0.04 NO 10.0 - 2-Chloronaphthalene 0 0.600 0 3 0.05 NO 10.0 - Aosnaphthy Lena 0 1 .no1 0 3 0.03 NO 10.0 - Phenanthrene-dlO 58520 1090 4 I Phenanthrene 0 0.552 0 4 0.02 NO 10.0 - Anthracene 0 0.588 0 4 0.02 NO 10.0 - Fluoranthens 0 0.653 0 4 0.02 NO 10.0 - Chryssns-dl2 63067 1487 5 I Chryrene 0 0.539 0 5 0.02 NO 10.0 - Pyre"= 0 0.759 0 5 0.02 NO 10.0 - Bsnzo(a)anthracene 0 0.576 0 5 0.02 NO 10.0 - Psrylcns-dl2 34005 1767 6 I Bsnzo(b)fluoranthsns 0 0.709 0 6 0.03 NO 10.0 - Benzo(k)fLuoranthene 0 0.870 0 6 0.03 NO 10.0 - nro(e)pyrme 0 0,691 0 6 0.03 NO 10.0 - esnzo(a)pyrene 0 0,666 0 6 0.04 NO 10.0 - .Perylene 0 0.395 0 6 0.06 NO 10.0 - Indeno(1.2.3-cd)pyrans 0 0.612 0 6 0.04 NO 10.0 - Oibenz(a.h)anthracena 0 0.446 0 6 0.05 NO 10.0 - Bsnro(g,h. i)pery Lens 0 0.540 0 6 0.04 NO 10.0 -

Reveiwed by Date f I SI -73 NO -Not Oetv Ct ; O-&tseted: E- Estimated; I- Internal Standard Orgrep v2.5 111 'F

e N VI 0 UI m

::W n

cn e . ,. 113

.. CL] 3 N .I 1* 0 3 . Triangle Laboratories of RTP. Inc Continuing Calibration Curve

CCAL File: GL509 Date of Analysis :01104/93 Analyte List: PAH AL F1 le: ICALGJO3

1.4-Dichlorobanzena-d4 Naphtha lene.d8 2-Methylnaphthalene 0.675 0.729 7.4 Naphthalene 0.940 1.058 11.2 Acsnaphthens-dl0 Acenaphthene 0.969 1.019 4.9 Fluorene 1,170 1.253 6.6 2-Chloronaphthalene 1.006 1.048 4.0 Acenaphthylane 1.697 1.791 5.2 . Phenanthrene-dlO Phenanthrene 0.915 0.950 3.7 Anthracene 0.959 0.959 0.0 Fluoranthene 1.099 1.152 4.6 Chrysene-dl2 Chrysane 0.935 1.011 7.5 Pyrsns 0.996 1.176 15.3 Bsnzo(a)snthracsns 0.962 1.048 8.2 Pery lene-dl 2 9snzo(b)fluoranthene 1.331 1.575 15.5 snzo(k)fluoranthsns 1.524 1.704 10.6 6nro(e)pyreno 1.341 1.497 10.4 Bsnzo(a)pyrsna 1.269 1.424 10.9 Perylsna 0.669 0.755 11.4 Indeno(l.2.3-cd)pyrene 1.271 1.057 -20.2 Dibsnz(a.h)anthracens 0.984 1.047 6.0 Banzo(g, h.i )pev lene 1.053 1.193 11.7

Date - - - Rf lass than minimum QC RF: >>- RF greater than maximum PC RF CCAL.EXE "2.5 1 115 ~ ., ..< ...%. !~!

'a,:,;y 116

L ;( 20

211 5.7) il it 11276 -1 .i.4 7 1 1 1742 -1- 244 -1 338 - 1. 377 0 440 o 470 0 546 0 607 0 75: -1. 973 - .L 1024 0 12fi6 17.90 1 JL 0 602 .- 1 704 0 775 0 S35 6 -< 0 8 I -1 936 0 1050 0 1090 - 1. 1087 -1 1256 0 i283 o 1465 31 100 53 39 0 1475 32 32 67 73 - -1. 1443 33 IO0 ?3 ?FJ -2 1664 3 100 9b '95 -1 1717 35 100 54 ?Q -2 1730 35 100 14 9') -1 1747 37 LO0 95 too 0 1769 39 100 90 ?7 1 1975 3? 31-10 51 ?? - 1. 2020

e 117 1.1.8

PS .. I

.

L. CD (0 0 5

c 0,;:. 15 E<.. I 6.13 0.I' j 5.: !T 806 0.11 ;],kt :l 101 129 C,!$ 3.?7 I 1? 181 2310 1.60 C.41 I59 IC3 p1:: 0.kf ! 60 IO! IOCllf 1,. .1.:9 I .,! IC5 if?!? a.11 0.24 1 12 1Oi 21?8 !,\l. 0.11 id3 1111 !:;I) 9.3: 0.24 I hi 108 106 0.1: 11.36 ! 65 IO? I421 0.:: 10.00 ! 64 110 I116 0.13 2..3 :Li I!! 20?t B.iO 0.32 / 61 11: 184 0.15 0.52 1 $7 II! 639 1.13 1.66 1 10 111 104 0.11 :,3 :!I !I! !is$ n,s o.2r : 7: Ilt e32 O.!!. 0.16 ( 75 11: 164 0.15 0.6? I 11 113 23% 1.53 0.21 I 1: 111 3565 0.69 2.21 1 It 12; 80E 0.11 0.15 ; :i 1:i 3792 0.13 1.18 1 78 122 116! 0.1: 0.19 1 79 I23 1503 c.31 0.12 ! 80 121 2800 0.54 62.9q I 31 I25 209: 0.40 0.62 82 I27 1101 0.21 0.4! ! 93 l?2 125 0.11 0.33 1 ?i 129 9792 1.22 1.:; ! 91. 130 2019 0.19 5.61 ( 96 I31 I92il 0.3: 3.96 ! 87 1:: 1104 G.21 i6.38 I 86 133 114 0.1: 527 I 89 131 108E 0.21 3.19 1 70 135 6015 1.15 2.90 1 91 I?! 1596 9.53 1.18 I 91 137 1136 0.2: 1.27 93 I38 2560 0.49 1.50 I 9i 139 3168 0.61 0.33 I?! 14C 2240 0.1: 0.81 1 96 I!! 3296 0.53 1.1: / ?7 14: 713 0.14 0.65 1 92 113 !0?40 1.97 0.11 I 99 111 14.37 O.El 0.30 :IO0 Iki 866 0.!7 0.15 :IO! 146 5120 0.98 1.05 1102 14i 1536 0.30 0.31 1193 I16 1121 0.3 5.22 ~104 111 i62 0.1: 0.14 I105 110' 1991 0.31 0.3: 1106 I51 2% 0.5: 0.19 1101 111 1010 0.?9 3.14 1138 15: 2253 0.12 .. . -...... Triangle Laboratories of RTP. Sno 123 Initial Calibration Curve

ICAL Fila: ICALG030 Oat. of Analysis :12130192 Analyte List: PAH RF50 GL467 RFBO GL463 RF160 GL465

1.4-0ichlarobenzcnc-d4 Naphtha1ene.dE 2-Mothy [naphtha lsne 0.591 0.449 0.472 0.472 0.484 0,493 11.3 Naphthalene 0.782 0.574 0.600 0.590 0.573 0.624 14.3 Acenaphthene-dlO Acenaphthane 0.722 0.578 0.573 0.581 0.593 0.609 10.4 Fluorene 0.920 0.745 0.761 0.758 0.766 0.790 9.3 2-Ch loronaphthalsna 0.778 0.600 0.825 0.525 0.845 0.855 10.8 Acenaphthylene 1.219 1,001 0,987 0.994 0.959 1.032 10.2 . Phenanthrene-dlO Phananthrana 0.894 0.552 0.553 0.507 0.478 0.557 14.9 Anthracene 0.695 0.568 0.567 0.498 0.468 0.559 15.7 F luoranthene 0.789 0.853 0,648 0.590 0.535 0.639 13.6 Chryoeoa-dl2 Chrysane 0.705 0.539 0.582 0.554 0.524 0.577 12.7 Pyrsna 0.948 0.759 0,791 0.821 0.519 0.727 22.6 Benzo(a)anthracane 0.687 0.578 0.597 0.575 0.560 0.599 8.5 Pery lens-dl2 Benzo(b)fluoranthene 0.844 0.709 0.734 0.835 0.882 0.761 12.7 Bsnro(k)fluoranthans 1.200 0.870 0,966 0.942 0.904 0.977 13.4 enzo(a)pgrsne 0.740 0,691 0.745 0.794 0.831 0.760 7.1 QBenzo(a)pyrene 0.770 0.666 0.728 0.784 0.780 0.742 6.3 Perylsna 0.670 0.395 0.431 0.431 0.393 0.464 25.1 Indsno(l.2.3-cd)pyrene 0.478 0.612 0.668 0.763 0.875 0.679 22.2 Oibenz(a,h)anthracsne 0.286 0.446 0.477 0.566 0.649 0.485 28.2 Banio(g,h.i)perylens 0.459 0.540 0.801 0.659 0.718 0.595 16.9

Approved by: -- Fails ac Cri ia fo XRSO; << - Rf less then minimum OC RF: >)- RF greater than maximum OC RF 1CAL.EXE "2.5 ' 1 Triangle Laboratories of RTP, Inc. Continuing Calibration Curve 122

CCAL Fila: CL467 Date of Analysis :12/30192 Analyts List: PAH 01CAL Fi le: ICALG030

1.4-DichLorobenrsne-d4 Naphtha Lana-d6 2-Methy Lnaphtha Lane 0.449 0.493 8.9 Naphthalene 0.574 0.624 6.0 Acsnsphthans-dlO Acsnaphthens 0.578 0.609 5.1 Fluorene 0.745 0.790 5.7 2-Chloronaphthalsns 0.600 0.655 6.4 Acsnaphthylsna 1.001 1.032 3.0 . Phananthrens-dlO Phenanthrene 0.552 0.557 0.9 Anthracene 0.566 0.559 -1.6 F Luoranthsna 0.653 0.639 -2.2 Chrysena-dl2 Chryrena 0.539 0.577 6.6 Pyrene 0.759 0.727 -4.4 Benzo(a)anthracsna 0.576 0.599 3.8 Perylene-dl2 6enzo(b)fLu~rsnthans 0.709 0.761 6.8 Benzo(k)flvoranthsns 0.670 0.977 11.0 *"ZO(e)pyre"a 0.691 0.760 9.1 eBenzo(a)pyrene 0.666 0.742 10.2 Psrylans 0.395 0.464 14.9 Indsno(l.2.3-cd)pyrsne 0.612 0,679 9.9 Dibsnr( a.h)anthracene 0.446 0.485 8.0 Bsnzo(g.h.i)perylans 0.540 0.595 9.2 ____-----__-- surrogats Flag RF50 RFMEAN XD

Anthracana-dl0 S 0.301 0,321 6.2 Pyrane-dlO S 0.872 0,695 3.3

Approved by: Date / J 5 -. Fails aC Cht ria &c XD; << . Rf Less then minimum QC RF: >>- RF greater than maximum QC RF CCAL.EXE "2.5 1 123 1 100 F;?- 9.5 I. r;Iy57(,~, bo 433 152 .l:'!-0Lr::h ioi.ol;eilz-~'n,'-C1.l .-,--,> ill0 53 ?4 I? ~~2,3500bb 612 13 E. ;qap;itti4 1.2 iw-6 ;3 loo 75 99 1 16d2400 b2 871 Lt.4 Ac.*ilaph ttl<.ilc:-dJ.O 4 100 90 97 -I0 37013t110 t\i 1071 138 Phe riant b i"eiie -d 10 5 77 69 98 :Rtbi.OO ikv 1487 240 Ciii.:/!,rne -dl2 6100 883 98 -1 15'?4;00 bv 1767 264 Perylene-a12 7 100 96 98 0 307160 bb 257 1 L 2 2- Fliuo rq3ii.enoi 8 86 41 97 0 354030 bb 401 1 3 2 2-C 1.1 Inrc~ ha no 1-d 4 9 86 52 96 -1 379160 bb 388 97 P;?enoi-d5 10 100 87 98 0 2e4160 bb 453 152 1 ?-0ichlor~~enzene-a4 11 LOO 83 99 0 352780 hb 510 82 Ni.t,r&enzene-d5 12 100 64 77 0 313400 bb 5 57 185 1,5,5-Tr-ichlorobenzene-d3 13 J.00 93 98 0 204100 bo 620 240 L ,4-0ibrom~,enzene-d4 14 LOO 91 98 0 762820 hh 775 172 2- FIuor&iphenyl 15 1.00 81 99 -1 73724 ibb 987 330 2 ,4 , 6-T rib roiiiophenol 14 100 86 97 0 672030 vb* 1097 188 Anthracene-GlO . 17 100 85 97 0 1.426300 bn 1301 212 Pyrene-dl.0 18 100 81 98 0 720310 bb 1334 244 Terpheriyl-dl4 19 100 95 98 0 9i4460 bb 615 128 Naph.tha lene 20 100 88 90 0 6907.50 bb 718 142 2-Methylnaphthalene 21 100 96, 98 0 639110 hb 788 J.62 %-ChJ.oronaplithal.,~ne 22 loo 94 97 0 1001000 bb 849 152 Acenaptithylerie 23 1.00 P,6 88 0 592620 vb 875 154 k:enaphthene 24 100 93 95 0 755790 bb 952 166 Fluorene 25 100 84 98 0 92748 bv 1064 246 Pentscti ].or- he nol 26 100 93 98 0 1287500 bv 1094 178 Phenanthrene 27 LOO 95 98 -1 1289400 vbx 1101 178 Anthracene 0 1426100 bb 1271 202 Fluoranthene -1 1642600 bh 1303 202 Pyrene 30 86 62 75 0 1189700 bv 1436 228 Benzo(a)anthracene 31 97 75 92 -1 1222400 VV 1491 228 Chrysene 32 81 68 71 -1 514370 b!dfl>,,- 1686 2.52 8enzojb)iluoranthene 33 1.00 92 97 -1 95e350 !"JI',' J h92 252 Renzo(k jiluoranthene 34 LOO 94 98 -1 570460 bv 1743 252 Ge'nzo[e)pyrene 35 100 94 97 - J. 6J.4730 vv 1754 2'52 Renro(n jpyrene 36 91 69 77 0 5345.50 vv 1773 252 Perylene 37 98 76 92 - J. 381320 M 1993 276 Indetl

I:i N

"\L. I 4-- vl Ii I-

:I-:. =- m w 47' 1.1.00 78 '?" I. 882830 bij .., J 1 5 2 i :ti - TJ j.2h io rm:?'i ze ne-~s 100 CZ 93 0 32?7000 bv 612 13A r!a!,Ilt: r1a lerw-G 2 (I) 100 95 99 O 2183300 bb 870 I.6.$ Act3n:iphth:?ne-d LO 4 LO0 90 9i -1 5186300 bV 10?0 136 Phenanthir-erle-GIO 5 88 5L 96 -1 4784200 bv 1.437 240 i:hi'.ysenp-dl'? 6 LOO 85 93 -1 2429100 bv 1767 264 Perylene-dl2 7 .LOO 95 97 0 933830 bb 257 112 2-Fluorq~lienol. 8 84 46 98 0 959140 bb 401 132 :-2hlar~yjhenol-a4 9 85 50 97 -1 1234900 bb 388 99 Phenoi-d: 10 100 80 94 0 729440 bb 453 15: I,2-Oictil~~r-oij~nnzene-di 11 1.00 83 99 0 1237100 Ibb 510 82 Nitrnbenzene-dS 12 93 57 98 0 852670 bb 55:' 185 1,3,5-Trichloronenzene-d3 13 100 92 98 0 540100 bb 620 240 1,4-Dibrommenzene-d6 14 100 90 93 0 1905000 bb 775 172 2- Fluor& ipheny 1 15 100 so 99 - 1. 371440 bb 937 330 2,4,6-Tribrnmophenol 16 100 83 96 0 1949800 vb 1079 188 Ant h race ne-dl 0 . 17 100 85 97 0 4016200 bb 130i 212 Pyrene-dl0 18 100 86 97 0 2573100 bb 1334 244 Terphenyl.-d14 11 100 96 99 0 2364900 bb 615 120 Naphthalene 20 100 89 91 -1 1848700 bb 717 142 2-Methylnaphthalene 21 100 96 98 0 1638500 bb 78C 162 2-ChlnrOnaphtnaLene 22 100 94 97 0 2732300 bb 849 152 Acenapnthylene 23 100 89 90 0 1576600 vb 875 154 Acenaphthene 24 100 96 99 0 2032500 bb 952 166 Fluorene 25 100 85 99 -1. 453910 bV 1063 266 Pentachlornpnenol 26 100 93 98 0 3581700 bv* 1094 173 Phenanthrene 27 100 94 98 0 3684800 VV* 1102 178 Anthracene 0 4231300 bv 1271 202 Fluoranthene -1. 4536900 VV 1303 202 Pyrene 30 100 65 97 0 3446200 bv 1486 228 Eenz~~(.a!anthracene 31 100 89 99 -1 3222900 vv 1491 228 Chrysene 32 81 67 72 -1 2151900 bv 1636 252 Eenzo(.b!fluoranthsns 33 100 92 97 -1 2643000 VV 1692 252 Henzo(.~<)fluor-snthene 34 100 93 98 -1 2098300 VV 1743 252 Eenzojejpyrene 35 100 94 91 -1 2023500 VV 1754 2.52 Henio(a jpyrene 36 100 89 96 0 1198900 vv 1773 252 Perylene 37 100 94 ,100 -2 1857500 b'?J 1992 276 Indeno(l,2,3-cd)pyrene 7.i- 33 100 90 97 -2 1352900 b? )*.* 2001 278 Oibenz(a,h)anthracene 39 95 94 99 -3 1631700 bv 204 5 276 mzo(g, h, i.)perylene 127

.

b. FQP PEV De1tc: Ai-6:da F'. Flags S;;aii Qti i.i.3w 128 --______- - _ - .- - - - - _------______------1. 100 70 ?'> 1 i643ii0 bb 3 33 L 5'2 1 ,4 - 3 I c n I.?i-o%3lZen? e-l 37 ?3 0 '27V8100 bb 512 136 Napiittle lrnfi!?-ci3 95 95' 0 200t:00 bv 870 1Li nceriaph chsne-il.O 88 97 0 4760500 bv lO?L Le9 Pherian,thwne-d LO 5 91, 53 ?a -1 405iJ130 bv J.4fi7 240 Chrysene-dl2 b 100 52 ?3 -1 1:!14200 bv 1767 264 Perylsne-dl2 7 100 94 96 0 llb.L700 bb 257 112 2-Fiuoropnenol 8 84 39 06 0 1294600 bb 401 132 '-chla;~"L tilihenokdd 9 84 49 95 -1 151z700 bv 388 77 Phet~l.-cl5 10 100 85 ?6 0 1041500 bb 453 152 1,2-0~icIiloroberizerie-d~ 11 100 e2 58 0 1781.400 hb 510 82 Ni.ti.obanzene-dS 12 ?I3 5? 18 0 1386700 bb 555' 185 1,3,5-Trictiloroben;ene-d3 13 1.00 97 98 0 8R.LO60 hb 620 2d0 1,4-Oibromobeiizene-64 14 100 ?O 98 0 2?81600 bb 775 172 2-Fluorcbiphmy.1 15 1.00 78 99 -1 46871.0 bb 987 330 2,4,b-Tribromr?3heno! 16 100 84 96 0 3001400 vv 1057 188 Onthracene-d1O . 17 100 li6 96 0 610:800 bv 1301 212 Pyrene-dlO 1s 1.00 86 57 0 3738300 bb 1334 244 Terphenyl-d14 1.9 1.00 95 98 0 32.51500 bb 615L128 Naphthalene 20 LOO 87 91 0 2557500 bb 718Li42 ?-Methylnaphthalene 21. 3.00 95 98 0 2506600 bb 788 162 2-Chloronaphthalene 22 100 33 97 0 3961100 bb 84? 152 Acenaphthylene 23 1.00 88 90 0 2301500 bb 875 154 Ucenaphthene 24 100 15 93 0 3052200 vb 952 166 Fluorene 2.5 1.00 84 99 0 534490 bv 1.064 266 Pentachlorcpnenol 26 100 13 18 0 5266600 bv:k 1094 \178 Phenanthrene 93 98 0 5394700 vb* 178 Antnracene 94 99 0 6173200 bb llO\1271 202 Fluoranthene

I 94 95 0 641.4000 vv 1304L202 Pyreno 30 100 77 94 0 4944500 bv J.486 228 Genzo(a)anthracene 31 100 89 95 -1 4559800 vv 1491 228 Chrysene 32 83 69 74 -1 2662000 bv 1686 252 Benzo(b)fluoranthene 33 3.00 92 98 -1 3506200 vv 1.672 252 Henzo(k)fl.uoranthsne 34 100 93 58 -1 2702100 bv 1743 252 8eri.zo(e jpyrene 35 100 94 99 -1 2643J.00 VV 1'754 252 Renzo(a)pyrene 36 100 ?I 47 0 1566400 vv 1773 252 Perylone 37 Ino 94 99 -1 1953 276 Incieno(L,2,3-ccl)pyrene 38 100 88 97 -1 2002 275 Dibenz(a,h)anthracene 39 1.00 54 97 -2 2181100 b?' 2046~27h'fienzoig,h,i)perylene 129

. 7,.e J. ?? 7.1 97 I. I bt,A0 bb 433 1. 5'2 ' i ~ ~-Gi.:~ii::~i-:~~)~rizi?iie-(j~ 0 27'?5h00 bv Q12 i34 N;?phthal$ne-dO 0 1.970900 lbV 870 1.64 ii.1.eriaphtii~ine-dJ.0 0 4722600 bv 1091 1.53 Phenanth r.rrie-dl0 5 $38 46 95 0 431i24017 Ibv 1428 240 Chi-ySeil+?-d12 i 100 82 93 0 2102100 bv 1768 '264 Pe i'y 182 n:?-,d 12 7 1.00 94 96 0 1.8F\ilOO bb 257 112 2- F luorcphenol 8 84 37 96 0 1?8Fr?200 bb 401 13: Z-Cl~loro(3ht~noi-d? 9 91. 49 96 0 2535800 bv 389 39 Phenol.-dS 10 100 84 95 0 1561900 bb 453 15: 1,?-0ichloi-~enzene-d4 11 1.00 82 98 0 2939500 bb 5 LO 82 Nitrobenzene-d5 12 76 56 93 0 20133500 bb 559 18.5 1,3, 5-Tri~~hlorobenzone-d3 13 100 92 98 0 1325900 bb 620 240 1:4-Oibromobennzane-d.r 14 100 90 98 0 a310300 bb 775 172 2-Fluorobiphenyi 15 1.00 80 99 0 813340 bv 9R3 330 2 ,A ,6-Tribrom~~Jtlenol. 16 100 84 96 0 4362700 VV 1099 188 knthracene-dl0 . 1.7 100 86 97 0 8571700 bb 1301 212 Pyrene-d1.O 18 100 86 97 0 6000300 b'g 1334 244 Terphenyl-dl4 19 100 95 98 0 4952300 bv' 615 128 NaphthaletW 20 100 88 91 0 3756800 vb 718 142 2-Methylnaphthalene 21. 1.00 95 98 0 3695300 bb 788 162 Z-CIil.oronaphth~.Lene 22 100 93 97 0 5575400 bb 84') 152 Acenaphthylene 23 1.00 87 90 0 3434300 bv 875 1.54 Ace'naphthene 166 Fluorene I 24 100 95 99 0 446'2800 bb 952 25 1.00 82 98 0 1063900 bv 1004 266 Pentnchl.or~q~heno1. 26 100 92 97 0 71.80800 bv* 1091 178 Phenanthrene 27 100 93 99 0 7059400 vv* 1102 178 AnLhracene b.00 93 93 0 8357300 bv 1271 202 Fluoranthenc 2. 100 92 98 0 8125200 bv 1304 202 Pyrene 30 100 SI 99 0 7526200 bv 1486 228 eenzo(a )anthracene 31 100 92 99 0 7249100 VV 1492 228 Cni-ysene 32 89 68 74 0 5265400 bv 1687 252 Eenzo(bjf1uoranthene 33 100 91 97 0 5940900 v?~$?. 1693 252 Bsnzo(k)rluoranthsne 34 LOO 93 98 0 5011200 vv 1744 2 5 2 Benzo( e ) p y rene 35 100 91 99 0 4819800 vv 1755 252 Benzo(a)pyrene 36 LOO 92 97 0 2719800 v'?'~ 1773 252 Perylene 37 100 94 99 0 4816000 b?, I,d- 1994 276 Indeno(l,2,3-cdjpyrene 38 100 90 98 0 3567700 bb 2003 278 Oibenz(a,hjanthracene 3'7 100 94 99 0 41.60600 bv 2048 276 8enzo(g,h,ijperylene 131 s-* I,,;; 8 -6 :A Si; iliii:,ii 132 ~r'ei: P. Flags ';con !a1 Pklll,? , __ _ - - - -__------I. Jiri: 82 95 1 75R?W bb A 33 i. 5'2 1 ,A - Cl l.i:ri j.Oi7333 I1 713 ne-G ,I 86 94 0 28'261011 bV 512 136, Nap'ith;?. ierie-dS 90 ?B 0 190b200 bv 870 Lt.4 ncensphtlietie-dl.0 4 100 97 37 -1 i4'?2300 bv 1090 1X Phenanthrene-dlO 5 ti6 53 95 n 4440200 bv 1.488 24C1 Chi-ysetle-d.12 6 100 ii4 95 1 25870013 V'I 176? 264 Perylene-a12 7 100 94 96 0 2789'?00 bb 257 1 1.2 2- F :l!uo rG-+henol 8 55 40 16 0 2786400 bb 401 132 2-Chlorcphenol-dd 9 93 51 97 0 3948100 bv 389 99 Pii+iiol-d.S 10 100 83 95 0 2128300 bb 4.53 152 l,?-OichLornbenzene-d4 11 100 77 98 1. 40368OC1 bb 5.11 82 N 1 r: rdxrizene-d5 12 95 54 98 0 2583100 bb 559 18.5 1,3, S-Trichlor,~eniene-d3 13 100 91. 98 0 1737900 bb 620 240 I., I-Oibroinobenzene-d4 14 100 89 98 0 5551900 bb 775 172 2- Fluor& ipheny l 15 100 76 98 0 1248800 988 330 2,J,h-Tribromopnenol 16 100 85 97 0 5675000 b lo?? 188 Anthracene-dlO 17 1.00 86 97 1 10205000 vv 1302 2.12 Pyrone-dlO 18 100 8.5 97 0 7211700 bv 1334 244 Terphenyl-dl4 1.9 1.00 95 98 0 6481.300 bv 6.15 128 Napnthal.one 20 LOO 88 ?l 0 5471700 vv 718 142 2-Methylnaphthalene 21. 1.00 95 98 " 0 4920700 bb 788 162 2-Chlni-otiaphtliaisne 22 100 93 17 0 7310800 bb 849 152 gcenaphthylene 23 100 88 90 n 4524100 bv 875 154 hcenaphthene 24 100 91 97 0 5841100 bv 95: 166 Fluorene 25 1.00 82 98 0 1.s694120 bv 1064 266 Pentachlorophenol. 26 LOO 91 91 0 8596200 bv* 1094 178 Phenanthrene 0 8404800 VV* 1102 178 Anthracene 100 92 97 0 9614400 vv 1271 202 Fluoranthene 100 90 96 1 92221.00 bv 1305 202 Pyrene 30 LOO 82 ,99 0 1745500 bv 1486 228 Eenzo(a)anthracene 31 100 91 98 1 9301300 VV 1493 228 Chrysene 32 81 67 73 1 912?500 b! 'Znc,. 1688 252 8enzo(.b)tluoranthenr 33 J.00 91 97 1 9354000 vv 1694 252 Benzo(k jtiuorantnene 34 100 92 98 1 8601700 bv 1745 252 8enzoje)pyreno 35 1.00 93 99 2 8073700 vv 1757 252 fkmn(a)pyrene 36 100 93 99 1 4063300 VV 1774 252 Perylene - I 37 100 93 99 2 9050200 b?' ,,.,m** 1.991, 276 Ii~deno~~l.,2 3-cd)pyrene 38 100 89 98 1 6710300 bb 2004 278 Dibcnz(a,h)anthracene 39 100 94 99 2 7424800 bv 2050 276, fien7o(.g, h,i)pery%ene 133

L; '.!U

.

c 0 m L ... . . m

w N Q i: c

la Q Q

h CD dY

w m rCI m e Q N I m .- -.-. .-. .-._..___...-- 0.1: 149 ;:I> !],!7 !::: ::E 7.1,.L4 ..: :i. 1.-,1 1: !iO 19: !i?' 255 I!? ;,,:: :.i4 151 Ill0 0.7: i:? ?i! 2931 J,;i 0.3: i!? 2;6 3.1I 119: ltt 1lL O.!! 1.3s I:! '1621 5.10 (I?: 21: 1851 ....! ?' 1 :: b.tl 1% 2i?6 2p.j: ::a, 2!i li3?1 L.,. 1.0? ;ij 1'123 ?.$I :1?9 115 6061; !j ...:c O.?? 1% 61?k 3.8! :io0 !it 805k 2.9; 11.16 I51 1619 0.36 !?'!I 211 4544 1.11 !1.92 1!3 Id24 0.55 110: 219 !I56 0.2? 2.31 I!? 1404 1.23 !103 21: a00 0.21 0.il I60 2152 0.36 !2JI ?e5 1152 0.3: 26. !a !61 103? 4.10 /?05 1% 1:60 0.2 1.08 162 1504 0.35 I261 296 11131 3.20 0.6; 165 2656 0.48 1101 2% 2312 9.50 0.29 166 2363 1.07 :2CB 303 1320 0.60 0.92 161 11818 O.i? !?O? 31 680 0.11 6! 117 2.13 162 9024 0.19 1210 311 891 0.23 i.1 113 0.93 169 1030 6.11 (?I! 315 115C 0.45 68 119 0.10 I10 906 1.21 :2ll 316 1163 O.!O j9 I20 0.13 Ill 813 1.21 !:I3 311 761 t1.N 10 I22 0.33 172 1316 10.19 lllk 323 5100 1.61 li 1:: 1.10 113 2123 2.16 !?!5 321 1133 O.?! 12 I24 0.66 I 14 3131 0.38 !lid 327 1012 0.26 ;3 121 0.63 I 15 6336 3.61 1211 334 3935 1.01 7kO 0.20 11 126 0.24 I16 2381 0.60 :218 335 1101 0.26 w4- !3?6 0.35 11 I21 13.16 117 3152 9.ll !;!? 311 6s: 0.1e 28 lk 19116 1.00 is in 4.00 118 1024 5.20 :z:n 311 1200 0.31 19 15 !I2J2 3.0: :i I!? IS.16 119 11904 0.9 :221 351 !921 0.11 30 15 11100 2.98 18 130 1.6f I80 8540 0.30 1212 353 1311 C.Si 11 17 2/119t 60.26 79 131 0.41 181 4480 0.35 1223 351 19!6 0.3 32 li, 1140s 1.1: EO I32 0.23 it1 132 0.:1 1221 365 1319 I.? 1: :9 1!!04 1.06 91 133 0.21 194 1003 0.10 !11!. 366 ?an 0.15 I4 86 IC!?I l.?O .?? 131 0.53 185 me O.?? :225 311 119 0.19 3i 81 iiizo 3.1: s3 131 1.31 186 15Sil 0.20 1221 312 1360 0,:5 36 82 122l 1.09 3k I35 0.69 187 13128 0.20 12?3 113 820 0.21 3? a3 1.10 ! IS . 137 0.10 1113 189 lii? 0.51 I229 383 872 0.22 3t 81 0.28 ( E5 138 0.2 :I36 189 2391 0.50 (11C 102 1200 0.31 19 85 0.62 ! 81 139 0.33 !I31 191 1280 8.12 1211 10: 1936 0.50 40 Et. 1.0: ! 83 110 0.21 1136 192 3116 1.13 123? 101 604 0.15 11 8: 0.il ! $9 111 1.01 1131 193 103: 1.32 1233 121 It56 0.3: 11 8! 0.31 I 10 ii2 0.71 1138 191 980 0.39 !I34 I?? I520 0.39 4: 3? 0.19 ! '91 113 0.51 1139 1% 11264 0.33 i2:i 423 L1112 3.01 11 91 0.86 ! 92 141 0.21 1110 191 1\31 0.13 1236 421 lis5 0.51 I! ?? 3200 0.3 ?! 115 ,974 0.2! ilk1 198 369123 100.00 1189 254 160 0.20 !:I1 $11 11328 9.08 It 93 19100 1.93 11 116 I123 0.11 1112 199 26111 1.11 1193 255 118M 38.!6 (232 112 229376 Sa.?: 11 71 I956 0.4s 'li Ill 4160 1.01 1113 200 2916 0.76 !1?1 2% 2?011. 5.66 !2!1 44; 12240 10.86 I8 95 356 0.22 ?a 118 82it 2.12 I144 201 808 0.21 I192 251 !!bo 0.56 1/10 414 1603 1.18 . 136

v1 f L1 lo E +m // ;o 4 Ii 4:

L. N 4

L- a m !,X 12.i: 2.56 1.5 0.3 0.23 O.?O 0.3: 0.11 1.13 0.53 O.f? 161 1.53 !:I: :oi 857 0.20 I1 !i 1122 0.35 E.! 11; 162 1.40 1218 311 1220 0.30 15 56 i:,~ 1.81 66 Ill 169 12.14 !2!9 3r: 2448 0.55 16 57 16!9i 1.00 6; llt 170 3.0: i220 I16 1456 0.35 ..:: i9 1264 0.30 3 117 Ill 0.35 1221 321 1009 0.24 I! I! j? 3t,! 0.20 6? lit 172 i.0i :??; 323 1936 1.32 I? t! 2923 O.$Y io II? 113 e.5a lZl5 321 1::o 0.16 20 62 3520 0.35 l! 110 17I !.I1 !:?I321 1312 O.:! 21 i: ?C69 2.15 ?? 1?2 1!5 0.25 :?2! 32 $08 Q,I? 22 6L 1824 0.13 i3 I23 116 0.10 1226 333 796 O.l? ?5 b3 3564 1.32 11 I21 17: 0.il 1211 j3i 1923 1.17 24 68 1352 1.03 71 I25 178 0.19 1228 335 132 0.31 $9 ?!E019 61.17 16 !26 ll? 0.31 1221 341 960 0.21 72 15% 0.10 17 I21 180 0.16 1230 316 1600 0.32 I: 2512 0.60 18 128 I81 0.30 1231 352 1432 0.9 25 11 22784 1.10 l? 129 182 0.17 1232 353 1871 0.11 ?9 !6361 3.11 80 110 18, 0.21 i233 :I1 261C 0.43 30 it 13952 3.31 51 131 I85 0.11 1231 361 e021 2.14 31 :I 2i?523 bL.02 E? It? 196 0.19 !?3! 366 1374 0.:: :I 'E 101iO 1.3: 8: 13L !8! 0.68 !?I1 311 855 0.20 33 l? Ulii 3.35 $1 135 1% 0.10 !237 371 4480 1.06 34 80 11288 2.9: a5 136 I89 9.28 !!3E 371 !OBt 0.2t: .35 $1 1685 1.00 86 13 191 1.16 I231 383 1169 0.?8 36 32 4991 1.15 P! 1::. 191 1.33 121G 402 1680 1.10 I7 9: 5056 L20 I 38 139 193 O.!i I211 103 21it 0.52 38 8i 1321, O.J! I 89 I10 191 0.37 I242 101 820 O.l? 19 3: 3040 0.12 : ?I111 193 0.20 1213 421 2080 0.19 40 85 I(!$ 1.01 I 9i i12 196 0.23 1211 122 1664 0.39 il 3: 2576 0.il ! ?i 11: I?? 13.20 1215 123 !IO!& 3.32 11 82 1728 0.11 1 ?3 141 1?3 6.31 lZ46 421 2816 0.b1 15 SI' I:!& 9.H I ?i lii 199 3..$3 !?hl 411 11216 9.71 ki 91 ips? 0.91 1 95 !Ib 200 2.20 1212 111 261141 62.1k I5 '!Z 1000 0.15 I76 111 201 0.11 !?1,l 113 42610 11.13 16 93 21212 5.01 1 71 lit 202 0.11 1:50 14 5140 1.2? I! $1 0.19 I :9 111 103 0.17 !!SI ll! 960 O.?? :2 9: I163 0.28 1 ?? 150 20' 0.91 : 19 76 :ot2 0.18 !IC0 I:! 201 B.?? 1 92P. 0.22 1!3i 152 206 0.1? I zoi 1.11 1 . A?. 17 0.401 57.77 0.24 100.no 6.96 18.45 2.14 . 9.7: 62.14 11 . 531 Triangle Laboratories of RTP. Inc Initial Calibration Curve 139

ICAL Fila: ICALGJO3 Oats of Analysis :01/03/93 Analyts List: PAH RF50 GL496 RF80 GL495 RF160 GL496

Anslyte Flag RFZO RF50 RFSO RF120 RF160 RFMEAN ZRSO

S=EE======E==E=il====~==E===~=====-- ...... 1.4-Dichloroban2sns-d4 I Naphthalene-d6 I 2.Methy lnaphths lens 0.684 0.672 0.714 0.773 o.so2 0.729 7.7 Naphtha lens 1.028 0.975 1.032 1.109 1.148 1.058 6.6 Acanaphthena-dl0 I Acsnaphthene C 0.975 0.951 1.015 1.097 1.057 1.019 5.6 Fluorens 1.225 1.176 1.234 1.320 1.310 1.253 4.9 2-Ch loronaphthelsns 1.033 0.982 1.035 1.114 i.07a.i.048 4.6 Acsnaphthylsna 1.705 1.663 1.766 1.952 1.848 1.791 6.2 Phenanthrene-dlO I . Phenanthrene 0.976 0.919 0.922 0.967 0.947 0.950 3.2 Anthracene 0.981 0.937 0.940 1.005 0.934 0.959 3.3 Fluoranthane C 1.143 1.117 1.143 1.214 1.143 1.1523.2 Chryssne-dl2 I Chryssna 1.036 0.964 0.975 1.020 1.041 1.011 3.0 Pyrans 1.208 1.169 1.250 1.179 1.057 1.1766.1 Benzo(a)anthrscone 1.052 0.989 1.058 1,072 1.066 1.048 3.2 Psrylens-dl2 I Benro(b)fluoranthane .1.392 1.436 1.567 1.719 1,740 1,57510.1 Senzo(k)fLuoranthene 1.624 1.727 1.720 1.718 1.733 1.704 2.7 enzo(e)pyrene 1.378 1.419 1.505 1.560 1.623 1.497 6.7 eBanzo(a)Pyrene C 1.266 1.343 1.399 1.505 1.565 1.424 6.5 Parylene 0.756 0.711 0.753 0.766 0.767 0.755 3.7 Indano(l.2.3-cd)pyrsna 0.733 0.877 1.046 1.234 1.396 1.057 25.2 Dibanz(a.h)anthrscans 0.770 0.890 1.007 1.217 1.349 1.047 22.6 Bsnzo(g,h,i)psrylane 0.923 1.046 1.193 1.341 1.462 1.193 16.2

...... surrogate Flag RF20 RF50 RF80 RF120 RF160 RFMEAN XRSO ...... Anthracene-dlO S 0.522 0.508 0.516 0.553 0.537 0.527 3.4 Pyrsne-d10 S 1.081 1.081 1.162 1.125 1.065 1.1033.6

Approved by: Oat0 -I 15/73 - - Y *- Fails ac Cr to ia f XRSD: << - Rf Lest then minimum ac RF; >>- RF greater than maximum ac RF ICAL.EXE"2.5 1 140 1: 100 14 lOlj i5 100 16 130 17 i05 13 1c0 J.? 105 20 100 21. 10c1 I '22 LO0 23 1130 24 100 25 100 '26 LO0 142

...... "...... I . .:..,.I. *I. p:, XI g, I . -..- J Lx e .. B \ .r. I! in

.,,. ! - ."12-.-1-r; ...... l...... -...... " "__ . ..I .. 1 il (j il - .i 0 0 0 -j i 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 30 i00 70 97 0 31 100 9.; ?? 0 52 31 65 71 -1 .7z l"4 94 97 -- 32. 100 ?6 93 -1 35 96 96 91 -3 36 100 98 39 -1 37 9:, 96 00 -3 35 lI10 14 ?3 -2 31 70 Sh 99 - 6, 144 !? 6 -1 1 - I_.. 0

_I -1 - 3. 0 -1 0 - 1 0 -1 . 1 1 0 -1 1 1 0 0 -1 -1 - 1. -1 1. 30 100 35 93 1 31 100 93 ?'? 0 32 33 68 72 0 33 1.00 93 97 -1. 34 100 95 ?3 -1 3s 3.00 96 99 -2 36 100 17 91 0 37 1.00 96 100 --,. 38 100 73 ?? -i 31 87 96 $9 -ti ...... " ...... "...... "...... !:,,, . j ...____. . $ ..I,-.. ,". Id . Ii :,G

41 5 ;n G 13 0 12 -1 0 -1 -1 -1 0 0 0 0 0 0 0 0 . 1 0 -1 n 0 0 -1 0 0 0 100 94 98 -1 .,no .,no 9.r 99 0 30 100 ss 99 0 31 100 93 99 0 22-> 138 is 72 0 33 j.00 9: 97 -1 34 100 '94 93 -1 3:IO(j 95 95 -2 36 100 95 09 -1-2 37 1.00 96 1.00 3:: 100 92 99 -2 39 ?;7 9L 99 -4 /c- 'f3173 148 - .:..... 1.1"i -..I I, ...... ,...... '5,- 8;; 8;;

..

$3 u3 01 w ... ~

- 1. L .- i 1 ij 0 0 1 0 il 6 1 1.

'- 1 rJ 1 0 .- i 1 i 0 0 - 3. 0 0 -1 0 30 I00 87 93 .O 31 100 9'2 98 1 71 0 --5.2 S6 1; JJ 1.00 32 97 -i 31 100 33 99 0 35 100 94 9R -1 35 100 34 97 0 37 1.00 95 99 0 33 100 32 39 1 39 1.00 96 99 0 150 151

..,_ ..;. i . .. _.

. 0 Triangle Laboratories of RTP, Inc Continuing Calibration Curve 153

CCAL File: GL500 Date of Analysis :01/03/93 Analyta List: PAH aCAL Fila: 1CALGJ03

Analyts Flag RF50 RFMEAN XO

1,4-0ichlorobsnzans-d4 Naphthalana-d8 2-Methy lnsphtha Lsne 0.879 0.729 8.9 Naphthalene 1.001 1.058 5.4 Acenephthene-dlO Acenaphthene 0.957 1.019 6.1 F luorena 1,160 1.253 5.8 2-Ch Loronaphthalene 0.971 1.048 7.3 Acsnaphthylena 1.880 1.791 8.2 Phenanthrene-dlO . Phenanthrene 0,921 0,950 3.1 Anthracene 0.944 0.959 1.6 Fluoranthane 1.115 1.152 3.2 Chryssna-dl2 Chrysane 0,995 1.011 1.8 Pyrene 1.167 1.176 0.8 Bsnzo(a)anthracsne 0.978 1.048 6.7 Psrylsns-dl2 Benzo(b)fluoranthena 1.380 1.575 12.4 Bsnzo(k)fluoranthsns 1.785 1.704 -4.8 1.423 1.497 4.9 1.321 1.424 7.2 Psrylsns 0.688 0.755 6.9 Indano(l.2.3-0d)pyrena 0.876 1.057 17.1 Oibsnz(a.h)anthracsns 0.875 1.047 16.4 Bsnzo(g.h,i )perylens 1.068 1.193 10.5

>>- RF greater than maximum OC RF CCAL.EXE v2.5 1 ji!l! I. Y

'*-- !* ,'*-- h.*

!- ... y.,,,,,,,,,,, r3 ...... IW .- eri if:? if:? :E -..-- igi tu 1 - ...... ~:--',-~,...~~,.,''~'~-~l' 1 4 1 pGizGizZz==- "b", GI ! "E 1 i - 1. 1 -? c1 0 0 -1 ! -1 -! 0 0 0 -1 0 1 0 -1 I: I: 1 0 0 -1 - I. -1. -2 0 30 100 70 ?? 1 31 100 93 99 0 t2 80 47 71 0 -, 3: 100 94 e7 I :4 100 75 75 -1 -. 35 100 J(, 99 L 36. 100 ?6 93 -1 57 100 97 100 -1 .x 100 04 ?7 -1- 30 9i> 96 99 - s 156

t

L. P I- 5 L D tE m L ID :I: :A::... .-. .. . . I.!! 1.:3 4,.I :: 0.:: ?.1? 0.1: 1.2: :.o; a,!: 0.50 I.!! I.!! O.i: 0.63 4.ii ?.li 0.11 r:.,r 7, !.SI 0.55 0.13 2.5; 2.10 1.05 .i.3I !?.?? 1lA1 1.1: : 5:: I3A 3.is 1936 1.11 50 111 9,52 ..?c ii I!6i U.1: ! 61 136 O.F! 2'? 3$ !:I8 0.31 I 6: 131 i.81 !0 El 761 O.i! I 63 l!! 2.62 !i J! I!:? g,!S (54 !i; 0. $1 ?I 9? 1200 O.i? I Li I!! 108.00 J! 9: 1010 I,;! I b6 lii l.O! 158

-? . ",i .s., . .

. .

VII. LABORATORY ANALYSIS RESULTS

C. Particulate Analysis Results Filter Numbers # f%-000(8 TS6575 7s000 25 Datepime of wt. \2\ \? Y: 0 Gross wt. g p , &, % 8 J 8 &boo I67 5.3 Datepime of wt. L) 8.30A Gross wt. g , 68 76 , dbO3 .675D Average Gross wt. g .Q $ 7 ,LdOt ,6752 Tarewt. g ,57 13 ~ 571b 'S735

Weight of particulate on filter (q) 9 .I1 &lo .of386 ,1017 Weight of particulate in acetone rinse (ma) 9 .o 325 ,ob32 ,08 bb Total weight of particulate (m,) 9 ./ 91 .I318 *I883 NOTE: In no case should a blank residue greater than 0.01 mg/g (or 0.001% of the blank weight) be subtracted from the sample weight.

emarks: I /I I1 Signature of Analyst- Signature of Reviewer Qw e I\" D:\DONNA\FORMS\LAB\WMPLE.TBL u .;c ..., ,_.r p ... .- . - ". : .. .,. , . ,.. .:.+.,-;, ..-..~.:

Relative humidity in lab @ % ...... I % L.., Density of Methylene Chloride ,332 . g/ml , ... ..

nd .. , ,. :Gross wt g Grosswt g Avg. Grosswt g Tare wt g -. Less Methylene Chloride Blank

Wt./partlculate: Methylene Chloride rinse ...: g .. . Water evaporaffon Grosswt g Grosswt g Avg. Gross wt g .. . .' . ,. i !! .. .. ~. Tarewt g Less H,O blank wt 9 Weight of partlculate from water (m_) g ..': ' . wt/partrculate: Methylene Chloride rinse g .. ' Total weight of prtlculate (mJ . ' g

NOTE: In no case should a blank residue 0.02 mg/g or 0.001% of the weight of Methylene Chloride used be subtracted from the sample weight.

Remarks: e

VII. LABORATORY ANALYSIS RESULTS e D. Fuel Analysis Results

e THORNTON LABORATORIES, INC. MAAINE, ANALYIICAL RN3 ENARONMENTAL SERVICES 161

1145 EASI CAS5 STREET. TAMDA. FLOROA $3602 PO. BOX ZME, TAMPA, FLORIOA 33631.2WO TiLEPnONE (8i31 223-3102 HRSI M147 nwt EWIQI FAX 1813; 223.3332

2 a -Dec-1992 ?age 1 Report For: National Asphalt Pavement 5100 Forbes-rd. Lanham, MD. 20706-4413

Sample Identification: I Fuel oil APAC Melborne Plant Attn: Tom Brumaqin #6 /bunker C

Date Received: 11-Dec-1992 Laboratory Number: 843619

CERTIFICATE OF ANALYSIS Method Parameter Result Units - API Gravity @ 60 OF 11 I2 Specific Gravity @ 60/60 QF 0.!3916 ASTM D93 Flash Point, (PMCC) 2 5!2 OF ASTM D240 Heating Value (BTU) 183 16 BTU/ lb 151.254 Heating. Value (BTU) BTU/gal ASTM D129 Sulfur (S) 1 .!! 8

.. THORNTON LABi:iRATORIES, INC. Fred Hartlsqf!, Jr. Ph.D. 0

.

VIII. EQUIPMENT CALIBRATION DATA

A. GC CALIBRATION DATA

0 162

LY,VAL.YSIS OF :-IET

-/$k!7~A.t JK - Dace: /J -2 - FJ Analyst: -<. Plant: &? A

c.‘ GC Used: <,& Column Used: 5x ,

Quality A\ssurz?c~Handbook Xl8-5.1 163

LYALYSiS OF :*lEXdCD 18 FIELD SA'CPLS AfA2&d/: , '/ Dace: --d $a Analys :: 4-r Plant: /I( &v7 A

Standard concentration (Cat ~ ) Flow rate through loop (ml/min) I Liquid injection volue (tubes) I Injection time (24-hr clock) f CSart speed (cn/min) / Detector attenuation I Peak retention tine (min) Peak retention time range (min) Peak area I ?e& =ea x attenuation factor I .iverzge peak area value (Y) i Percent deviation from average Calculated concentration (CScd) ~ 3 &viation from acixal (ZDae I ) A Linear regression equation: slope*dq (m) y-intercept (b): Smple Analysis Data 451- Smple 1 Scmole 2 Saple 3 Firs: analysis/second analysis Sample identification InterFace dilution fac:or Flow rate through loop (ml/min) / L &9 ,&01 Lof> I Liquid injection volume (tubes) #,AI -- mi I Injection time (2k-hr clock) I I A Chart speed (cm/rnin) I Detector attenuation I Peak retention time (min) Peak retention time range (min) d.7 Peak area X6 7 f 9 x5 @?AfL.17 f Peak area x atten. factor (Al/$ 1 f Average peak area value (Y) ,: ,: deviation from average (ZD,,, Calculated concentration (C,)

Y 4 Quality Assuraxe Handbook N8-5.1 \ 161 AVAiLYSIS OF NE;;dCD 13 FIELD SAVPLS I. Date:/& -J -72 hnalys:: A< Plant: /&7d

GC Used: Column Used: $% .s//Jc10/, Carrier Gas Flow Rate: h.9 ?$C' Program Rate: - ginal: 7(f Sa3le Loop Volume: ,& Loop Temperature: xcInjec:. Port Teap.: ?

Calibration Data /d5 J Standard 1 Standard 2 Stasard 3 First andysis/second analysis . Standard concentration (CaCt) //d Flou rate through loop (ml/min) 4on/Lnd / Liquid injection volune (tubes) dU-f f 1njec:ion time (24-hr clock) / f / Chart speed (cn/min) / Detector attenuation / Peak retention tine (min) / ?e& retention time range (rnin) ?e& area / ?e& area x attenuation factor I .+ierage pesk area value (Y) i. Percent deviation from average Calculated concentration (C,ca) .. ,; ,; deviation from actual (:Dace) /5 Linear regression equation: slope (a): y-intercept (b)'T _.' ..J Szn?le Analysis Data /?& Smple 1 Smple 2 Senple 3 First analysis/second analysis Sample identification Interface dilution factor FLou rate through loop (ml/min) dzdTa / Liquid injection volume (tubes) .a& / #u/fI / Injection time (24-hr clock) / I L Chart speed (cm/min) & /J 4I / Detector attenuation i7 7 13.2 / ?e& retention time (min) <./ I Si? /

peak area x atten. factor (AL/% ) I Average peak area value (Y) :deviation from average (ZD,,, Calculated concentration (C, )

Quality A-urmce Handbook Ml6-5.1 165

idALYSIS OF :KT;ICD 18 FIELD SAWL5 'e Dace: /J-d - 92 halys t: 5- Plant: fl/4fA?.(#%?kl~ Location : A?/JAOA+WF61 Saple Type: /5,+ < TyTe of Calibration Standard: f/L rmFq Target Compound: ATF-X Number of Standards: 4 Date Prepared: , Prepared By:

0 CC Used: Column Used: /a2 0 i; 7c dAd%d,& Carrier Gas Used: ,+. . Carrier G:

Svngle .balysis Data fi~r SmDle 1 Senole 2 Seaple 3 First analysis/second analysis Sample identification /J .a Interface dilution fac'cor Flow rate through loop (ml/min) 60 JLorl /,OOI/bD I Liquid injection volume (tubes) &I I Injection time (24-hr clock) J J Chart speed (cm/min) J Detector attenuation J Peak retention time (min) J Peak retention time rage (min) Peak area / ?e& area x atten. factor (Al/+ J Average peak area value (Y) :deviation from average (ZD,,,) Calculated concentration (C, ) /o, a-

-res -- -.. 1 m Y

QUdity Assurance Handbook X18-5.1 166 AVAL.YSiS CF XEI-dCD 18 FIELD SAWLS

oat:: /J-~L,YZhalysi: nc 15-4 AL7- Location: Smple Type : '&,+ < Type of Ca Target Compound: IC Nurber of Standards: J- Date Prepared: Prepared By:

GC Used: Column Used: ,( g cry /a OB /,, 2( d/ - %/LJ../ Carrier Gas Flow Rate: 40 @d / final: z

x 100; Y

', Quality Assurzxe €?andbook NlS-5.1 167

/ Dace: -52 halys:: Plant: /AfAA/&f Sernple Type: Ty?e of Calibration Standard: Target Compous-d: % Nuaber of S:andards: Date- ./’ Prepared ay: Column Used: //. GC Used: ,

Qualicy Assuraxe Kandbook XlS-5.1 168

&V,iLYSiS OF :*lF;;iGD 18 FIELD SAVLS - .&/f/Z k/dL / Date: /73f152-... Analyst: Plant: fYk4!LP?(Ax7-- Location: LLA//RH)L /L Saple Type: c &A< Tme of Calibration S:andard: cjr2 Target Compound: /IL TX Nunoer of Standards: & Date/P$a%d: Prepared By:

4 U CC Used: ,<& ,~~~~, Column Used: P fol 00 Carrier Cas Used: Carrier Gas Flow Rate: Colmn Temperatures ltlal: @S’C Program Rate: c. ‘Final: 7, C. Sm?le Loop Volume: Loop Temperature: Inject. Port Tenp.: ?(CY Detx:or Temp. : - Auxiliary Gases: Calibration Data /$6 Standard 1 Standard 2 Standard 1 First analysis/second analysis . Standard concentration (Ca,,) ad 7,7d Flow rate through loop (ml/min) / A~~/ALxI, 4- Liquid injection volume (tubes) &d-/ Jut?-/ / 1njec:ion time (24-hr clock) / / / CSart speed (cn/min) LL / Detector at tenuacion 43 / 3a / peak retention time (min) / ?e& recention time range (min) ?e& area Pes! ares x attenuation facror / .iverige pedc area value (Y) Percent deviation from averece i. r Calculated concentration (C, ld ) /,3g ,: ,: Leviation from actual (31act) e, 0 Linear regression equation: slope (m): fiq7 y-intercept (5):-

Smsle .Analysis Data /U sfl Smple 1 Sample 2 Saple 3 ::rst-. analysis/second analysis Sample identification /..ad 4..70 Interface dilution factor Flow rate through loop (ml/min) 72ZGz z3 / Liquid injection volume (tubes) &A/ *A 1 / Injection time (24-hr clock) / / L Chart speed (cm/min) 4-/ &A/ / Detector attenuation 3 / 32 a/z2 1 peak retention time (min) / peak retention time rage (min) Peak area / peak area x atten. factor (AL/+) / Average peek area value (Y) :: Leviation from average (ZD,,,) m4 < S6/- Calculated concentration (C, ) /,a9‘ 9,76

m I

Quality Assurance Handbook N18-5.1 169

rLUALYSIS OF :*1ERCD 15 FIELD SAWLES GLL/&&k / Plant: /"//k

Detector Temp.: - Auxiliary Gases : Calibration Data h% Standard 1 Standard 2 Standard 1 First a!alysis/second analysis . Standard concentration (Ca E I ,I! /d /A0 'low rate through loop (ml/min) ,$a6 //.ba_ boa &on I Liquid injection voluue (tubes) fi/ / NAI / Injection time (24-hr clock) / / I Chart speed (cm/min) I / Detector attenuation I ?e& recention tine (min) / ?e& recention time range ?e& area I ?e& area x attenuation / .iverage peak area value (Y) Percent deviation from averas= Calculated concentration (C,Ia L ,: ,: &viation from actual (5DacI) D 0 Linear regression equation: slope (m) : ,a,~d y-intercept (5): C53 Sa?le .Analysis Data 45f Smole 1 Sanole 2 Seaole 3 First analysis/second analysis Sample identification /,L Interface dilution factor Flow rate through loop (ml/min) &o/dad Jm I Liquid injection volune (tubes) ,&! &A- / / Injection time (24-hr clock) I I L Chart speed (cm/min) I Detector attenuation / Peak retention time (min) / Peak retention time ranqe (min) Peak area I Peak area x atten. factor I Average peak area value (Y) $ ckviation from average (%Daws) Calcdated concentration (Cs

Quality Assurance Handbook XIS-5.1 170

A&iL.YSIS GF :*IET'CD 13 FIELD SAMPLES / Plant: /$4P&d/A,Ll Scnple Type: &A< Target Compound: d&7x Nunber of S:andards: Date Prepared: Prepared By:

GC Used: Colum Used: $% Carrier Gas sed: Carrier Gas Flow Rate: Colum Ternperaturefiktial : Program Rate: Sagle Loop Volume: & Loop Temperature: ZCInject. Detec:or Temp. : - Auxiliary Gases: Calibration Data Standard 1 Standard 2 Standard 1 First analysis/second . Standard concentration (Cacc) /o, d. Flow rate through loop (ml/min) , dodl Lop f Liquid injection volme ( tubes) '6W& &A I f Injection time (24-hr clock) f / / Chart speed (cdrnin) &'H W&f f Detector attenuation 32f .3d f Peak retention time (min) 4,- f ?e& retention time range (min) ff G*d ?e& area /J.Wd /3.53f /,Tu5 f ?e& area x attenuation facror / I .iverzge pesk area value (Y) (. Percent deviation from aversge - Calculated concentration (C..")_.- ;deviation from actual (;Dac ) 0 Linear regression equation: siope Sa?le Analysis Data A57 Smple 1 Sample 2 Sernple 3 Firs: analysis/second analysis Sample identification LA? /os a Interrace dilution factor Flou rate through loop (ml/min) ha., /LOO .- f Liquid injection volume (tubes) ,w.4- / &AI I Injection time (24-hr clock) .' f I L Chart speed (cm/min) NR/ pk/ / Detector attenuation L / ,713 22/34 f Peak retention time (min) L.SG3f L.7 4,GOa'L .&3 I A, Lon Peak area / peak area x atten. factor f Average peak area value (Y) ;deviation from average (ZD,,, Calculated concentration (C,)

Quality Assurance Handbook H18-5.1 171

AVAL.YSIS OF :-lFFr!OD 18 FIELD SAYPLS

/ Analys t : Ax Plant: /z &PA

GC Used: Column Used: ,qU%S~/~OC, / Carrier Gas Flow Rate: 6 cc /A rial: 7Cc Program Rate: - eina&s C. .d Saple Loop Volume: & Loop Temperature: Inject. Port Tenp.: 7.

Puali cy Assurance Handbook W-5.1 172

LVAiLYSiS CF :*lE;1-:CD 18 FIELD SAWLS /

Compound : r;\ Prepared ayr

GC Used: Column Used:

" Column Temperatures+.+p In' ial: Program Rate: - Find: Sar+le Loop Volume: ,&' Loop Temperature: Inject. Port Tecp. : 2:s. Detector Temp.: - Auxiliary Gases:

Calibration Data &4d Standard 1 Standard 2 First analysis/second analysis . Stmdard concentration (C.,,) /U.S f Flou rate through loop (ml/min) dL1d/dn3-&=- , d-d Liquid injection volume (tubes) w,+ f &&/ / Injection tine (24-hr clock) I / / CSart speed (cn/min) / Detector attenuation f Peak retention tine (min) f Peak retention time ran9 (=in) ?e& area / ?e=! ares x attenuation factor I .-\.ierage peak area value (Y) i ?ercent deviation from average e Calculated concentration (C,t,) - ,.I deviation from actual (ZDacc) b Linear regression equation: slope (m) Sen?le .Analysis Data Senole 1 Sanple 2 Senple 3 First analysis/second analysis Sample identification /o( /o* s Interface dilution factor Flow rate through loop (ml/min) 4- Lm / Liquid injection volume (tubes) WAf /&I I Injection time (24-hr clock) f f L Chart speed (cm/min) 1 Detector attenuation 1 Peak retention time (min) f peak retention time range (min) Peak area c / Peak area x atten. factor / Average peak area value (Y) ;&viation from average (FD,,,) Calculated concentration (C,)

Quality Assurance Handbook X18-5.1 AYALYSIS OF :-!ETrlOD 18 FIELD SAVPLS

/ Plant: +?A( dL7- 6,f< Compound :- A'LT~- Nunber of Standards: 2 Date Prepared: Prepared BY: .

GC Used: <& column Used: od /260 // 7,?/4' Carrier Gas Used: .f~, . . Carrier GLFlo?

Sample .balysis Data /sf Sample 1 Samule 2 Sample 3 First analysis/second analysis Sample identification /tag $76 Interface dilution factor Flow rate through loop (ml/min) / Liquid injection volume (tubes) b6# / / Injection time (24-hr clock) L / L Char: speed (cm/min) h.'A/*vA/ / Detector attenuation 2 171 / Peak retention time (min) a.m2 ' S-Q? / Peak recention time range (min) -2L4L Peak area /O 47 io, 71 /~&a//o?. /Y / Peak area x atten. factor (Al/+,) / / Average peak area value (Y) :: deviation from average (,XIavg) Calculated concentration (C, )

I I

Quality Assurance Handbook Ma-?. I 174 AV.iL'fSIS OF Xi-AOD 18 FIELD SWPLs 1' 72U6UL / #< Plant: P%~~/AAL~LY Location: FL / Sanple Type: LA< Tee of Calibrarion Standzrd: Target Compound: A,.+Tx Nurser of Standards: 2 Date Prepared ay:

0 GC Used: <#€ Column Used: ,?/Dd ,cy& 00 L7

~ 0 Calculated concentration (C,(d ) // f: deviation from actual ($Dact) QJ 13 Linesr regression equarion: slope (a): Y,J'~y-intercept (b) : d.47 Sag1e Analysis Data Sanole 1 Senole 2 Saaple 3 Firs : analysis/second analysis Slmple identification Interface dilution factor LL Flow rate through loop (ml/min) d= dm / Liquid injection volume (tubes) l.//;~/ #/A/ I Injection time (24-hr clock) / I L Chart speed (ca/min) I Detector attenuation / peak retention time (min) / peak retention time range (min) Peak ares / Peek area x atten. factor / Average peak area value (Yl ,: ,: deviation from average (ED,,,) Calculated concentration (C, )

0 Quality Assurance tiandbook Xla-5.1 175

. &V.ILYSIS OF XmiCD 18 FIELD SA’PLS

-- X/&M~ / Dace: /J+-Y~halysc: ,4S, Plant: Location: &oL/ANE - / Seunple Type: 1 Ty?e of Calibration Standard: Yk,@/ik/1 Target Compound: 1-A Nczber of Standards: 2 Date ?&pared: Prepared ay:

CC Used: I& Column Used: cd JY/J 00 .A7.c UA Carrier Gas Used: Carrier Cas Flow Rate: P c /./d c Fhai: 7

Quality Assurance Handbook H15-5.1 176

AVALYSIS OF :.lEEdOD 18 FIELD SA.'f?Ls / Analysc: dt5, Plant: /$p k

Column Used: cb

-

Quality Assurance Handbook 316-5.1 .

VIII. EQUIPMENT CALIBRATION DATA

B. CEMS CALIBRATION DATA Gas Type Actual Analyzer Gas Type Actual Analyzer Concentratlon Response Concentration Response 0,-Zero 0.0 on0 C0,-Zero D.D D, D 02-High 20. %l.i C02-H1gh /z./ . 17%3 02-Mkl /P.O l0.U C02-MM /D.0 /b.O

7 Gas Type lnitkl BhS Final Bias Drift Response Response Zero P. 0 6.0 u.0 0. i CO,/O, /O.D /o.o lo.0 /o . 0

Gas Type Initial Bhs Final Bhs Drift Response Response Zero 0. J 0. -0.2 -0.3 co,/o, (0,I 10. I 9.3 9.9

Gas Type lnithl Bbs Final Bhs Drin Response Response

Zero 0.I c,/ -0s ‘0.3,- . co,/o, (0.0 to, 1 li! f q, 7 INSTRUMENTAL ANALYSIS CALIBRATION DATA 178

Gas Type Actual Analyzer Gas Type Actual Analyzer Concentratlon Response Concentratlon Response 02-Zero 03,-Zero 0,-High C02-H1gh 02-M!d C02-MM .

Gas Type Inaid Bhs Final Bhs Drift Response Response

Zero 0.U 0.D 0,2 -6, / co,/o, CD. 0 (0.0 4.7- 9.9

U co,/o, Run # Time: I

K Zero

..... - - -...... ~...... INSTRUMENTAL ANALYSIS CALIBRATION DATA 179 TOTAL HYDROCARBONS

DATE /z*Z-~Z " OPERATOR

P RESPONSE TIME

Gas Type Actual Analyzer Gas Type Actual Analyzer Concentration Concentration . HC - Zero 0 0.Y HC - Mid g-./4< 993 HC - High wr Y 94 HC - LOW 310 30 7-f

Run# / Time: /y:/b -/& ;/b Run# I/ Time:$:& + f.'zo+ /o:Yi+ u;J% Gas Type Initial Final Gas Type Initial Final Response Response Response Response HC - Zero 0.t' 8,c/ HC Zero 0. Y k?.r HC- ,310 309. 387. I HC - ;SIC' 3 357,s' 3d 2.4

1 12-3-42 Run# 2 Time: ro: 25- 12: z 2 RU~# 5 Time: /2 : /f -~Y:o2 Gas Type Initial Final Gas Type Initial Final Response Response Response Response r HC - Zero -0. j 3, D HC- Zero I,0 a, 'z HC- 310 $0 7.4 %?, 9 HC - 3/0 30f.3 3'04.7 1 L

* F Run # 3 Time: 12: 5(+15:&L /'4',<4'(b;Yo Run # Time: /y.' qb /b.'D 2 r2-3 --?L - Gas Type Initial Final Gas Type Initial FiMl Response Response Response Response

- HC - Zero O' L/ 0.T- HC- Zero 0.3 - 1. / HC- 910 JOY// 9ia.g HC - 336.7 3aa .6 INSTRUMENTAL ANALYSIS. CALIBRATION- ~~ DATA 180 CARBON MONOXIDE

Date /2-2-9~ Operator Tm

CO Range ODD/^,,. I/ Initial Calibration: (Accuracy: 1 596 Span)

Gas Type Actual Concentration Anayzer Response CO-Zero 0 -0./ CO-High 5% 'i/ 9 /y . CO-Mid 5<3k cz 5? - co-Low 2 4b' z 9<

Zero & Soan Drift: (Accuracy f 5% Span)

End Run # / Time: /L/r.fb d/s?'/&,

Gas Type Initial Response Final Response Drift CO-Zero -D, / -.Pa?./ co- py Y/4 96 7

Gas Type Initial Response Final Response Drift CO-Zero 0. 3 - 4 co-290 as3 a7J- INSTRUMENTAL ANALYSIS CALIBRATION DATA 181 CARBON MONOXIDE

- Gas Type Actual Concentration Anayrer Response

C 0-Zero 0 CO-High . CO-Mid GO-Low

~

Gas Tvae Initial Resoonse Final ReSDOnSe Drift CO-Zero 0,g -1, / co- 2PO ZYY,? I i29.J.T

- Gas Type Initial Response Fiml Response Drift

CO-Zero It0 -t.) co- d 94,D 24io.t

I Gas Type Initial Response Final Response Drift CO-Zero co- .

End Run # Time: ____~

INSTRUMENTAL ANALYSIS CALIBRATION DATA 182 NO, MONITOR

/ Date /z- 2-92 Operator /yr7

Initial Calibration (Accuracy: 2 2% Span)

Gas Type Actual Analyzer Concentration Response NO,-Zero 060 0,l NO,-High ZOO 20 1/ . NO,-Mid 1 Y3 /ffcc.c

Gas Type Initial Bias Final Bias Drift Response Response Zero 011 4J.Y NO, /$YE /L/ 7.0

Gas Type Initial Bias Final Bias Dfi Response Response Zero 0.g ?.< NO, 1% .7 /4K f

Gas Type Initial Bias Final Bias Drift Resoonse Resoonse II Zero I 0.9 I IJ.1 I II INSTRUMENTAL ANALYSIS CALIBRATION DATA 183

NO, MONITOR

Date /Z-Y-?L Operator T-M

Initial Calibration (Accuracy: 5 2% Span)

Gas Type Actual Analyzer Concentration Response

System Bias Reponse: Analyzer Response-Initial Bias = 2 5% Span Final Bias - Initial Bias = t 3% Span

Run # f Time: iz:if- lq:o~ It I 4 11 Gas Type Initial Bias Final Bias Drift Response Response

Gas Type Initial Bias Final Bias Drift Response Response Zero 0,2 6. 0

Gas Type Initial Bias Fiml Bias Drift Response Response Zero - NO,

Gas Type Initial Bias Final Bias Drift Response Response Zero NO* INSTRUMENTAL ANALYSIS CALIBRATION DATA 181 SO, MONITORS

Plant /1/k?h- qQL 4qL/j Location totoe J&.liCx , Fi e I Date /2-2-72 Operator 77~

Initial Calibration (Accuracy: 2 2% Span)

r Gas Type Actual Analyzer Concentration Response - SO2-Zero 0.0 a 2.0 SO2-High 82% B3b . SOz-Mid g5F3N T5b

Gas Type Initial Bias Final Bias Drift Response Response Zero 2.0 3,o

so2 ff-6 (fi'

Gas Type Initial Bias Final Bias Drift Response Response Zero 3.0 KO so2 <5-{ 5L -

Gas Type Initial Bias Final Bias Drift Response Response Zero 3.0 7.0 so2 5- 4% 5-5 9

Gas TvDe.. Initial Bias Final Bias Drift Response Response ~

INSTRUMENTAL ANALYSIS CALIBRATION DATA 185 SO, MONITORS

Date /2-v-q 2- Operator 7~

Initial Calibration (Accuracy: 2 2% Span)

Gas Type Actual Analyzer Concentration Response

11 SO,-High I I . S02-Mid

System Bias Reponse: Analyzer Response-Initial Bias = t 5% Span Final Bias - Initial Bias = k 3% Span

Gas Type Initial Bias Final Bias Drift Response Response

Gas Type Initial Bias Final Bias Drift Response Response Zero .?, D Y.0

Gas Type Initial Bias Final Bias Drift Response Response Zero so2

Gas Type Initial Bias Final Bias Drift Response Response r Zero so2 e

.

VIII. EQUIPMENT CALIBRATION DATA

C. PARTICULATE CALIBRATION DATA

e YR 186 TYPE S PITOT TUBE INSPECTION DATA FORM

Q) ' Pitot tube assembly level? d Yes ~ no Pitot tube openings damaged? yes (explain below) l/ no

= \\,% (

I32 = 1.x O (<5O)

y = 2.q 0, e = 1.7 0, A = .y? cm (in.)

z=Asiny= .o: cm (in ); (0.32 cm (

YY cm (in.) Pb . '19 cm (in.)

Comments : I@

Calibration required? Yes /no

. 'I

Quality Assurance Handbook M2-1.7 187 TYPE S PITOT TUBE INSPECTION DATA FORM

Pitot tube assembly level? I/ yes no Pitot tube openings damaged? yes (explain below) no

= CY2 8, = O (<5O), al 7,3 (

/ z=Asiny= -03 cm (in.); <0.32 cm (<1/8 in.), . w=Asine = .Otcm (in.); <.08 cm (<1/32 in.)

* ‘17 cm (in.) Pb , ”19 cm (in.)

D~ = . 5v cm (in.)

Comments :

~~

Calibration required? yes ,-/no

.

Quality Assurance Handbook M2-1.7 WCON ENVIROWENTAL COWORATlOH iaa Lear Slegler Stack Sampler

Nozzle Diameter Calibration

Dace Signa Cure

Nozzle No. Average Diameter Nozzle No. Average Diameter 1 7 2 8 3 9 4 10 5 11 6 12

Picot Tube Calibration (S Type) Pitot Tube Idencificacion No. 6- Dace &-?-y/ Calibrated by: .

"A" SIDE CALIBRATION

.. .?

3 ~~C,(S)<~(A OR B) I AVERAGE DEVIATION - U(A OR B) - 1 +MUST BE<- 0.01 '3 - 1-PC (SIDE A). 189 RAMCON

Lear Siegler Stack Sampler

Heating Probe Calibration I Probe No. b ‘I Probe Length G 7- Date of Calibration 5 -7 -4 0 Signature SCL?cdk Name of Company to be tested

Note: 3 ft. probe - 5 min. warmup 6 ft. probe - 15 min. warmup 10 ft. probe - 30 min. warmup Calibration flow rate = .75 CFM

3i

e__.’

-. 1:

1C

5

2 4 6 8 Form No. EED-17-2 PROBE HEAT SETTING (2) 190 STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

8.- Date 5-s- 40 Thermocouple number 6Y Ambient temperature 'C Barometric pressure 29, yr in. Hg Calibrator cy'& Reference : mercury-in-glass I/ other

Reference Thermocouple Reference thermometer potentiometer Temperatureb point source a temperature, temperature, difference, number (specify) OC OC % . 0

c .. a

.

.,-aType of calibration system used. _I bl(ref temp, 'C + 273) - (test thermom temp, OC + 273)J 1oo<1.5%. ref temp, "C + 273 -

Quality Assurance Handbook M5-2.5 193

Lr 0

0 W Y 0 E a .r W Y .- 4 0 LI a e- U 0 C a N Y W L, I .r W 00 P V rn U d a Y 01 E: a W Id > -- Y 2 a Y 0 a u r( 0 Y 3 n a 5 P LI . C 0 -x m fi 9 . E -I 0 0 Y W C u- W .rl E- c In .3 a, . Y Y I-- e W Lr 0 L, 0 m 0 b6 U . UW u s, Y L, u ux Y EL1 V U I. I. .rl V E Y 6 E a U m a x U L, 2 1 V -z Y W c C Y 0

C VI 0 a 00 Y W 4.. Y W 4 $ Y a E 0 % W u a c c n Y Y W W E 0 0 W Y >I 2 a -l a m C Y (0 0 10 W Y Y m V a .4 4 L, 6 uu u 0 P '3 Y I- W 32 II II II I1 ll ow Y 6 u 3713- 0 c YO WLI >>+IV Q 0 nY c1a n YU g: a3 192

k 0 - 0 V Y V C m ..I V Y .^ I>- w m 0 C a Y .d c- U u .. --Id E Y JI 01 5

'an -0 0) c E U u- W ._I E-1 c m C ... .. 4J 4J rc CUI n & 3 V 0 3 0 Y ul tr Y :' 0 UE U u) 4 ~a V 4 EC Y E a c C - n Y x u 0 Y DE u e m (0 W 2 V El c 4J c 0 Y u Y u .I m ue- OY I )I - c I Mu-m 4J Y 3Y xw> w W k E- C i-n 0 x i 4 1- 1- c 0

v1 ..I ..I W Y II II II II I1 I Lr

0 V Y

.d .I 0 L)

c 00 0 C a W I. W m W Y W W Y > c 2 m Y a d Y d I m m. I L L 0 L( 0 c W u I, C m W w- W .4 W Y E- E c m .3 a, .r u Y I, E c- E e 0 0 Lr 0 LI Y Lr 0 m 0 0 - I, 6 U - Y U M W I, W Y I, W Y Y E P E .O I, ; W .ID 0 Y momY m a NM E m m= Y W W 111 Y m Pcw.P Do P v -3 E .E) 0 x W ^Y u I, W c W' v) V c YUI, u Y .3w Y W CWY c w u 4 0 .* 2! E W mo 3 E v) m Y 0 m wtntn ck- C 00 nuom W .3 I, WOY 0 - 6 W Y CY Y W YU4 2& W d m +I C E E Y c ":" I, .4 a a 04 a* I, 0 meU i w ..I 0 UY E W W YY am 2 0 c c aax W a .* Y Y uwuUY n Y m~aow v) m W W YWI, Y W I, E 0 wwa on, I, n . 0 aw u ..I P .4 W W E .d u I1 4 Y A I, wwa m u m a d a Y I,w .3 U v) E Y we I, VI 0 m WYO u c W Y wa 0 I, v) W mMO a -.I P Y v) .3 0: Y 6 WWY Y wu W W >um m 0 .- Y W c <&e: m 52 a I1 Y "2 I w 3v3 -4 0 YO W*>>Y 0 0 v)Y nw uu wm n cm a3 194

r, 0

0 W U W C m

.r( W U .^ 4 U 0 2 IL N Y

E 3 W Y a u U m 5 Y >. 9 W & V U W C W. .r( m 5 u V Lu % Y Lu 0 0 0 .. U .. Y W .. L1 W L1 mm Y W u uu .u .. Uuku : LI : -d u ”: .ID rl YY-- - m om m WWY m m NM Y uuum m 00 X 9 uuum M a 66uU .? 6 2 aw U >, ? V .* vlmu~1V 0 UnIVIV W -u MW W c W uu s U UY U s U .4 u a u u Euu C uu U 3w w U .d 5 3w 0 ‘C : p: uu 0 ln C l4 m Ou w 0 55:- m M l4l4 5 um M vlu .* Y nn M W ou E El u MMC cl Y U aa.r(u u 5 ou W. u 00 W 3 C Y Y lnd u W “g 2 a ne m c a 0 4 Y W uu 00.4 0 mru W 4 0 C $I W 01 U U 0 a I1 s a Ch .rl 5 u u vu Y 0 (0 m U Y PILI Y I Q.’ 0 W rua c 0s uu ... W P ... u 3 Y W we m 3 a Y U E u wru 0 m 01 LO ru Y M a 0 v1 u 9 vlo .rl Y l4 ... 0 wu d W2 ? am c 4 cue: 2 I I1 11 I1 11 I1 Y .0 L 195

?,!.g.,:,3..s~,h;,1.t. - w!P&

RUN % 1 m-rA LISTINC- !NAME:...... RAMCON EN'?IRONMENTAL LOCATInN: MEMPHIS. TENNESSEE CH&iV NAME HO SCI.2 t: O I12 NO x .I CHAN UNITS FPM FPM I. FFM :L FPM _c - 1l:ll:li:: _1 1:) 1(:ll:lr:l, (:I 2i:1 jl 0 5l:lcl. 0 Cd. i.1 250 ~ 0 FULL SCALE .. ZERO OFFSET i-1 .1.1 1:) .<:I 15 .<:I <:I , (:I [:I . (:I (:I rl 0 START...... / CHANNEL [:I 1 I:] 2 1:13 CI 4 [:I5 <:I.5 14: 18 c= d4. i:r 151.5 .4.2c 14.2 141,4 14: 19 69. i:l 15g-5 5.5 14.2 137.5 14: 2r:I 77.5 150 ,[:I 5 ,<:I 14,s 128.9 14: 21 77.5 141,5 4.9 14. E! 125.3 . c= 47,- c 14:22 78. 5 139.5 d. 1 14.6 I .:.(.I. .J c7 4- 14: 23 79. 5 145.5 .2 ..A 14.3 I .-.6 .9 14: 24 85. 0 146.5 5.5 14.2 138.4 14: 25 78.5 144.5 5.7 14 * CI 3 14: 26 97. 0 141.5 5.4 14.3 126. 6 14: 27 71.5 135. 0 5.1 14.7 118.0 c- 14: 28 1i:12. 5 130 I ::I .d .1.1 14.9 114,s c- 14: 29 119.5 126.5 cc .1.1 15 .0 113.3 c- 14 :.30 121.5 i 20. 5 -8 .CJ 15 .5, 112.4 c=- 14: 31 126. I:] 124.5 L' .1.1 15 .1:) 113.0 14: 52 122.5 13 1 ,<:I 5.1 14.8 11 5 I 1:) -7 14:33 .,VL. 5 129 I I:] 5. 1 14.9 1 1 5 .0 c- 14: 34 94.5 125.5 d e u 15 . 0 116.3 14: 3; 95. 1:) 125. 5 4.9 15.2 115.5 14:36 89 = 1:) 129 .0 4.9 15.2 121:). 3 14: 1.7 86.5 141.5 5.3 14.5 131.5 c 14: 38 82. 0 151.5 d.? 14.1 137. 9 14: 37 7 1. 0 142.5 5.6 14.2 136.2: 7. 14 :4 1:) I I).ir 145.5 5,4 14.4 129.5 14:41 7-/i.5 146. 0 5.9 14.1 140 .9 14: 42 75.5 156. 0 6.1 13.7 145.4 14: 43 76. 0 161.5 6.1 13.7 143.4 14: 44 75.5 168.5 6,1 13.7 145,s 14: 45 74.5 171:). I:] 6.2 13. -6 145.9 14: 46 76.5 17 1. !:I 6.1 13. I 144.8 14: 47 79. I:) 163,5 5 .0 13.9 142. 0 14: 413 78. (:I 162.5 5 .1:) 13.9 143.1 14:4? 76.0 161.5 6.1 13.9 143.3 14 :5CI 76. I:] 162.0 6.1 13.9 144.4 14:51 75. 5 163. 0 b. 1 13.8 146.4 14: 52 76.5 164.rr 6,2 11.. 8 148. 3 14:5.3 74. 0 165. 0 6.2 13.8 147"3

14: 54 70 5 163.5 6.1 13. 9 146 ~ 0 14: 55 66.5 153.5 5.6 14.4 1m.a 14: 56 66. <:I 151* 5 5.5 14.5 13za9 cC 14: 57 62.5 151. 5 4 . 14.4 134..5 14: 58 62 " 1:) 155.5 5-5 14.5 134. 4 196

54.5 14s.5 4.7 14.4 141.1 84.5 1fb. 1:) 4. 7 14.4 141.5 64. 1:) 152,CI 4.7 14.4 141.9 81.5 152. 5 4.7 14.4 14.3. 0 85. 0 154 .0 4.7 14.5 139.5 79.5 1.51:1. 5 4. .5 14.6 141.1 7 . I 7 .0 152. 0 4.7 14.5 142.1 . 1=-, - 7;. 5 __I . 1L. v 4.7 14.4 143.1 78.5 1-59. 0 4.7 14.3 1 43. 6:) ao, 5 161.5 4.7 14.4 139.4 7 2 .0 154.51 4.7 14.5 140, 9 76.5 157.5 4:3 14.5 146. b g<:1. 5 164.0 4.9 14.1 149.6 1" c 75.5 4 I .;i 4.9 14.1 141.3 76.5 1 ic1 .5 4.9 14.2 147.1 74.5 158.5 4.6 14.2 14.5. b 7" c 1 sa .0 4.6 14.3 146.0 77.5 157.5 4.8 14.3 146. 6 63.5 1 60 .5, 4.8 14.2 148.3 P-?I>. I:> 1 b 1 .c1 4.8 14..3 149. .3 66 a 0 157. 0 4.8 14.2 149. 6 78. 1:) 1.50.5 4.6 14.2 149.6 80. 5 156.5 4.6 14.2 150.9 64.5 161.5 4.9 14.2 150. 9 63. 5 162. [:I 4.7 14.2 151.3 g;:: .c:1 163. I:] 4.4 14.1. 152.5 78,0 1 6 1 .c1 5 .13 14.0 152.5' 80. 5 166.0 5. 0 14 . ::I 154.3 6". 5 16.5.5 5 . 0 14, c1 154.1 82.5 164.5 4.7 19.0 153.1 79.5 i62.5 4.9 14 .0 151.5 7c ,d .0 160. 5 4.9 14.. 1 150 .6 73.5 157.5 4.9 14.1 150 , 9 79. 0 1 i1 * 0 4.? 14.1 150 5 64.5 158.0 4. 8 14.1 149.5 85.5 155. (3 4.7 14.4 144,4 96. 0 151.5 4.6 14.5 135.9 1[:I4 .0 1.32. 0 4.4 14.8 125.5 1cra. 5 132. 0 4.6 14.4 136.9 103.5 135. (:I 4.7 14.3 14.3.6 n- c 71. Ls 14 1 .0 4. e 14.2 146.4 65. 0 145.5 4 " a 14.1 149.9 727 - I 7 0 149. 5 4.8. 14. i 151.1 ...- . / 1.1 .0 150, 5 4.s 14,1 151.1 199

71.5 153.5 4.8 14.1 < n 72. (:I 15.5. 0 4.8 If, 1

73. 0 1 bC1 _I (:I 4.8 14.1

7 1 I 5, 162.5 4.a i4,1 1e.-. 69 # I:] d7.5 4.7 14,2

72~ (:I 161.5 4.7 14. s 76.5 162.5 4.7 14.2 73. I:] 16O. 5 4.7 14.2 14,3 7 1 . 1:) 162. 0 4.4 70 .5 158. 0 4,4 14-4 73. I:) 157. 0 4.5 14.4

72~ 0 154,5 4. 6 14.4

71:) . (:I 1 &(:I ~ 0 4.6 14=3 68.5 163.5 4.5 14.3 67. 0 15 1 = (:I 4.6 14.3 67. 0 161.5 4.6 14.2 71 c ,I ..4 i52.5 4,6 14.2 68. 0 156. 5 4.6 14.3 49.5 149.5 4.6 14.2 36.5 147.5 4.6 14.3 51.5 143 .I:) 4.6 14.2 ?. 63. 1:) 115.5 3 .5 15.8 66. 0 86.5 .I.2 16.2 68.5 1 I:]?. 0 4.4 14.6 69.0 122.5 4" 4. 14.4 65.5 121.5 4 .5 14.3 62.5 115.5 4.5 14.4 62. 0 113.5 4.4 14.5 66.5 116.0 4.4 14.4 59.5 118.5 4.4 14.5 68.5 1zl:l. I? 4 ..3 14.7 67.5 101 . 5 7-,i. 1-1 1.5.2 71.5 97.5 4 - 0 15.1

81.0 15l:l .I:) 4. 6 14.. 4 200

4 * J 4 3 .(:I 14.5 132. 1:; 4.4 39 . <:I 14.7 131.5 4.4 35 . 0 14.e 131.5 . 4.4 .:..>--. .(:I 14. 9 132.1 . 4.6 .L.t,T"

4.7 47.6 14.7 201

3.9 15.1 zLT. 9 1.5.3 3.9 15.X 4 ,(:I 15.1 4.1 15. 0 4.2 15 .0 4.3 14.9 4.4 14.8 4.4 14.7 4.4 14.6 4.3 14.9 4.2 __1 5 . 0 4.2 15.1 4.3 14.7 4.4 14.8 4.4 14,8 4.5 14.7 4.5 14.9 4.4 1 5 .0 4.3 1 5 .0 4.1 15.2 4.1 15.3 127.6 4.1 15.3 127.8 4. .3 15. 0 4.4 15 .0 4.2 15.2 4.1 15.2 4. 0 15. .3 4.2 15. 2 4.3 15 .CI 1.2 - 4.3 I J .1.) 4. 1 15.3 7 .9 15.6 3. 8 15.5 .3. 6 15.8 3,7 15.6 4.1 15.1 4. 4 14.9 4.4 14.8 4.4 14.9 4.2 1 5 .c1 202

# I.B LGTA LISTING .>ME: ...... I;:AMl:E;.I EI\IL'II;:Dr~iME;.!Tc?L L;ICA'.i::gr,l: IvlExplii;. TEqqEG5EE CHAN NAIIE Hc s 17 .? CIIi= GO 12 IKi ., 2 CHW UNITS FPM FPM i. FFM .,'. FF" FIJLL SCALE 1. !:I!:] .(:I 4I:Ir:l .!:I ",(:I, !:I 5(:l!J . I:] 25,r:1 ~l:ll:ll:l.(:I ZERD OFFSET (:I .I:] !:I .0 'I; . r:r 1:) . I:> c:i . !:I !:I . (:I STAFT...... ! CHANNEL CI 1 0 3 04 (:I5 !:I ,5 16. 7 77.4 17.5 8'3.4 15 c I .%2 15.1 1 5 . (:I 15 " (:I

15 I !:I 14.9 14.7 14.7 15.9 15.3 14.8 15 .i.1 15.6 15. B 14.. 8 14.9 1.5. 6 15.5 15 . 1:) 15. i 14.9 15. 0 152.3

1 ~ !:I 1. 33. 8 14.7 134 .0 15.0 131.1 14.9 131.4 15. 0 127.1 15.1 122.3 16.3 37. (:I 15.7 121.5 14.3 133.8 1.4.7 1.72.5 15.1 123.4 1;. 2 123. [:I le.? 122.3 I I,- I i' .J 117.5 15. I 115.? 15.2 11.2. 1 15.4 1 10. 1 15.9 1!:13. 3 1.5.5 118.4 14.3 125.4. 4 .-$ - .L -7 .!.I 125.4

4.4 15 ~ CI 126,.6 IC 4.4 Ail .0 125.4 4.4 15.82 125.1 4.5 14.8 4.5 14.8 4.5 14.e 4.5 14.8 4.5 14.7 4.6 14.7 4.6 14.5 4.7 14. 6 4.7 14.6 4-7 14. 5

4.2 15.1 201 205

...... r..r...... i..,...... ~~..~~,..~,,,~~,,.=~,*~..~.~,."~~:~~~~: =,....=...... ,.*.~.~.,... CHAN NGME tic 502 co NO x ICHAN UNITS PPM PFI'I x PPM x PPM

FULL SCALE 1l:rl:I. 1:) 4~:lI:l ~ <:I 20 .1:; ;(:io. I:] 25. I> 9CIr:lO. ::I ZERO OFFSET ill ,1:) 0 .0 0 .t:> CI r:) 1:) ' 0 <:I _I I:) START / CHANNEL 0 1 [:I2 !:I 3 CI4 <:I5 (:I6 ...... 15.2 141. i 15.1 142.5 15.2 142.5 15.2 145. 6 15.2 145.3 15.2 14.5.5 . . 15. 1 145. a 15.1 151.1 15.1 1 5i:I .<:I 15.1 149.6 15.1 154.6 15.1 152.1 15.1 150 .4 15.1 152.4 15.2 151.7 15.2 151.9 15.2 152.rJ 15.2 15:. 6 15.1 152.1 15.1 153.6 15 . I:) 155.5 1 5. 1:) 15.5. Y 15.1 153.3 15.1 152.6 15.1 150. 8 1c .l A&,. L 146.6 15.3 147.8 15.2 148.1 15.3 147. 0

15.2 138.1

e u

206 ...... CI-IAN NGI'E HC 502 c:u2 CO 13 2., NDX CHGN UNITS FPM wiv 7. FFM I. PPM

FIJLL 'SCALE 1 (:io " <:I .4.cx:i ,1:) =(:I ~ (:I 5CiO. (:I 25 ,, (:I 'Sr:iCiI:l " (:I -. ZERO OFFSET 1:) .[:I 0 . (.I ci .<:I 0 .r:r (:I .':I 1:; I 0 STAET / CIHANNEL (:I 0 1:) 0 4 (:I 1:)'s ...... 1 2 1: 5 7?. 5 4.. 8 14.7 155.4 76.51 4.8 14.6 156.? 77.5 4.8 14.7 156. 1 77.5 4.8 14.6 156.9 78.0 4.8 14.6 156,6 * 75. <:I 4.8 14.6 156.8 - 73.5 4. 8 i4.7 157.4 73. (:I 4,8 14.7 155.5 67. 5 4.8 14. 8 154 (:I 67.5 4.7 14.8 153.7 71 . 51 4*7 14.8 154.5 67. 0 4.8 14.7 155.4 66. 0 4.8 14.7 156.3 66. Ci 4.8 14.7 156.8 55 0 4.8 14.7 156.3 54.5 4.8 14.7 155.5 -3 37. 0 L. 5 18 ,1:) 62.5 36. (:I 1.6 17.3 56.1 12/04/92 11;35 35. 5 1.6 19. 3 56. Ci 12/04/72 11 :36 36. (:I 1.6 19.3 54.4 12/04/92 11: 37 72. 0 2.7 17.4 116. .S ;2/c:14./72 11 :38 7 1 .CI 4.. 4 15 . 0 146.4 12/04/72 11: 39 68.5 4.5 14.8 150. 9 12/r:14/q=. 11: :.(:I 66. 5 4.5 14.8 152.5 12/(:14/72 11:41 66.5 4.6 14.8 153. c:i 12,'Cr4/?2 11 : 42 64.5 4.6 14.7 153.5 12/[:14/92 11: 43 65.0 4.7 14.7 154..? 12/04/92 11: 44 66. 5 4.7 14.7 155.3 12/04/92 11: 45 67.5 4.7 14.7 154.6 12/04/72 11: 46 78.5 4.7 14.7 150.5 12/04/72 11: 47 88, ci 4.7 14.7 145.8 12/04/92 11:48 95. 5 4.7 14.7 143.8 12/04/?Z 11: 47 96.5 4.7 14.7 144. 6

12/04/92 11: 50 73~ (:I 4.7 14.7 147.1

A\/ Et- age5 : 84.2 4.3 15 .0 141.5 hIC;ME:...... F%i!'iCUN ENV1F:ONIYENT~GL LOCAT I ON: MEMF'HI S, TENNESSEE CHGN NGME HC SO2 COZ CO 02 NOX .r WAN UNITS PPM FPM /. FPM :: FW rlJLLP SCGIE 11:1t:; (:I 4<:;1:1 0 21:;. (1 5c10. 1:; 25 <:I 9l:Il:Io 0 ...... iERa UFFSET 111 . CI (:I . 1:; <:I .0 1.1 .(.I CI . 6:; (:I . 1:) STGET / CHarmL 1:; 1 l.lL- -, <:I3 I:,+ I:,5 I:>& ...... 2;. 5 34.5 16.0 3;:;.5 Ji. 5 15.2 -7 ,l - I.f. 1-1 36.5 15.5 34. 0 41.5 16.7 3.5, 5 38 " (:I 15.7 4'2. (:I 7,a .0 15.4 57.5 4 1 " 0 15.2 62.5 44.5 15.1 65.0 45.5 15. 2 7- ,1-1 .5 45. 5 15.2 75. 0 47. 0 15.1 65.5 48. 1:; 1 5 . 0 78.5 47. n 14.9 7.5.5 44.5 14.7 77.5 41.5 14.9 79. 0 39. I:, 14.7 74.5 .38.5 15.CI 76.5 45. 0 15.0 78.5 c-do. 5 14.9 79.0 47.5 15.0 79. 0 44.5 15 .ci -rT,.a. 5 41.5 1 5 .I:]

b 7 " 0 ;r 9 ~ 15 14.9 63.5 38.5 14.7 7- I n .0 40. 0 14.8 74.5 42. 51 14.9 77. 0 44.5 14.8 78.5 48.5 14.9 79. 5 54.5 14.9 77.5 58. 1:; 14.9 7, IC. 5 6 1 . [:I 14.9 76. 0 61.5 14.9 78. 5 &:I . 1:; 14.7 79.5 59.0 14.9 78.5 57.5 14.P 77,o 56. 1:; 14.9 c 76. 0 di.-. 5 14.8 74. 0 47. 5 14.8 -7 c ,' .I,. 46.5 14.7 75.5 44.5 14.7 75. 0 42. 1:1 1 5. jr 209 =- is is . !.I 14-7 c 3 a i 14.7 5.1 14.7 c J " 0 14.7 5 . !:I 14.7 4. s. 14.9 4.9 14.8 4.9 14.3 4.9 14.7 4.9 14.8 4" 3 15.6 4.8 14.9 4.8 15a 0 4.6 15.2 4.7 15.1 4.9 14.9 5 " 0 14.7 c. J . !.I 14.7 5 . !:I 14.7 5. 51 14.6 = d " (:I 14.7

Averages: 4.8 15. !:I 211

14 :50 147.5 130 .5 7.;. .6 16.2 75.1 14: 51 146 .0 150. 1:) 4" 2 15.4 104. 5 14: 52 145.5 145.5 4.2 15.5 105. 4 . 14: 53 1 38. c1 145.5 4. 4 15.3 1 I:r&" 8 * 14: 54 127 .0 144.5 4.5 15.3 109 .5 14: 55 11s-5 145. 0 4. h 15.2 113.5 14: 56 1 1:rO .0 144 .I:] 4.7 15.1 117.3 14: 57 89.5 143.5 4.6 15.1 115.9 14: 58 9 1 .0 142.5 4.5 15.4 112.0 14: 59 93.5 145. 0 4.5 15.4 11 1 .0

1 5 :0 <:I 9s ~ (:I 143,0 4.6 15.4 111.8 1 5 :0 1 95. 0 146. Ci 4. 6 15.3 111.9 15: (:I2 99. 0 146.5 4.7 15.3 112.4 15 :(:I3 10s. 5 144.5 4.7 15.3 lll.z 15:04 169.5 141.5 4.7 15.3 1 1 0 .4 15: 0; 116.5 140. 5 4.7 15.2 1 Cl8 . 9 15 :136 123. (:I 140. 5 4.8 15.2 108. 4

15 :07 136 ~ (:I 140. 5 4. 8 15.2 1Ci7. 1 15 :oa 165.5 14C1. 5 4.6 15.1 99.8 15: 09 178.5, 13;. 5 4.9 1 5 . [:I 1 111 1 ,9 15 : 1 0 196. 0 14 1 .0 5 . 0 15. 0 1 CICl. rz. 15: 11 190 .c1 138.5 4.9 15.1 101 . 1 15: 12 169.5 1.5.2. 5 4.1 15.2 99.8 15: 13 1.48.5 127 .il 4.7 15.3 100. 3 15: 14 1 3 (:I .1:) 12 1 .0 4.7 15.4 1ci2. 4 15: 15 121:). 5 121.5 4. 6 15.5 1IM. 6 15: 16 1 18. 5 122, <:I 4.6 15.5 10.5. 1 15: 17 128.5 12 1. 1:) 4.6 15.5 106. 1 15: 18 144.5 125. 0 4.7 15.2 1 0 4 .1:) 15: 19 143.5 128.5 4.9 15.1 10h. 3 15: 20 137.5 129.0 4.9 15.1 108. 4 15:21 138 ,0 124.5 4.9 15.1 107.3

15:22 134.5 1 2 1 ~ (:I 4.9 15.1 104 .4 1;: 2s 133.5 119.5 4.9 15.2 104. 1 15: 24 132, (:I 124. 0 4.9 15.2 105.4 15:25 124. 0 122.5 4.8 15.2 1 (:I&. 5 15: 26 119.5 123.5 4. e 15. 3 107.8

15: 27 1 17 * 0 123 ~ (:I 4.8 15.2 1 !:Is"8 15: 28 1 1 5 .0 12CI .(:I 4.8 15. 2 1 1 (:I .8 15: 29 108 . 5 11&. 5 4. 8 15. '2 1 13. 3 15: 30 1 <:I I:] , [:I 123 .1:) 4.8 15. 2 115.6 212 IYacz5ohal t - NAF'G

R[-:p< $1 ,5 D/iTA LISTIjG 9I ...... FiME: i;:AMCON ENVIEONMENTAL LGCATION: ?!!Zl'lFH153 TEI\II'JESSEE CHAM NAME HC 502 202 i: 3 32 NUX CHGN UNITS FFM FFM .I'* FFM x FFM

FllLL SCALE 1 <:II:> . I:! 3 <:I<:>~ I:] 2l:l ~ r::, .5(:)l:l. <:I 25 * I:] ~l:~r:ll:l. I:,

ZERO OFFSET 0 .I:, i:r .CI I:, ~ I:) <:I. I:] I:) .ci c1 .I:] START / ICHANNEL 0 1 I:) 2 0 5 (:I4 0 5 r:i 5 ...... ::::::::::::::::::: 12.;<14/92 15:3.1 "4.5 126.C1 4.9 122.<:1 15.2 117.1 12/1)4/92 15:32 n-71.1.5 124.CI 4.9 112.5 15.2 117.8

IIL/124/92 .-, 15: 72. 5 12;. 0 4 * 9 1 10* 1:) 15.1 118.8 ;2/1>4/92 15:34 7.5.I:l 125.<:1 5 .111 116.5 15 .0 1 19 . CI i=[I:>q/qZ 15235 "5. (:I i2Zrn5 d.12c- 127.5 15.0 119.3 . 12/1)4/92 15:.3$ -77 .-. .1.1 120 .0 4.9 126.5 15.2 114.9 - i2/1:14/?2 15:37 ~i.1.5 122.5 4.8 11?,5 15.5 115.1:1 12'1:14/72 15:38 &?.I:, 120.5 4.8 115.0 15.3 115.5 12/1:14/9y 15:3? 88.5 12<:1.5 4.8 113.5 15.3 115.4 12/04/92 15:40 95.5 120.0 4.8 113.5 15.3 115.1 12/(:14,'?2 15:41 103.5 120.5 4.8 134.5 15.3 112.3 12/04/?2 15:42 10c:1.5 127.5 4.7 147.0 1.5.4 1cli3.l:l 12/(:14/?2 15:43 97.5 124.0 4.5 135.5 15.6 101.4 12/04/12 15: 44 95. 1:) 75.5 3.5 145.5 16.6 62.1 12/1:14/;2 15:45 113.0 12Q.5 4.7 168.c:I 1.5.4 107.b 12/04/92 15:46 109.5 127.51 4.7 165.l:l 15.4 108.5 7/04/92 15:47 95.5 124.5 4.6 132.0 15 .5 109 .9 .1-i/l:l4/92 15: 48 84.0 122.5 4.8 11.3.0 15.2 115.5 12/04/92 15:49 77.5 122.15 4.8 9s. 5 15.2 118.6 12;1:14/72 15: 51:) 60. I:] 121. 5 4.9 a4.5 15.1 122.9 12/04/92 15: 51 79. 0 12.5. 5 4. a a4.5 15.2 121.5 12/04/92 15:52 78.5 125.5 4. 8 62. 0 15.2 120.8 12/1:14/92 15:53 75.0 I3l:l.l:l 4.8 83.5 15.2 122.3 12/04/92 15:54 69.5 1.27.0 4. 8 78. 1:) 15.2 132.4 12/04/92 15:s; 68.0 134.CI 4.. 9 72.5 15. 1 134.C1 12/1:14/$2 15:56 58.0 132.5 4. ci 66.5 15.1 133.3 12/1:14/92 15:57 &?.(:I 1.31.l:I 4.7 59. 0 15.1 150.3 ;2/1:14/72 15:58 70.5 132.0 4.7 55.5 15.1 125.4

Averages: 112.1 127.9 4.7 172.9 15.3 111.2 .

IX. FIELD DATA a B. GAS CHROMATOGRAPHY FIELD ANALYSIS DATA SHEETS Plant Date 12-2 -74 213 / flLmM?n,.fL4. e 1 1. General Information:

Source temp. ('C) Columnar temperature: Probe temp. ('C) Initial (*C)/time (min) 75c Ambient temp. ('C) Program rate (* C/rnin) / Atmospheric press. (in. Hg) Final (.C)/time (min) Source press. (in. Hg) Carrier gas flow rate (ml/min) Absolute source press. (mm) Detector temperature (' C) Sampling rate (liter/min) Injection time (24-hr basis) Sample loop volume (ml) Chart speed (mm/min) & Sample loop temp. ('C) Dilution ratio AJA Dilution gas flow rate (ml/min) Dilution gas used (symbol) -

Attenuation A x A Factor ComoonentS -

Run # k Time

A x A Factor Conenmicn loom) - 7. /#d

Run # Time ComoonentS Attenuation - Area A x A Factor Concmmtion loom) FIELD ANALYSIS DATA SHEETS Plant Date /A-- 211

Fl I 1. General Information:

Source temp. (* C) Columnar temperature: Probe temp. ('C) initial (* C)/time (min) Ambient temp. ('C) Program rate (-C/min) Atmospheric press. (in. Hg) Final (*C)/time (min) Source press. (in. Hg) Carrier gas flow rate (ml/min) Absolute source press. (mm) Detector temperature ('C) Sampling rate (liter/min) injection time (24-hr basis) Sample loop volume (mi) Chart speed (mm/min) Sample loop temp. ('C) Dilution ratio Dilution gas flow rate (ml/min) Dilution gas used (symbol)

2. Field Analysis Data: / akdf?d Run # / Time

Comoonents Attenuation A x A Factor 32 A 22. A .7J. 7a

A x A- Factor

A x A Factor FIELD ANALYSIS DATA SHEETS 21s 1 Plant . P~C//LA, Date ,/-.Y - 74

flFLdUddLJ/ FA Location 1. General Information:

Source temp. ('C) Columnar temperature: Probe temp. (*C) Initial (. C)/time (min) Ambient temp. ('C) Program rate (* C/min) Atmospheric press. (in. Hg) Final (.C)/time (min) Source press. (in. Hg) Carrier gas flow rate (ml/min) Absolute source press. (mm) Detector temperature (' c) Sampling rate (liter/min) Injection time (24-hr basis) Sample loop volume (ml) ),,,L Chart speed (mm/min) Sample loop temp. ('C) q< Dilution ratio Dilution gas flow rate (ml/min) - Dilution gas used (symbol)

Run ,+A A x A Factor -

Time -Area Attenuation A x A- Factor Qs= 7d - u & - O& A - ?a - O& A

Run # Time ComoonentS m Attenuation A x A- Factor '_ // && 0,OO L c /&Zd L!u Ja -, FIELD ANALYSIS DATA SHEETS 216 Plant Date /J-+y-? I Location P FL L?oo~AJ&. FA ,. e 1. General information:

Source temp. (‘C) Columnar temperature: Probe temp. (‘C) Initial (.C)/time (rnin) Ambient temp. (‘C) Program rate (-C/min) Atmospheric press. (in. Hg) Final (*C)/time (rnin) Source press. (in. Hg) Carrier gas flow rate (rnl/min) Absolute source press. (mm) Detector temperature (‘C) Sampling rate (liter/min) ;Injection time (24-hr basis) Sample loop volume (mi) Chart speed (mm/rnin) Sample loop temp. (‘C) Dilution ratio Dilution gas flow rate (ml/min) Dilution gas used (symbol) .

Time

Area Attenuation A x A Factor /if 72 - /ZA .?a Q,oc, --J 2 ‘7 a- 4 - ar.L

A x A Factor

A

A x A Factor- FIELD ANALYSIS DATA SHEETS 217

Source temp. (-C) Columnar temperature: Probe temp. (*C) Initial (-C)/time (min) Ambient temp. ('C) Program rate (* C/min) Atmospheric press. (in. Hg) Final (*C)/time (min) Source press. (in. Hg) Carrier gas flow rate (ml/rnin) Absolute source press. (mm) Detector temperature (' c) Sampling rate (liter/min) Jnjection time (24-hr basis) Sample loop volume (ml) Chart speed (mm/min) /w@ Sample loop temp. ('C) Dilution ratio . n/A Dilution gas flow rate (ml/min) Dilution gas used (symbol) NA

2. Field Analysis Data: / d&qALOL 144

-Area Attenuation A x A Factor w 3a 71 w 3 d M 4 Lux? 3a

Run# / Time

CorncIonents A x A Factor czkG.&U

-

Run # Time

. .. Cornoonents A x A Factor FIELD ANALYSIS DATA SHEETS Plant Date /d-d-8-7 218 ?fLAOou/WL /A e Location1. General Information:

Source temp. (‘C) Columnar temperature: Probe temp. (‘C) Initial (*C)/time (min) Ambient temp. (‘C) Program rate (-C/min) Atmospheric press. (in. Hg) Final (* C)/time (min) Source press. (in. Hg) Carrier gas flow rate (mi/mir ’1 Absolute source press. (mm) Detector temperature (*C) Sampling rate (liter/min) Injection time (24-hr basis) Sample loop volume (ml) Chart speed (mm/min) #A Sample loop temp. (“2) Dilution ratio &A Dilution gas flow rate (ml/min) Dilution gas used (symbol) . NR

Time

Area Attenuation A x A Factor Zd 3a 0.00 7a bus2 A 2Ly .?d JU 2

Run # 2 Time Comoonents @al4E&L

Run # Time

.._ Cornoonents m Attenuation A x A Factor e FIELD ANALYSIS DATA SHEETS

ICL

1. General Information:

Source temp. ('C) Columnar temperature: Probe temp. ('C) initial (* C)/time (min) Ambient temp. ('C) Program rate (*C/min) Atmospheric press. (in. Hg) Final (*C)/time (min) Source press. (in. Hg) Carrier gas flow rate (ml/min) Absolute source press. (mm) Detector temperature ('C) Sampling rate (liter/min) Injection time (24-hr basis) Sample loop volume (ml) Chart speed (mm/min) Sample loop temp. ("2) 7,< Dilution ratio Dilution gas flow rate (ml/min) - Dilution gas used (symbol)

Run # 3 Time

Comoonents Attenuation A x A Factar Conerhzticn Ioornl GNLg /f.ac ?d K.3 9.< - - - -

Run # iirne

... Cornaonents Attenuation A x A Factor Con- 'on born) .

IX. FIELD DATA

C. PAH i4 i42a .v..... 0 U .. . .~...... a ... @ ...... ;.. I: : ': z :...... , $1 ...... - _......

..... r.l.__ ..

..

'B; . ...

.vl ... P P .. tT=...... - -

...... I.

....~ . ,.i...... _

...... , 0; mI- L;: I-

.... Y C. .u0. r 0 0 .c vi M 0 r( r vi .aJr ... ~ .. ,._

.. ii0 ,TI....~ .. V ...... I i

I 1 I 1 I

L t 1 1 .

IX. FIELD DATA

D. PARTICULATE

N a

4 ! 1 .<. c .. I,. .. , ., ... .I .I . .. . !3C

t 4

0 I c w =ttc E L r&0

i

e

.

IX. FIELD DATA e E. FORMALDEHYDE

e 23 2

m !

cn ICI 0

v: 0 i: cr..

4c

EL 0 L 4 .< i *;: .! c .. i

,. 4d C 0 .-! . r 0 0 5 M 0

4-l m wal 36

4

bz 0 v4 a 0 .H

w2 z 20 1 I.. C

L, I ! I I m I 0 I I I c: I w I r I # I LE 0 r.74 . . I I

.\

5

c

3

-3

b C

M 0 V W c2

.. I k I

n

'bc

U w d .. w b 2

B

WtY I- Y 2

lL h 0 I

i 2a 0

w I b DATA SUMMARY ON STACK BEING TESTED 242 AGGREGATE

e.,. 1. Name/type of mix 2. Name/type of 2nd mix (ii used)

3. ' Typeitemperature of Liquid Asphalt 1- "F .. 4. SieveIScreening analysis: % Passing; Moisture on Aggregate

1st mix / 2nd mix 1st mix / 2nd mix 1st mix / 2nd mix

CONTROL SYSTEM

~~ 2. Air to cloth ratio: 2.07 /f; I / Designed ACFM &SO00 3. Type of cleaning - pulse jet $ reverse air- plenum pulse- other 4. Cleaning cycle time: 13 Interval between cleaning cycle:

5. , Pulse pressure. on cleaning cycle: /o0 psi

B. w. 1. Type - Venturi: Wet Washer: Spray Booth: Other: 2. Gallons per minute through system: 3. Water source: (i.e.. pond, lagoon, etc.) 4. Number of spray nozzles:

Company Name: Date: Company Representative: e D\DONNA\FORMS\RECW.FRM 243

Name: Mr. Sumner Buck < Title: President "

Qualifications: Mr. Buck is a graduate of the University of Mississippi with graduate studies at Memphis State University and State Technical Institute of Memphis. He is a graduate of the EPA 450 "Source Sampling for Particulate Pollutant's" course and the 474 "Continuous Emissions Monitoring" courses outlined by EPA at Research Triangle Park, N.C. He has been directly involved in conducting and supervising air emission testing for over 15 years. He has personally conducted over 400 air emission tests. He currently sponsors and directs visual emission certification schools for US EPA Method 9.

Project Duties: Mr. Buck is responsible for the overall supervision of each testing project. This includes the correspondence to the State Regulatory Agency and the plant personnel regarding scheduling, testing requirements, etc. He will assist in supervision of the project preparation for each team involved and the overall organization between the testing crew(s) and facility. 83

Name: Mr. Joe Sewell Title: Vice President

Qualifications: Mr. Sewell is currently serving as the Vice President of RAMCON Environmental Corporation. Mr. Sewell is a graduate of Christian Brothers University in Memphis, Tennessee where he obtained a Bachelor of Science degree in Chemical Engineering. He has conducted and supervised air emissions testing projects ranging a broad spectrum of facility process categories. His accomplishments include the development of the instrumental branch of emissions testing utilizing continuous emission monitors and gas chromatography. Mr. Sewell performs a major role in the upgrading of testing capabilities and professional quality that RAMCON Environmental Corporation offers. 244

Proiect Duties: Mr. Sewell provides staff engineering and project administration to a' ensure the integrity of the requested services. He serves as the primary contact person for RAMCON Environmental Corporation handling all correspondence between the facility personnel involved in the project and respective state agency representative(s). He provides project leadership to RAMCON Environmental Corporation field supervisors and managers involved in the testing project.

Name: Mr. Ray Jenkins m: Source Sampling Director .

Qualifications: Mr. Jenkins is serving as the Source Sampling Director for RAMCON Environmental Corporation. He was promoted to this leadership position after gaining a significant amount of experience in conducting and providing field supervision of a variety of air testing projects. Mr. Jenkins has personally conducted and/or supervised all of the prevalent EPA approved procedures with expertise in the instrumental analyzer e'.'procedures. He graduated from Memphis State University obtaining a Bachelor of Science degree in Biology. He is also currently certified to conduct US EPA Reference Method 9 for the visual determination of emission opaclty.

Proiect Duties: Mr. Jenkins provides project leadership to the Team Leaders and Field Technicians. He ensures the test crew(s) involved in the test project will be properly informed to his respective duties and responsibilities during the testing process. Mr. Jenkins also serves as the Quality Assurance/Quality Control Coordinator and provides guidance in QA/QC to each Team Leader with regard to sample integrity.