Newsletter of Jun 21, 2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abies Alba Mill.) Differ Largely in Mature Silver Fir Stands and in Scots Pine Forecrops Rafal Ważny
Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops Rafal Ważny To cite this version: Rafal Ważny. Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2014, 71 (7), pp.801 - 810. 10.1007/s13595-014-0378-0. hal-01102886 HAL Id: hal-01102886 https://hal.archives-ouvertes.fr/hal-01102886 Submitted on 13 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annals of Forest Science (2014) 71:801–810 DOI 10.1007/s13595-014-0378-0 ORIGINAL PAPER Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops Rafał Ważny Received: 28 August 2013 /Accepted: 14 April 2014 /Published online: 14 May 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract colonization of seedling roots was similar in both cases. This & Context The requirement for rebuilding forecrop stands suggests that pine stands afforested on formerly arable land besides replacement of meadow vegetation with forest plants bear enough ECM species to allow survival and growth of and formation of soil humus is the presence of a compatible silver fir seedlings. -
Cortinarius Caperatus (Pers.) Fr., a New Record for Turkish Mycobiota
Kastamonu Üni., Orman Fakültesi Dergisi, 2015, 15 (1): 86-89 Kastamonu Univ., Journal of Forestry Faculty Cortinarius caperatus (Pers.) Fr., A New Record For Turkish Mycobiota *Ilgaz AKATA1, Şanlı KABAKTEPE2, Hasan AKGÜL3 Ankara University, Faculty of Science, Department of Biology, 06100, Tandoğan, Ankara Turkey İnönü University, Battalgazi Vocational School, TR-44210 Battalgazi, Malatya, Turkey Gaziantep University, Department of Biology, Faculty of Science and Arts, 27310 Gaziantep, Turkey *Correspending author: [email protected] Received date: 03.02.2015 Abstract In this study, Cortinarius caperatus (Pers.) Fr. belonging to the family Cortinariaceae was recorded for the first time from Turkey. A short description, ecology, distribution and photographs related to macro and micromorphologies of the species are provided and discussed briefly. Keywords: Cortinarius caperatus, mycobiota, new record, Turkey Cortinarius caperatus (Pers.) Fr., Türkiye Mikobiyotası İçin Yeni Bir Kayıt Özet Bu çalışmada, Cortinariaceae familyasına mensup Cortinarius caperatus (Pers.) Fr. Türkiye’den ilk kez kaydedilmiştir. Türün kısa deskripsiyonu, ekolojisi, yayılışı ve makro ve mikro morfolojilerine ait fotoğrafları verilmiş ve kısaca tartışılmıştır. Anahtar Kelimeler: Cortinarius caperatus, Mikobiyota, Yeni kayıt, Türkiye Introduction lamellae edges (Arora, 1986; Hansen and Cortinarius is a large and complex genus Knudsen, 1992; Orton, 1984; Uzun et al., of family Cortinariaceae within the order 2013). Agaricales, The genus contains According to the literature (Sesli and approximately 2 000 species recognised Denchev, 2008, Uzun et al, 2013; Akata et worldwide. The most common features al; 2014), 98 species in the genus Cortinarius among the members of the genus are the have so far been recorded from Turkey but presence of cortina between the pileus and there is not any record of Cortinarius the stipe and cinnamon brown to rusty brown caperatus (Pers.) Fr. -
Key Features for the Identification of the Fungi in This Guide
Further information Key features for the identifi cation Saprotrophic recycler fungi Books and References of the fungi in this guide Mushrooms. Roger Phillips (2006). Growth form. Fungi come in many different shapes and Fruit body colours. The different parts of the fruit body Collybia acervata Conifer Toughshank. Cap max. 5cm. Macmillan. Excellent photographs and descriptions including sizes. In this fi eld guide most species are the classic can be differently coloured and it is also important This species grows in large clusters often on the ground many species from pinewoods and other habitats. toadstool shape with a cap and stem but also included to remember that the caps sometimes change colour but possibly growing on buried wood. Sometimes there are are some that grow out of wood like small shelves or completely or as they dry out. Making notes or taking Fungi. Roy Watling and Stephen Ward (2003). several clusters growing ± in a ring. The caps are reddish brackets and others that have a coral- like shape. Take photographs can help you remember what they looked Naturally Scottish Series. Scottish Natural Heritage, Battleby, Perth. brown but dry out to a buff colour. The stems are smooth, note of whether the fungus is growing alone, trooping like when fresh. In some fungi the fl esh changes colour Good introduction to fungi in Scotland. and red brown and the gills are white and variably attached, or in a cluster. when it is damaged. Try cutting the fungus in half or Fungi. Brian Spooner and Peter Roberts (2005). adnate to free. Spore print white. -
Olympic Mushrooms 4/16/2021 Susan Mcdougall
Olympic Mushrooms 4/16/2021 Susan McDougall With links to species’ pages 206 species Family Scientific Name Common Name Agaricaceae Agaricus augustus Giant agaricus Agaricaceae Agaricus hondensis Felt-ringed Agaricus Agaricaceae Agaricus silvicola Forest Agaric Agaricaceae Chlorophyllum brunneum Shaggy Parasol Agaricaceae Chlorophyllum olivieri Olive Shaggy Parasol Agaricaceae Coprinus comatus Shaggy inkcap Agaricaceae Crucibulum laeve Common bird’s nest fungus Agaricaceae Cyathus striatus Fluted bird’s nest Agaricaceae Cystoderma amianthinum Pure Cystoderma Agaricaceae Cystoderma cf. gruberinum Agaricaceae Gymnopus acervatus Clustered Collybia Agaricaceae Gymnopus dryophilus Common Collybia Agaricaceae Gymnopus luxurians Agaricaceae Gymnopus peronatus Wood woolly-foot Agaricaceae Lepiota clypeolaria Shield dapperling Agaricaceae Lepiota magnispora Yellowfoot dapperling Agaricaceae Leucoagaricus leucothites White dapperling Agaricaceae Leucoagaricus rubrotinctus Red-eyed parasol Agaricaceae Morganella pyriformis Warted puffball Agaricaceae Nidula candida Jellied bird’s-nest fungus Agaricaceae Nidularia farcta Albatrellaceae Albatrellus avellaneus Amanitaceae Amanita augusta Yellow-veiled amanita Amanitaceae Amanita calyptroderma Ballen’s American Caesar Amanitaceae Amanita muscaria Fly agaric Amanitaceae Amanita pantheriana Panther cap Amanitaceae Amanita vaginata Grisette Auriscalpiaceae Lentinellus ursinus Bear lentinellus Bankeraceae Hydnellum aurantiacum Orange spine Bankeraceae Hydnellum complectipes Bankeraceae Hydnellum suaveolens -
The Bioaccumulation of Some Heavy Metals in the Fruiting Body of Wild Growing Mushrooms
Available online at www.notulaebotanicae.ro Print ISSN 0255-965X; Electronic 1842-4309 Not. Bot. Hort. Agrobot. Cluj 38 (2) 2010, Special Issue, 147-151 Notulae Botanicae Horti Agrobotanici Cluj-Napoca The Bioaccumulation of Some Heavy Metals in the Fruiting Body of Wild Growing Mushrooms Carmen Cristina ELEKES1) , Gabriela BUSUIOC1) , Gheorghe IONITA 2) 1) Valahia University of Targoviste, Faculty of Environmental Engineering and Biotechnologies, Bd. Regele Carol I, no. 2, Romania; [email protected] 2) Valahia University of Targoviste, Faculty of Materials Engineering, Mechatronics and Robotics, Bd. Regele Carol I, no. 2, Romania Abstract Due to their effective mechanism of accumulation of heavy metals from soil, the macrofungi show high concentrations of metals in their fruiting body. According with this ability, the mushrooms can be used to evaluate and control the level of environmental pollution, but also represent danger for human ingestion. We analyzed some macrofungi species from a wooded area to establish the heavy metal concentrations and ability of bioaccumulation and translocation for Zn, Cu and Sn in fruiting body. The metallic content was established by the Inductively Coupled Plasma-Atomic Emission Spectrometry method (ICP-AES). The minimal detection limits of method is 0.4 mg/kg for Zn and Cu and 0.6 mg/kg for Sn. Heavy metals concentrations in the fruiting body ranged between 6.98- 20.10 mg/kg for Zn (the higher value was for Tapinella atrotomentosa); 16.13-144.94 mg/kg for Cu (the higher value was for Hypholoma fasciculare); and 24.36-150.85 mg/kg for Sn (the higher value was for Paxillus involutus). -
ICHMET 12 to 15 September 2016, Ghent, Belgium 2016
18th International18th International Conference Conference on on Heavy Metals Metals in the in Environment the Environment ICHMET 12 to 15 September 2016, Ghent, Belgium 2016 RADIOACTIVE CAESIUM IN CORTINARIUS CAPERATUS MUSHROOMS Jerzy Falandysz1, Tamara Zalewska2 1University of Gdańsk, Laboratory of Environmental Chemistry & Ecotoxicology, Gdańsk, Poland 2Institute Meteorology and Water Management – Maritime Branch, National Research Institute, Gdynia, Poland [email protected] Keywords: Cortinarius caperatus; forest; fungi, radioactivity, radiocaesium Introduction The first reports on radioactivity accumulated in mushrooms from the wild due to radioactive fallout from the nuclear weapons tests were published half a century ago, and an earliest showed an elevated activity of radioactive caesium (137Cs) accumulated in fruiting bodies by species Paxillus involutus (Grueter, 1964). The nuclear power plant accident in Chernobyl in 1986 caused contamination with 137Cs and other radioactive compounds a vast regions of the World and some regions in Europe were highly affected (Grodzinskaya et al., 2003; Steinhauser et al., 2014). Radiocaesium is still present in the environment and in the foraged European mushrooms as a result of atmospheric nuclear weapons tests in the 1950 - 1960’s and as fallout from the Chernobyl, while fallout from the 2011 Fukushima Dai-ichi nuclear power plant accident was negligible (Falandysz et al., 2015). Byrne (1998) reported on very high radioactivity of 137Cs in fruiting bodies of some mushrooms from the genus Cortianarius. One which was highly contaminated was the species Rozites caperata (Pers.: Fr.) P. Karst (gypsy), which now is in the genus Cortinarius and its current name is Cortinarius caperatus (Pers.) Fr. Cortinarius caperatus is considered as tasty and it is one of the most appreciated species of common edible mushrooms foraged in wild in Europe because of its mild flavour. -
Chemical Elements in Ascomycetes and Basidiomycetes
Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M. -
Toxic Fungi of Western North America
Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms ..................................................................................... -
Patterns of Ectomycorrhizal Host-Fungus Specificity in the Pacific Northwest
AN ABSTRACT OF THE THESIS OF Randolph John Molina for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on December 17, 1980 Title: PATTERNS OF ECTOMYCORRHIZAL HOST-FUNGUS SPECIFICITY IN THE PACIFIC NORTHWEST Redacted for Privacy Abstract approved: Dr. James M. Trappe Results from approximately 400 fungus-host pure culture inoculations indicate that specificity of ectomycorrhizal associations is a complex phenomenon and cannot be based solely on field observations of sporocarp-host associations. Of the numerous sporocarp-host specific fungi tested, most formed ectomycorrhizae with one or more unexpected, non-associated hosts. These results conclusively demonstrate that ectomycorrhizal fungi which produce sporocarps only with a specific host species or genus can still form mycorrhizae with other "non-asso- ciated" hosts. The ability to form ectomycorrhizae with various hosts is termed "ectomycorrhizal host potential". Some fungi, however, showed superior mycorrhizal development on their particular hosts over other non-associated hosts, indicating further specialization in those associations. A large group of fungi known for diverse sporocarp-host associa- tions showed wide ectomycorrhizal host potential by forming abundant, well developed ectomycorrhizae with all or most hosts. It's suggested that these fungi may share similar compatibility or recognition factors common to many ectomycorrhizal hosts thus allowing for diverse host associations. A spectrum from mycorrhizal generalists to specialists was seen among the hosts in their ability to form mycorrhizae with diverse fungi. The ericaceous hosts Arctostaphylos uva-ursi and Arbutus menziesii were broadly receptive towards the fungi, forming mycorrhizae with 25 of the 28 tested. This included most of the fungi which produce sporocarps only in association with specific conifers. -
MUSHROOMS of the OTTAWA NATIONAL FOREST Compiled By
MUSHROOMS OF THE OTTAWA NATIONAL FOREST Compiled by Dana L. Richter, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI for Ottawa National Forest, Ironwood, MI March, 2011 Introduction There are many thousands of fungi in the Ottawa National Forest filling every possible niche imaginable. A remarkable feature of the fungi is that they are ubiquitous! The mushroom is the large spore-producing structure made by certain fungi. Only a relatively small number of all the fungi in the Ottawa forest ecosystem make mushrooms. Some are distinctive and easily identifiable, while others are cryptic and require microscopic and chemical analyses to accurately name. This is a list of some of the most common and obvious mushrooms that can be found in the Ottawa National Forest, including a few that are uncommon or relatively rare. The mushrooms considered here are within the phyla Ascomycetes – the morel and cup fungi, and Basidiomycetes – the toadstool and shelf-like fungi. There are perhaps 2000 to 3000 mushrooms in the Ottawa, and this is simply a guess, since many species have yet to be discovered or named. This number is based on lists of fungi compiled in areas such as the Huron Mountains of northern Michigan (Richter 2008) and in the state of Wisconsin (Parker 2006). The list contains 227 species from several authoritative sources and from the author’s experience teaching, studying and collecting mushrooms in the northern Great Lakes States for the past thirty years. Although comments on edibility of certain species are given, the author neither endorses nor encourages the eating of wild mushrooms except with extreme caution and with the awareness that some mushrooms may cause life-threatening illness or even death. -
Mycobiology Research Article
Mycobiology Research Article Influence of the Culture Media and the Organic Matter in the Growth of Paxillus ammoniavirescens (Contu & Dessi) , Elena Fernández-Miranda Cagigal* # and Abelardo Casares Sánchez Department of Biology of Organism and Systems, Area of Plant Physiology, University of Oviedo, 33006 Oviedo, Spain Abstract The genus Paxillus is characterized by the difficulty of species identification, which results in reproducibility problems, as well as the need for large quantities of fungal inoculum. In particular, studies of Paxillus ammoniavirescens have reported divergent results in the in vitro growth while little is known of its capacity to degrade organic matter. For all the above, and assuming that this variability could be due to an inappropriate culture media, the aim of this study was to analyse growth in different culture media (MMN, MS, and 1/2 MS) and in the case of MMN in presence/absence of two types of organic matter (fresh litter and senescence litter) to probe the saprophytic ability of P. ammoniavirescens. We also evaluated the effects of pH changes in the culture media. Growth kinetics was assessed by weekly quantification of the area of growth in solid culture media over 5 wk, calculating the growth curves and inflection points of each culture media. In addition, final biomass after 5 wk in the different culture media was calculated. Results showed that best culture media are MS and 1/2 MS. Moreover, an improvement in growth in culture media containing decomposing fall litter was observed, leading to confirm differences in the culture media of this species with others of the same genus. -
Mushrooms Traded As Food
TemaNord 2012:542 TemaNord Ved Stranden 18 DK-1061 Copenhagen K www.norden.org Mushrooms traded as food Nordic questionnaire, including guidance list on edible mushrooms suitable Mushrooms traded as food and not suitable for marketing. For industry, trade and food inspection Mushrooms recognised as edible have been collected and cultivated for many years. In the Nordic countries, the interest for eating mushrooms has increased. In order to ensure that Nordic consumers will be supplied with safe and well characterised, edible mushrooms on the market, this publication aims at providing tools for the in-house control of actors producing and trading mushroom products. The report is divided into two documents: a. Volume I: “Mushrooms traded as food - Nordic questionnaire and guidance list for edible mushrooms suitable for commercial marketing b. Volume II: Background information, with general information in section 1 and in section 2, risk assessments of more than 100 mushroom species All mushrooms on the lists have been risk assessed regarding their safe use as food, in particular focusing on their potential content of inherent toxicants. The goal is food safety. Oyster Mushroom (Pleurotus ostreatus) TemaNord 2012:542 ISBN 978-92-893-2382-6 http://dx.doi.org/10.6027/TN2012-542 TN2012542 omslag ENG.indd 1 11-07-2012 08:00:29 Mushrooms traded as food Nordic questionnaire, including guidance list on edible mushrooms suitable and not suitable for marketing. For industry, trade and food inspection Jørn Gry (consultant), Denmark, Christer Andersson,