Fundamental Concepts of Particle Accelerators

Total Page:16

File Type:pdf, Size:1020Kb

Fundamental Concepts of Particle Accelerators Fundamental Concepts of Particle Accelerators Koji TAKATA KEK [email protected] http://research.kek.jp/people/takata/home.html Accelerator Course, Sokendai, Second Term, JFY2010 Oct. 28, 2010 The Dawn of Particle Accelerator Technology Basic Concepts Accelerators in Future Livingston Chart Contents I The Dawn of Particle Accelerator Technology I DC high voltage generators I Use of magnetic induction: betatron I Drift tube linac and cyclotron I Great progress just after world war II I Basic Concepts I Principle of RF phase stability I Strong focusing I Synchrotron radiation (SR) I Collider I Technical issues I Accelerators in Future I ERL (Energy Recovery Linac) : SR source of new type I LC : Linear Collider I µ-µ Collider and/or µ-Factory I Laser-plasma acceleration I Livingston Chart Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II The Dawn of Particle Accelerator Technology I Artificial disintegration of atomic nuclei I First Accelerators I from DC Acceleration to RF Acceleration I Problems in RF Acceleration I Rapid Development of Electronics around World War II (1941 - 1945) or after Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II First artificial disintegration of atomic nuclei (1) I Ernest Rutherford's discovery of nuclear disintegration (1917 - 1919) I He confirmed that protons were produced in a nitrogen-gas filled container in which a radioactive source emitting alpha particles was placed. 14 ! 16 α + 7N p + 8O I This provoked strong demand for artificially generate high energy beams to study the nuclear disintegration phenomena in more detail. I Thus started the race for developing high energy accelerators, and Rutherford himself was a great advocator. Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II First artificial disintegration of atomic nuclei (2) I The first disintegration of atomic nuclei with accelerator beams was achieved at the Cavendish Laboratory in 1932 by John D. Cockcroft and Ernest T. S. Walton, who used 800 kV proton beams from a DC voltage-multiplier. 7 ! p + 3Li α + α Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II DC HV Accelerators I DC Generators:two major methods I Cockcroft & Walton's 800 kV voltage-multiplier circuit with capacitors and rectifier tubes I Van de Graaff's 1.5 MV belt-charged generator (1931) I Electrostatic accelerators are still in use for the mass spectroscopy, because of their fine and stable tunability of the acceleration voltage. I analysis of the ratio 14C/12C : an important tool for archaeology Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II Cockcroft & Walton's voltage-multiplier circuit V cos ωt V(1+cos ωt) V(3+cos ωt) V(5+cos ωt) AC 0 2V 4V 6V 0 Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II Cockcroft around 1932 See the picture in From X-rays to Quarks, page 227 by Segr`e,E. (W. H. Freeman and Company, 1980) . Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II Glass Tube with Beam Acceleration Gaps Visit the home page : http://www.daviddarling.info/encyclopedia/C/Cockcroft.html Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II 750 keV Cockcroft-Walton Accelerator Used at KEK Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II Van de Graaff's 1:5 MV Belt-charged Generator Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II Limitations in Electrostatic Accelerators I DC acceleration is limited by high-voltage breakdown (BD). I typical BD voltages for a 1cm gap of parallel metal plates Ambience Typical BD Voltages air (1 atm) ≈ 30 kV SF6 (1 atm) ≈ 80 kV SF6 (7 atm) ≈ 360 kV transformer oil ≈ 150 kV UHV ≈ 220 kV I no drastic increase in BD limits for much larger plate gaps. Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II High Voltage Breakdown of a Van de Graaff generator A demonstration of BD to housing walls. Search for the key word "van der graaf generator" at http://en.wikipedia.org/wiki/ Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II Intermediate stage towards RF Acceleration Use of Faraday's law of induction I Irrotational electric field due to magnetic flux change, a prelude to RF acceleration [Donald W. Kerst's betatron (1940)]: @B r × E = − ; @t then I ZZ @ @ Esds = − B · n dxdy = − Φ C @t S @t Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II Kerst's Betatron Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II Start of Real RF Accelerators Linear and/or Circular I Linear accelerator (linac): I Gustaf Ising's proposal (1925) I Rolf Wider¨oe made a prototype of the Ising linac (1928) I Multiple RF acceleration in a magnetic field I Ernest Lawrence's cyclotron (1931): the first circular accelerator I repeated acceleration at the cyclotron frequency : !c = eB?=m Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II The first linac by Wider¨oe I 25 kV per gap ×2 with the drift tube I he convinced the scheme can be repeated indefinitely many times to reach higher beam energies RF Ion Source Beam Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II First Cyclotrons See the picture in From X-rays to Quarks, page 229 by Segr`e,E. (W. H. Freeman and Company, 1980) . A Riken cyclotron accelerated protons to 9 MeV and deuterons to 14 MeV (1939) Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II Circular Orbit of Charged Particles in Magnetic Field Search for the key word "Cyclotron" in http://en.wikipedia.org/wiki/ Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology DC high voltage generators Basic Concepts Use of magnetic induction: betatron Accelerators in Future Drift tube linac and cyclotron Livingston Chart Great progress just after world war II Principle of Cyclotron Operation RF Generator dee dee r n rn+1(> rn) Magnetic Field Electric Field beam dee dee Fundamental Concepts of Particle Accelerators The Dawn of Particle Accelerator Technology
Recommended publications
  • Nicholas Christofilos and the Astron Project in America's Fusion Program
    Elisheva Coleman May 4, 2004 Spring Junior Paper Advisor: Professor Mahoney Greek Fire: Nicholas Christofilos and the Astron Project in America’s Fusion Program This paper represents my own work in accordance with University regulations The author thanks the Program in Plasma Science and Technology and the Princeton Plasma Physics Laboratory for their support. Introduction The second largest building on the Lawrence Livermore National Laboratory’s campus today stands essentially abandoned, used as a warehouse for odds and ends. Concrete, starkly rectangular and nondescript, Building 431 was home for over a decade to the Astron machine, the testing device for a controlled fusion reactor scheme devised by a virtually unknown engineer-turned-physicist named Nicholas C. Christofilos. Building 431 was originally constructed in the late 1940s before the Lawrence laboratory even existed, for the Materials Testing Accelerator (MTA), the first experiment performed at the Livermore site.1 By the time the MTA was retired in 1955, the Livermore lab had grown up around it, a huge, nationally funded institution devoted to four projects: magnetic fusion, diagnostic weapon experiments, the design of thermonuclear weapons, and a basic physics program.2 When the MTA shut down, its building was turned over to the lab’s controlled fusion department. A number of fusion experiments were conducted within its walls, but from the early sixties onward Astron predominated, and in 1968 a major extension was added to the building to accommodate a revamped and enlarged Astron accelerator. As did much material within the national lab infrastructure, the building continued to be recycled. After Astron’s termination in 1973 the extension housed the Experimental Test Accelerator (ETA), a prototype for a huge linear induction accelerator, the type of accelerator first developed for Astron.
    [Show full text]
  • Cyclotrons: Old but Still New
    Cyclotrons: Old but Still New The history of accelerators is a history of inventions William A. Barletta Director, US Particle Accelerator School Dept. of Physics, MIT Economics Faculty, University of Ljubljana US Particle Accelerator School ~ 650 cyclotrons operating round the world Radioisotope production >$600M annually Proton beam radiation therapy ~30 machines Nuclear physics research Nuclear structure, unstable isotopes,etc High-energy physics research? DAEδALUS Cyclotrons are big business US Particle Accelerator School Cyclotrons start with the ion linac (Wiederoe) Vrf Vrf Phase shift between tubes is 180o As the ions increase their velocity, drift tubes must get longer 1 v 1 "c 1 Ldrift = = = "# rf 2 f rf 2 f rf 2 Etot = Ngap•Vrf ==> High energy implies large size US Particle Accelerator School ! To make it smaller, Let’s curl up the Wiederoe linac… Bend the drift tubes Connect equipotentials Eliminate excess Cu Supply magnetic field to bend beam 1 2# mc $ 2# mc " rev = = % = const. frf eZion B eZion B Orbits are isochronous, independent of energy ! US Particle Accelerator School … and we have Lawrence’s* cyclotron The electrodes are excited at a fixed frequency (rf-voltage source) Particles remain in resonance throughout acceleration A new bunch can be accelerated on every rf-voltage peak: ===> “continuous-wave (cw) operation” Lawrence, E.O. and Sloan, D.: Proc. Nat. Ac. Sc., 17, 64 (1931) Lawrence, E.O. & Livingstone M.S.: Phys. Rev 37, 1707 (1931). * The first cyclotron patent (German) was filed in 1929 by Leó Szilard but never published in a journal US Particle Accelerator School Synchronism only requires that τrev = N/frf “Isochronous” particles take the same revolution time for each turn.
    [Show full text]
  • A Brief History and Review of Accelerators
    A BRIEF HISTORY AND REVIEW OF ACCELERATORS P.J. Bryant CERN, Geneva, Switzerland ABSTRACT The history of accelerators is traced from three separate roots, through a rapid development to the present day. The well-known Livingston chart is used to illustrate how spectacular this development has been with, on average, an increase of one and a half orders of magnitude in energy per decade, since the early thirties. Several present-day accelerators are reviewed along with plans and hopes for the future. 1 . INTRODUCTION High-energy physics research has always been the driving force behind the development of particle accelerators. They started life in physics research laboratories in glass envelopes sealed with varnish and putty with shining electrodes and frequent discharges, but they have long since outgrown this environment to become large-scale facilities offering services to large communities. Although the particle physics community is still the main group, they have been joined by others of whom the synchrotron light users are the largest and fastest growing. There is also an increasing interest in radiation therapy in the medical world and industry has been a long-time user of ion implantation and many other applications. Consequently accelerators now constitute a field of activity in their own right with professional physicists and engineers dedicated to their study, construction and operation. This paper will describe the early history of accelerators, review the important milestones in their development up to the present day and take a preview of future plans and hopes. 2 . HISTORICAL ROOTS The early history of accelerators can be traced from three separate roots.
    [Show full text]
  • BNL Bulletin
    the Vol. 61B - No. 17 ulletin May 18, 2007 Distinguished Scientist Emeritus Ernest Courant All Are Welcome to Attend Honored by University of Rochester CFN Ribbon Cutting Ceremony he University of Rochester, where BNL’s Dis- 5/21, 11 a.m. Ttinguished Scientist Emeritus Ernest Courant earned his Ph.D. in 1943, will honor him with the Rochester Distinguished Scholar Medal at this year’s A Highlight of the 2007 Joint NSLS/CFN commencement ceremony, to be held tomorrow, May Users’ Meeting, 5/21-23 19. The University issued the following press release citing Courant and his work: All scientists who work in particle physics today owe a debt to Ernest Courant. His groundbreaking D0180602 scholarship has changed the way we think about and understand the structure of the universe. One of the trio of researchers who originated D0230500 the idea of “strong focusing” accelerators, Pro- fessor Courant is one of the founding fathers of modern high-energy particle physics. Thanks to Professor Courant’s breakthrough in developing Roger Stoutenburgh the first high-energy, strong focusing accelera- he 2007 Joint National Synchrotron Light Source (NSLS) tor—and the particle accelerators that have fol- and Center for Functional Nanomaterials (CFN) Users’ Roger Stoutenburgh T lowed since—physicists have been able to peek Meeting will be held at Berkner Hall from Monday, May 21 inside individual atoms to understand the funda- At BNL, Courant joined the Proton Synchrotron Di- through Wednesday, May 23. The meeting is a forum for re- mental structure of matter, the forces holding it vision as an associate scientist in June 1948.
    [Show full text]
  • N.Y. 11F73 INS Mcsnff IS Wum\I I EDITOR's FOREWORD
    BNL 51377 MOOKHAVfN NATIONAL LAKMtATORY IRC* N.Y. 11f73 INS MCSNff IS WUm\i i EDITOR'S FOREWORD The planning and organization of this celebration was done by John Blewett, Ted Kycia, Vinnie LoDestro, Lyle Smith and Carl Thien, under the general direction of Ronald Rau and with the invaluable assistance of Kit D'Ambrosio. The logo which graces the cover of these symposium proceedings was de- signed by Per Dahl. The job of transcribing the tapes was done by Anna Kissel, and it was often a challenging one! I am to blame for the editing, which I hope has not distorted history too much. Joyce Ricciardelli has very ably produced the final manuscript and seen it through the complex process of publica- tion. All of us took pleasure and pride in celebrating the AGS and in putting this book together, and we hope you enjoy it. - iii - Preface On March 17, 1960, a beam was first introduced into the newly constructed Brookhaven Alternating Gradient Synchrotron. On March 26, a hundred turns of circulation were achieved, and on July 29 the beam WJS first accelerated to the design energy of 30 GeV. Thus, hewever one defines the exact start of life during the series of steps by which a new accelerator is made operational, the year 1960 marks the start-up of the AGS, and in 1980 we cele- brate the twentieth anniversary of that event. The AGS, together with the newly functioning PS at CERN, carried particle physics into a new world of higher energies and unanticipated discoveries. The AGS and the PS both embodied the new principle of strong focusing and demonstrated that, with its aid, a new era of particle accelerators haJ opened.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title BIBLIOGRAPHY OF PARTICLE ACCELERATORS - JULY 1948 to DEC. 1950 Permalink https://escholarship.org/uc/item/0m72734s Author Cushman, Bonnie E. Publication Date 1951-03-01 eScholarship.org Powered by the California Digital Library University of California UCRL 1238 cy 2 r UNIVERSITY OF CALIFORNIA TWO-WEEK LOAN COpy This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545 . BERKELEY, CALIFORNIA DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. l1JNClASSIFHEJ" UCRL-1238 Unclassified - Physics Distribution UNIVERSITY OF CALIFORNIA . , Radiation laboratory Contract No o ~v-7405-eng-48 BIBLIOGRAPHY OF PARTICLE ACGELERATORS JULY 1948 TO DECEMBER 1950 Bonnie E.
    [Show full text]
  • Cyclotrons and Synchrotrons
    Cyclotrons and Synchrotrons 15 Cyclotrons and Synchrotrons The term circular accelerator refers to any machine in which beams describe a closed orbit. All circular accelerators have a vertical magnetic field to bend particle trajectories and one or more gaps coupled to inductively isolated cavities to accelerate particles. Beam orbits are often not true circles; for instance, large synchrotrons are composed of alternating straight and circular sections. The main characteristic of resonant circular accelerators is synchronization between oscillating acceleration fields and the revolution frequency of particles. Particle recirculation is a major advantage of resonant circular accelerators over rf linacs. In a circular machine, particles pass through the same acceleration gap many times (102 to greater than 108). High kinetic energy can be achieved with relatively low gap voltage. One criterion to compare circular and linear accelerators for high-energy applications is the energy gain per length of the machine; the cost of many accelerator components is linearly proportional to the length of the beamline. Dividing the energy of a beam from a conventional synchrotron by the circumference of the machine gives effective gradients exceeding 50 MV/m. The gradient is considerably higher for accelerators with superconducting magnets. This figure of merit has not been approached in either conventional or collective linear accelerators. There are numerous types of resonant circular accelerators, some with specific advantages and some of mainly historic significance. Before beginning a detailed study, it is useful to review briefly existing classes of accelerators. In the following outline, a standard terminology is defined and the significance of each device is emphasized.
    [Show full text]
  • Lattice Design in High-Energy Particle Accelerators
    Lattice Design in High-Energy Particle Accelerators B. J. Holzer CERN, Geneva, Switzerland Abstract This lecture gives an introduction into the design of high-energy storage ring lattices. Applying the formalism that has been established in transverse beam optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice insertions such as drifts, mini beta sections, dispersion suppressors, etc. In addition to the exact calculations that are indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘on the back of an envelope’. 1 Introduction Without doubt the highlight of the present year in high-energy physics is the discovery of the Higgs particle at CERN and as a consequence, and nice side effect for those involved, the Nobel price in physics begin awarded to Professors Higgs and Englert. Within a remarkably short period, namely during the LHC run 1 in 2009–2012, the high-energy physics detectors installed at the LHC could collect a sufficient amount of data to prove the existence of a new particle, identified as a Higgs boson. A state-of-the-art picture of a very clear example of such an ‘event’, detected by the ATLAS group at CERN, is shown in Fig.
    [Show full text]
  • The Betatron and Its Applications
    THE BETATRON AND ITS APPLICATIONS A THESIS Presented to the Faculty of the Division of Graduate Studies Georgia Institute of Technology In Partial Fulfillment of the Requirements for the Degree Master of Science in Physics by Walter Wilkinson Atkins June 1951 Original Page Numbering Retained. THE BETATRON AND ITS APPLICATIONS Approved: / Date Approved by Chairman ) o / ACKNOWLEDGMENTS I should like to express my sincere appreciation to Dr. J. E. Boyd, my advisor, for his aid and guidance during the course of this work. Also, I should like to thank Dr. V. D. Crawford for his assist- ance in the preparation of specific sections, and to Dr. L. D. Wyly and Dr. W. M. Spicer for their constructive suggestions. I should like to thank the staff of the library of the Georgia Institute of Technology, especially Miss Harris and Mrs. Jackson, for their co—operation and help in the location of reference material. Without the assistance of Miss Mildred Jordan of the Emory University Medical Library, sections of this thesis could not have been written. iv TABLE OF CONTENTS CHAPTER PAGE I. INTRODUCTION 1 II. ELECTRON ACCELERATION 10 III.MECHANICS OF THE BETATRON 29 IV. BETATRON INSTALLATION 70 V. PHYSICAL APPLICATIONS 81 VI. RADIOGRAPHY IVITH THE BETATRON 116 VII.MEDICAL APPLICATIONS 123 BIBLIOGRAPHY 138 APPENDIX I: VECTOR NOTATION IN CYLINDRICAL COORDINATES 149 APPENDIX II: DERIVATION OF RELATION BETMEN 150 Br AND Bz APPENDIX III : DERIVATION OF EQUATION /7/ 151 APPENDIX IV: PROOF OF EQUATION /8B/ 152 APPENDIX V: DETERMINATION OF THE RELATIVISTIC MASS EQUATION 153 APPENDIX VI: SIMPLIFICATION OF THE KINETIC ENERGY EQUATION 154 LIST OF FIGURES FIGURES PAGE 1.
    [Show full text]
  • Lecture 2 Aspects of Transverse Beam Dynamics
    Lecture 2 Aspects of Transverse Beam Dynamics Chandra Bhat 1 Accelerator and Beamline Magnets Dipole Magnet: Dipole magnet is a device used to bend the path of charged particles during beam transport. The radius of curvature of a charged particle in a constant magnetic field perpendicular to its path is, 1 1 eB 0.2998 B[T ] 0.04 I [amp].n Iron Yoke = [m-1] = 0 = ;B = total R ρ p p[GeV / c] 0 h[cm] 1 n=number of turns h=pole gap Quadrupole Magnet: A device used to focus charged particle beam during beam transport. Particle trajectory Let us see what is the relationship between focal length, f, and the in a magnetic field A quadrupole strength. Fig. A shows bending of a charged particle in a magnetic field perpendicular to the plane of the paper and “B” l α ρ shows optical analogue of focusing. Then the deflection angle, l r eB eB α = − = − = φ l = − φ l l 2 α = − ρ f p βE ρ But the total bending field Bφ is given by, B dB Optics B = φ r = gr φ dr Then, egrl r 1 eg eg α = − = − or = kl; k = = 3 βE f f βE p f= focal length Quad strength 2 0.2998 g[Tesla / m] 2µ nI k[m−2 ] = ; g = 0 2 4 Field free region βE[GeV / c] R The quadrupole magnets provide material free aperture and focusing. A conventional quadrupole magnet used in synchrotrons has four iron poles with hyperbolic contours. By = −gx Bx = −gy Interesting features: The horizontal force component depends only on the horizontal position of the particle trajectory.
    [Show full text]
  • High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions
    This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=18355 High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions ISBN Committee to Assess the Current Status and Future Direction of High 978-0-309-28634-3 Magnetic Field Science in the United States; Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National 232 pages Research Council 7 x 10 PAPERBACK (2013) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States Board on Physics and Astronomy Division on Engineering and Physical Sciences Copyright © National Academy of Sciences. All rights reserved. High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.
    [Show full text]
  • M. Stanley Livingston
    NATIONAL ACADEMY OF SCIENCES M I L T O N S T A N L E Y L IVIN G STON 1905—1986 A Biographical Memoir by E R N E S T D. COURANT Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of Brookhaven National Laboratory MILTON STANLEY LIVINGSTON May 25, 1905–August 25, 1986 BY ERNEST D. COURANT N JANUARY 9, 1932, in Berkeley, California, a magnetic Oresonance accelerator (cyclotron) built by M. Stanley Livingston accelerated protons to 1.22 MeV (million elec- tron volts), the first time that particles with energies ex- ceeding one million volts had been produced by man. Twenty years later, in May 1952, the Cosmotron at Brookhaven Na- tional Laboratory, whose construction Livingston had initi- ated, became the world’s first billion-volt (GeV) accelera- tor. By the time of his death in 1986 the world record had gone up by three more orders of magnitude to 900 GeV, thanks to an innovation by Livingston and others. Milton Stanley Livingston was born in Broadhead, Wis- consin, on May 25, 1905, the son of Milton McWhorter Livingston and his wife Sarah Jane, née Ten Eyck. His fa- ther was a divinity student who soon became minister of a local church. When Stanley was about five years old the family moved to southern California, where his father be- came a high school teacher and later principal, having found that a minister’s salary was inadequate to support a growing family.
    [Show full text]