Chapter 4 High Energy Machines Outline General Considerations For

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 High Energy Machines Outline General Considerations For 11/10/2020 Outline Chapter 4 • Brief history of radiation generators High Energy Machines • Betatrons • Cyclotrons Radiation Dosimetry I • Linear accelerator: resonant cavities, magnetrons, klystrons, and waveguides Text: H.E Johns and J.R. Cunningham, The • Linear accelerator: components of the physics of radiology, 4th ed. accelerator head http://www.utoledo.edu/med/depts/radther – Thomotherapy 1 2 General considerations for high-energy machine • Depth-dose properties: – High penetration – Delivery of maximum dose at a depth – Minimal low-energy electron contamination – Skin sparing • Field flatness (not a requirement anymore) • Constant output and monitoring • Sharp field edges (penumbra) 3 4 Evolution of radiation generators Betatrons 1895 - Roentgen discovers X-rays 1913 W.E. Coolidge develops vacuum X-ray tube • Device for accelerating electrons 1931 E.O. Lawrence develops a cyclotron • Electrons from a filament are injected 1932 1MV Van de Graff accelerator installed, Boston, MA (USA) • AC magnet performs two functions: 1939 First medical cyclotron for neutron therapy, Crocker, CA (USA) – Electrons are bent into a circular path 1946 20MeV electron beam therapy with a Betatron, Urbana, IL (USA) – Changing magnetic flux creates E-field 1952 First Co-60 teletherapy units, Saskatoon (Canada) accelerating electrons 1956 First 6MeV linear accelerator, Stanford, CA (USA) • Electrons spiral 1958 First proton beam therapy (Sweden) d = V dt inward until reach 1959 First scanning electron beam therapy, Chicago, IL (USA) equilibrium orbit 1976 First pion beam therapy, LAMPF, NM (USA) • They are accelerated 1990 First hospital based proton therapy, Loma Linda, CA (USA) as they travel around 1994 First C-ion facility HIMAC (Heavy-Ion Med. Accelerator in Chiba, Japan) at equilibrium orbit Yoichi Watanabe, MPHY5170/TRAD7170, http://www.tc.umn.edu/~watan016/Teaching.htm 5 6 1 11/10/2020 Betatrons • As the electrons get faster they Example 1 idle time need a larger magnetic field to • A long solenoid has a diameter of 2R=12 cm. When a keep moving at a constant radius current I exists in its windings, a uniform magnetic field orbit, which is provided by the of magnitude B=30 mT is produced in its interior. By increasing magnetic flux decreasing I, the field is caused to decrease at the rate of • After electron attains its maximum 6.5 mT/s. Calculate the magnitude of the induced energy (pt. C) the field at the orbit electric field E at r=8.2 cm from the axis of the solenoid. is decreased, and electron spirals R outward to strike the target d A. 10.0 mV/m = V = E 2r; B = /(R2 ) • Betatron can be a source of B. 31 mV/m dt r electrons or x-rays (with a target) C. 75 mV/m d d(BR2 ) dB = = R2 • Radiation is produced in pulses D. 143 mV/m dt dt dt • Efficiency is very high, but the E. 200 mV/m R2 dB (610−2 )2 E = = 6.510−3 =143mV/m dose rate could be low due to 2r dt 28.210−2 inefficient injection of electrons 7 8 Cyclotron Cyclotron • For sources of protons and other heavy particles • Massive particle moves through relatively small potential difference many times • Magnetic field is used to bring the particle to an accelerating region • High-frequency oscillator mv2 F = Bqv, = Bqv creates potential difference r between D’s and is used for • Due to increase in mass particle 2r 2m acceleration t = f −1 = = may get out of step with the E field t osc v Bq 9 10 Example 2 Linear Accelerators • A deutron (m=3.34x10-27 kg) circulates in a cyclotron of radius 53 cm and operating frequency 12 MHz, • A charged particle can be accelerated while beginning approximately at rest at the center. The moving through a potential difference between electric potential between D’s is 80 kV. How many passes will it complete before reaching the edge of the two electrodes cyclotron? • Arranging electrodes in a certain configuration v = 2rf final and using electromagnetic wave rather than a A. 80 mv2 m(2rf )2 K final = = = static potential difference allows for higher beam B. 105 2 2 3.3410−27(2 0.5312106 ) energies and intensities C. 130 = D. 150 2 −12 18 • Two main components: power source and resonant E. 200 2.710 J 6.2410 J / eV 16.8MeV 3 5 cavity K pass = 28010 =1.610 eV = 0.16MeV n = K final / K pass =16.8/ 0.16 105 11 12 2 11/10/2020 Linear Accelerators Linear Accelerators • II. RESONANT CAVITY FOR GENERATION OF HIGH POWER • I. POWER SOURCE MICROWAVE PULSES: 1. Why not DC: Problems of electrical breakdown, physical size of 1. At high frequencies, ordinary resonant circuits become impractical. Also electrical equipment problems of radiation loss 2. Apply technique of repeated pulses, V = nv 2. Hollow cavities as resonant circuits (skin effect) - Need oscillating form of power supply 3. The quality factor, or Q value, of a resonant circuit or cavity is defined as 3. Leads to principle of cyclic and linear accelerators Q = energy stored in cycle/energy lost in cycle 4. Wavelength has to be short enough to accelerate electrons in a For a circuit, Q ~ 102, whereas for a cavity, Q ~ 104 reasonable distance 4. Achieved through devices called magnetrons and klystrons 5. S-band microwave technology, developed for radar in WWII, has a 5. Cavity resonators feature in both power sources and accelerating structures frequency of ~ 3 GHz or = 10 cm ROLE OF RESONANT CAVITIES IN LINEAR ACCELERATORS 6. High power is also needed to ensure sufficient energy gain per cycle 1. Cavity acts as an acceleration module 2. Multiple cavity arrangement can act as an RF amplifier - klystron 3. Multiple cavity arrangement can act as a high power oscillator - magnetron P.J. Biggs, AAPM Review course 2010 P.J. Biggs, AAPM Review course 2010 13 14 RC circuit Example 3 U V0 V0 +U − IR = 0; I = dq / dt = d(CU ) / dt dU V +U − RC = 0 0 dt RC =100106 10−6 =100 dU U V −t / RC − = 0 U = V0 (1− e )= dt RC RC 100 1− e−100/100 =1000.632 = 63.2 −t / RC ( ) U = V0 (1− e ) 15 16 Cavity Principle Cavity Principle • In general, =(LC)-1/2 for a resonant • Microwave cavity design is derived circuit, so one needs very small L and from a simple resonant circuit. The C to obtain high frequencies: use of components of such a circuit need to cavities as a form of resonant circuit become smaller as the resonant since they have low L and C frequency increases • Only the electric field plays a role in • The capacitor, resistance and electron acceleration (along the axis inductance become the faces and of a cylindrical cavity) sides of a pill box such that the entire • Electric field configuration in surface is made of conducting cylindrical microwave cavity with material hole on axis for electrons to pass • When this cavity is excited, strong Hole for electrons through is only slightly modified electric fields are generated • Efficient transfer of energy to electron perpendicular to the faces that beam, i.e., low energy losses, since alternate in sign with the frequency for a resonant circuit Q ~ 102 (where of the oscillation Q=f0/2f and 2f is FWHM), Electric, magnetic field configurations for whereas for a cavity, Q ~104 P.J. Biggs, AAPM Review course 2010 lowest resonant mode P.J. Biggs, AAPM Review course 2010 17 18 3 11/10/2020 Example 4 Magnetron • Generator of microwaves • Determine the lowest frequency allowed in • A cylindrical anode (A) has the a cubic microwave oven of linear dimension cathode (K) along its axis. • Magnetic field is directed along the of a=30 cm. n=1 axis of the cylinder • Magnetic field bends the electron A. 0.1 GHz n=2 2a = n trajectory, and accelerating electron B. 0.2 GHz n =1 n=3 emits energy in microwave range C. 0.5 GHz At low magnetic fields, the electron • The magnetic field has to be high = 2x30 = 60cm paths’ are bent, but the electrons still D. 1 GHz reach the anode. At a field Bc, the enough to provide electron = c / = 31010 / 60 = 5108 = 0.5 GHz electron paths’ just graze the anode. For collection, but low enough to avoid E. 5 GHz higher fields, individual electrons are unable to reach the anode. electron accumulation at K P.J. Biggs, AAPM Review course 2010 19 20 Magnetron Magnetron Resonant cavities • The circulating electrons induce a charge distribution between adjacent segments of the anode • This, in turn, perturbs the electron orbits shaping the space charge distribution into a form resembling the spokes of a wheel • The resonant cavities gain energy • Current between anode and cathode is not used in a power from the orbiting electrons which source are slowed and eventually spiral • If it stops the magnetron is blocked due to electron into the anode, leading to anode accumulation around the cathode current P.J. Biggs, AAPM Review course 2010 P.J. Biggs, AAPM Review course 2010 21 22 Magnetron Klystron • The dc field extends radially from adjacent anode segments to the cathode (shown in red); the ac fields extend between adjacent segments (blue lines), their magnitude changes with the RF oscillations occurring Field-free region in the cavities • Klystron is a microwave amplifier • Rotating space-charge wheel • Low-power signal is supplied to the “buncher” cavity, its E- results in continuously field modulates velocities of electrons, which then merge into delivered energy to sustain the bunches going through the drift tube RF filed • Amplified signal is collected from “catcher” cavity, where Twelve-cavity magnetron http://www.radartutorial.eu/08.transmitters/pic/mag06.big.gif electrons decelerate emitting at the same resonant frequency 23 24 4 11/10/2020 Waveguides Klystron Traveling wave Standing wave • The electron gun 1 produces electrons • The bunching cavities
Recommended publications
  • 5.1 Audio and Video System L T
    5.1 AUDIO AND VIDEO SYSTEM L T P 4 - 4 Unit:- I (22 Periods) Audio System 1.1 Basics of Working Principle, Construction, polar pattern, frequency response & application of Carbon, moving coil, velocity, crystal, condenser & cordless microphones. 1.2 Basics of Working Principle, Construction, polar pattern, frequency response & application of direct radiating & horn Loud Speaker. Basic idea of woofer, tweeter, mid range, multi-speaker system, baffles and enclosures. crossover networks, Speakers column. UNIT: 2 (20 Periods) SOUND RECORDING:- 1- Fundamentals of Sound recording on Disc & magnetic tape. Brief principle of sound recording. Concept of tape transport mechanism 2- Digital sound recording on tape and disc. Brief concept of VCD, DVD and Video Camera. 3- Principle of video recording on CDs and DVDs. Recordable and Rewritable CDs. Idea of pre-amplifier, amplifier and equalizer system, stereo amplifiers. Unit:3 (12 Periods) ACOUSTIC REVERBERATION:- 1- Reverberation of sound. Absorption and Insulation of sound. Acoustics of auditorium sound in enclosures. Absorption coefficient of various acoustic materials. (No mathematical derivations). Unit 04 (10 Periods) VIDEO CAMERA:- 1- Main features, Working principle, Area of application, Identification of various stages and main components, of single tube camera, ENG camera. TEXT BOOKS 1. A. Sharma- Audio Video & TV Engineering- Danpat rai & Sons. 2. Benson & Whitaker - Television and Audio Handbook- McGrawHill Pub. LIST OF PRACTICAL’S 1- Study of different features and Measurement of directivity of various types of microphones and loudspeakers. (Approximate). 2- Draw the frequency response, bass and treble response of stereo amplifier. 3- Channel separation in stereo amplifier and measurement of its distortion. 4- Installation and operation of a stereo system amplifier.
    [Show full text]
  • Numerical Studies and Optimization of Magnetron with Diffraction Output (MDO) Using Particle-In-Cell Simulations
    Old Dominion University ODU Digital Commons Electrical & Computer Engineering Theses & Dissertations Electrical & Computer Engineering Fall 2015 Numerical Studies and Optimization of Magnetron with Diffraction Output (MDO) Using Particle-in-Cell Simulations Alireza Majzoobi Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds Part of the Electromagnetics and Photonics Commons, and the Physics Commons Recommended Citation Majzoobi, Alireza. "Numerical Studies and Optimization of Magnetron with Diffraction Output (MDO) Using Particle-in-Cell Simulations" (2015). Master of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/f6se-9e02 https://digitalcommons.odu.edu/ece_etds/1 This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. NUMERICAL STUDIES AND OPTIMIZATION OF MAGNETRON WITH DIFFRACTION OUTPUT (MDO) USING PARTICLE-IN-CELL SIMULATIONS by Alireza Majzoobi B.Sc. September 2007, Sharif University of Technology, Iran M.Sc. October 2011, University of Tehran, Iran A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE ELECTRICAL AND COMPUTER ENGINEERING OLD DOMINION UNIVERSITY December 2015 Approved by: Ravindra P. Joshi (Director) Linda Vahala (Member) Shu Xiao (Member) ABSTRACT NUMERICAL STUDIES AND OPTIMIZATION OF MAGNETRON WITH DIFFRACTION OUTPUT (MDO) USING PARTICLE-IN-CELL SIMULATIONS Alireza Majzoobi Old Dominion University, 2015 Director: Dr. Ravindra P. Joshi The first magnetron as a vacuum-tube device, capable of generating microwaves, was invented in 1913.
    [Show full text]
  • Design and Simulation of 8-Cavity-Hole- Slot Type Magnetron on Cst-Particle Studio
    DESIGN AND SIMULATION OF 8-CAVITY-HOLE- SLOT TYPE MAGNETRON ON CST-PARTICLE STUDIO A Dissertation Submitted in Partial Fulfillment of the Requirement for the Award of the Degree of MASTER OF ENGINEERING In Wireless Communication Submitted By SALMA KHATOON 801563022 Under Supervision of Dr. Rana Pratap Yadav Assistant professor, ECED ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT THAPAR UNIVERSITY, PATIALA, PUNJAB JULY, 2017 ii ACKNOWLEDGEMENT I would like to express my profound exaltation and gratitude to my mentor Dr. Rana Pratap Yadav for his candidate guidance, constructive propositions and over whelming inspiration in the nurturing work. It has been a blessing for me to spend many opportune moments under the guidance of the perfectionist at the acme of professionalism. The present work is testimony to his activity, inspiration and ardent personal interest, taken by him during the course of his work in its present form. I am also thankful to Dr. Alpana Agarwal, Head of Department, ECED & our P.G coordinator Dr. Ashutosh Kumar Singh Associate Professor. I would like to thank entire faculty members and staff of Electronics and Communication Engineering Department who devoted their valuable time and helped me in all possible ways towards successful completion of this work. I am also grateful to all the friends and colleagues who supported me throughout, I thankful all those who have contributed directly or indirectly to this work. I would like to express my sincere gratitude to all. Salma Khatoon ME (801563022) iii ABSTRACT In wireless communication technologies, three types of modulation have been used in modern radar systems commonly – pulse (as a particular type of amplitude); frequency; and phase modulation respectively.
    [Show full text]
  • A Brief History of Microwave Engineering
    A BRIEF HISTORY OF MICROWAVE ENGINEERING S.N. SINHA PROFESSOR DEPT. OF ELECTRONICS & COMPUTER ENGINEERING IIT ROORKEE Multiple Name Symbol Multiple Name Symbol 100 hertz Hz 101 decahertz daHz 10–1 decihertz dHz 102 hectohertz hHz 10–2 centihertz cHz 103 kilohertz kHz 10–3 millihertz mHz 106 megahertz MHz 10–6 microhertz µHz 109 gigahertz GHz 10–9 nanohertz nHz 1012 terahertz THz 10–12 picohertz pHz 1015 petahertz PHz 10–15 femtohertz fHz 1018 exahertz EHz 10–18 attohertz aHz 1021 zettahertz ZHz 10–21 zeptohertz zHz 1024 yottahertz YHz 10–24 yoctohertz yHz • John Napier, born in 1550 • Developed the theory of John Napier logarithms, in order to eliminate the frustration of hand calculations of division, multiplication, squares, etc. • We use logarithms every day in microwaves when we refer to the decibel • The Neper, a unitless quantity for dealing with ratios, is named after John Napier Laurent Cassegrain • Not much is known about Laurent Cassegrain, a Catholic Priest in Chartre, France, who in 1672 reportedly submitted a manuscript on a new type of reflecting telescope that bears his name. • The Cassegrain antenna is an an adaptation of the telescope • Hans Christian Oersted, one of the leading scientists of the Hans Christian Oersted nineteenth century, played a crucial role in understanding electromagnetism • He showed that electricity and magnetism were related phenomena, a finding that laid the foundation for the theory of electromagnetism and for the research that later created such technologies as radio, television and fiber optics • The unit of magnetic field strength was named the Oersted in his honor.
    [Show full text]
  • The Radio Amateurs Microwave Communications Handbook.Pdf
    1594 THE RADIO AMATEUR'S COM ' · CA 10 S HANDBOOK DAVE INGRAM, K4TWJ THE RADIO AMATEUR'S - MICROWAVE COMMUNICATIONS · HANDBOOK DAVE INGRAM, K4TWJ ITABI TAB BOOKS Inc. Blue Ridge Summit, PA 17214 Other TAB Books by the Author No. 1120 OSCAR: The Ham Radio Satellites No. 1258 Electronics Projects for Hams, SWLs, CSers & Radio Ex­ perimenters No. 1259 Secrets of Ham Radio DXing No. 1474 Video Electronics Technology FIRST EDITION FIRST PRINTING Copyright © 1985 by TAB BOOKS Inc. Printed in the United States of America Reproduction or publication of the content in any manner, without express permission of the publisher, is prohibited. No liability is assumed with respect to the use of the information herein. Library of Congress Cataloging in Publication Data Ingram, Dave. The radio amateur's microwave communications handbook. Includes index. 1. Microwave communication systems-Amateurs' manuals. I. Title. TK9957.154 1985 621.38'0413 85-22184 ISBN 0-8306-0194-5 ISBN 0-8306-0594-0 (pbk.) Contents Acknowledgments v Introduction vi 1 The Amateur 's Microwave Spectrum 1 The Early Days and Gear for Microwaves- The Microwave Spectrum- Microwavesand EME-Microwavesand the Am- ateur Satellite Program 2 Microwave Electronic Theory 17 Electronic Techniques for hf/vhf Ranges- Electronic Tech- niques for Microwaves-Klystron Operation-Magnetron Operation-Gunn Diode Theory 3 Popular Microwave Bands 29 Circuit and Antennas for the 13-cm Band-Designs for 13-cm Equipment 4 Communications Equipment for 1.2 GHz 42 23-cm Band Plan-Available Equipment- 23-cm OX 5
    [Show full text]
  • A Brief History and Review of Accelerators
    A BRIEF HISTORY AND REVIEW OF ACCELERATORS P.J. Bryant CERN, Geneva, Switzerland ABSTRACT The history of accelerators is traced from three separate roots, through a rapid development to the present day. The well-known Livingston chart is used to illustrate how spectacular this development has been with, on average, an increase of one and a half orders of magnitude in energy per decade, since the early thirties. Several present-day accelerators are reviewed along with plans and hopes for the future. 1 . INTRODUCTION High-energy physics research has always been the driving force behind the development of particle accelerators. They started life in physics research laboratories in glass envelopes sealed with varnish and putty with shining electrodes and frequent discharges, but they have long since outgrown this environment to become large-scale facilities offering services to large communities. Although the particle physics community is still the main group, they have been joined by others of whom the synchrotron light users are the largest and fastest growing. There is also an increasing interest in radiation therapy in the medical world and industry has been a long-time user of ion implantation and many other applications. Consequently accelerators now constitute a field of activity in their own right with professional physicists and engineers dedicated to their study, construction and operation. This paper will describe the early history of accelerators, review the important milestones in their development up to the present day and take a preview of future plans and hopes. 2 . HISTORICAL ROOTS The early history of accelerators can be traced from three separate roots.
    [Show full text]
  • Design of Microwave Cavity Bandpass Filter from 25Ghz to 60Ghz
    Ashna Shaiba. Int. Journal of Engineering Research and Application www.ijera.com ISSN: 2248-9622, Vol. 7, Issue 9, (Part -6) September 2017, pp.64-69 RESEARCH ARTICLE OPEN ACCESS Design of Microwave Cavity Bandpass Filter from 25GHz TO 60GHz *Ashna Shaiba1, Dr. Agya Mishra2 1Department of Electronics & Telecommunication Engineering, Jabalpur Engineering College , Jabalpur Madhya Pradesh, Pin- 482011 India 2Department of Electronics & Telecommunication Engineering, Jabalpur Engineering College , Jabalpur Madhya Pradesh, Pin- 482011 India Corresponding Author: Ashna Shaiba1 ABSTRACT This paper presents the design of microwave cavity band pass filter and analyzes the quality factor and insertion loss upto 60GHz .This paper discusses the performance of a cavity filter for different size of cavity at different frequencies upto 60GHz with calculation of quality factor and insertion loss. This type of microwave cavity filter will be useful in any microwave system wherein low insertion loss and high frequency selectivity are crucial, such as in base station, radar and broadcasting system. It is shown that the basis for much fundamental microwave filter theory lies in the realm of cavity filters, which indeed are actually used directly for many applications at microwave frequencies as high as 60 GHz. Many types of algorithm are discussed and compared with the object of pointing out the most useful references, especially for a researcher to the field. Keywords: Microwave cavity filters, band pass filter(BPF), quality factor, s-parameter, insertion loss, TE101 mode. ----------------------------------------------------------------------------------------------------------------------------- --------- Date of Submission: 05-09-2017 Date of acceptance: 21-09-2017 ----------------------------------------------------------------------------------------------------------------------------- --------- I. INTRODUCTION II. CONCEPTS OF MICROWAVE A filter is an electronic device used to select CAVITY FILTER a particular pass band range.
    [Show full text]
  • High Performance, Continuously Tunable Microwave Filters Using MEMS Devices with Very Large, Controlled, Out-Of-Plane Actuation
    1 High Performance, Continuously Tunable Microwave Filters using MEMS Devices with Very Large, Controlled, Out-of-Plane Actuation Jackson Chang, Michael Holyoak, George Kannell, Marc Beacken, Matthias Imboden and David J. Bishop with a filter, quadrature detector and analog-to-digital Abstract— Software defined radios (SDR) in the microwave X converters to digitize the detector I/Q outputs for subsequent and K bands offer the promise of low cost, programmable digital processing. The filter is needed because of the challenge operation with real-time frequency agility. However, the real of detecting nanowatt signals in the presence of powerful out of world in which such radios operate requires them to be able to band transmissions and the finite dynamic range of the SDR. In detect nanowatt signals in the vicinity of 100 kW transmitters. this paper we discuss using novel MEMS devices in a This imposes the need for selective RF filters on the front end of the receiver to block the large, out of band RF signals so that the capacitance-post loaded cavity filter geometry [6]. We believe finite dynamic range of the SDR is not overwhelmed and the such filters can meet the considerable challenges of being low desired nanowatt signals can be detected and digitally processed. This is currently typically done with a number of narrow band filters that are switched in and out under program control. What is needed is a small, fast, wide tuning range, high Q, low loss filter that can continuously tune over large regions of the microwave spectrum. In this paper we show how extreme throw MEMS actuators can be used to build such filters operating up to 15 GHz and beyond.
    [Show full text]
  • Method Development for Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper
    Journal of Visualized Experiments www.jove.com Video Article Method Development for Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper Mary Kombolias1, Jan Obrzut2, Michael T. Postek3,4, Dianne L. Poster2, Yaw S. Obeng3 1 Testing and Technical Services, Plant Operations, United States Government Publishing Office 2 Materials Measurement Laboratory, National Institute of Standards and Technology 3 Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology 4 College of Pharmacy, University of South Florida Correspondence to: Mary Kombolias at [email protected], Yaw S. Obeng at [email protected] URL: https://www.jove.com/video/59991 DOI: doi:10.3791/59991 Keywords: Engineering, Issue 152, Resonant Cavity, dielectric spectroscopy, paper, fiber analysis, paper aging, recycled content Date Published: 10/4/2019 Citation: Kombolias, M., Obrzut, J., Postek, M.T., Poster, D.L., Obeng, Y.S. Method Development for Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper. J. Vis. Exp. (152), e59991, doi:10.3791/59991 (2019). Abstract The current analytical techniques for characterizing printing and graphic arts substrates are largely ex situ and destructive. This limits the amount of data that can be obtained from an individual sample and renders it difficult to produce statistically relevant data for unique and rare materials. Resonant cavity dielectric spectroscopy is a non-destructive, contactless technique which can simultaneously
    [Show full text]
  • Theory of Injection Locking and Rapid Start-Up of Magnetrons, and Effects of Manufacturing Errors in Terahertz Traveling Wave Tubes
    Theory of Injection Locking and Rapid Start-Up of Magnetrons, and Effects of Manufacturing Errors in Terahertz Traveling Wave Tubes by Phongphaeth Pengvanich A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering and Radiological Sciences) in The University of Michigan 2007 Doctoral Committee: Professor Yue Ying Lau, Chair Professor Ronald M. Gilgenbach Associate Professor Mahta Moghaddam John W. Luginsland, NumerEx © Phongphaeth Pengvanich All rights reserved 2007 For Mom and Dad ii ACKNOWLEDGEMENTS I would like to express my deep gratitude to my advisor, Professor Y. Y. Lau, who has never ceased to inspire and motivate me throughout my graduate student career. Professor Lau not only taught me Plasma Physics, but also showed me how to be a good theoretician and how to be passionate about my work. I can never thank him enough for his continuous guidance and support in the past five years, and I have always considered myself very fortunate to have him as my mentor. Professor Ronald Gilgenbach was the first person who captured my interest in Plasma Physics when I was still an undergraduate. Since then, he has given me many advices and ideas for my work, and has provided me with an opportunity to teach a Plasma laboratory class. I would like to thank him for his tremendous help. I wish to thank Professor Mahta Moghaddam for serving on my dissertation committee, and for her thoughtful comments. I thank Dr. John Luginsland of NumerEx for his continuous advices and updates on the injection locking and the manufacturing error projects.
    [Show full text]
  • Microwave Communications - Mcqs (1- 5
    Microwave Communications - MCQs (1- 5. Rainfall is an important factor for 300) fading of radio waves at frequencies above 1. __________ is the progressive decrease A. 10 GHz of signal strength with increasing B. 100 GHz distance. C. 1 GHz A. Radiation D. 100 MHz B. Attenuation 6. Theoretically electromagnetic radiation C. Modulation field strength varies in inverse proportion D. Propagation to the square of the distance, but when atmospheric attenuation effects and the 2. Calculate the effective earth’s radius if absorption of the terrain are taken into the surface refractivity is 301. account the attenuation can be as high as the inverse _______ power of the distance. A. 8493 km B. 8493 mmi A. Third C. 6370 km B. Fourth D. 6370 mi C. Fifth D. Sixth 3. If k-factor is greater than 1, the array beam is bent 7. What do you call an attenuation that occurs over many different wavelengths A. Away from the earth of the carrier? B. towards the ionosphere, A. Rayleigh fading C. towards the earth B. Rician fading D. towards the outer space C. Wavelength fading 4. the antenna separations (in meters) D. Slow fading required for optimum operation of a space diversity system can be calculated from: 8. Which of the reception problems below that is not due to multipath? A. S = 2λR/L A. Delayed spreading B. S = 3λR/L B. Rayleigh fading C. S = λR/RL C. Random Doppler shift D. S = λR/L D. Slow fading where R = effective earth radius (m) and L = path length (m) 9.
    [Show full text]
  • A Dissertation Entitled Design of Microwave Front-End Narrowband
    A Dissertation entitled Design of Microwave Front-End Narrowband Filter and Limiter Components by Lee W. Cross Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering _________________________________________ Vijay Devabhaktuni, Ph.D., Committee Chair _________________________________________ Mansoor Alam, Ph.D., Committee Member _________________________________________ Mohammad Almalkawi, Ph.D., Committee Member _________________________________________ Matthew Franchetti, Ph.D., Committee Member _________________________________________ Daniel Georgiev, Ph.D., Committee Member _________________________________________ Telesphor Kamgaing, Ph.D., Committee Member _________________________________________ Roger King, Ph.D., Committee Member _________________________________________ Patricia Komuniecki, Ph.D., Dean College of Graduate Studies The University of Toledo May 2013 Copyright 2013, Lee Waid Cross This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Design of Microwave Front-End Narrowband Filter and Limiter Components by Lee W. Cross Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering The University of Toledo May 2013 This dissertation proposes three novel bandpass filter structures to protect systems exposed to damaging levels of electromagnetic (EM) radiation from intentional
    [Show full text]