All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable

Total Page:16

File Type:pdf, Size:1020Kb

All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable Purdue University Purdue e-Pubs Birck and NCN Publications Birck Nanotechnology Center 6-2014 All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable Resonators and Filters Muhammad Shoaib Arif Birck Nanotechnology Center, Purdue University, [email protected] Dimitrios Peroulis Purdue University, Birck Nanotechnology Center, [email protected] Follow this and additional works at: http://docs.lib.purdue.edu/nanopub Part of the Nanoscience and Nanotechnology Commons Arif, Muhammad Shoaib and Peroulis, Dimitrios, "All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable Resonators and Filters" (2014). Birck and NCN Publications. Paper 1638. http://dx.doi.org/10.1109/JMEMS.2013.2281119 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 23, NO. 3, JUNE 2014 727 All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable Resonators and Filters Muhammad Shoaib Arif, Student Member, IEEE, and Dimitrios Peroulis, Member, IEEE Abstract— This paper presents a new fabrication technology relatively large size, difficulty in planar integration, high power and the associated design parameters for realizing compact consumption, need of controlled temperature environment and widely-tunable cavity filters with a high unloaded quality for proper operation, and high cost [4]. The planar or 2-D factor ( Qu) maintained throughout the analog tuning range. This all-silicon technology has been successfully employed to tunable filter technology is another extensively explored demonstrate tunable resonators in mobile form factors in the approach. In these filters, transmission lines are loaded with C, X, Ku, and K bands with simultaneous high unloaded lumped tunable elements (varactors) for frequency tuning. quality factors (≥500) and tuning ratios (≥1:2). It is shown that Some of the notable tunable filter demonstrations are based on by employing high-precision micro-fabrication techniques and solid-state (e.g Schottky or p.i.n diode) [8]–[10], ferroelectric careful modeling, the measured RF and tuning performance of the fabricated device closely match the simulated results. The (e.g Barium-Strontium-Titanate (BST)) [11], [12], and micro- capability of monolithic (system-on-chip) integration, low-cost electromechanical systems (MEMS) [13]–[15] varactors. batch processing, and compatibility with CMOS processing is Planar filters have the advantages of small volume, high tuning some of the key advantages of this 3-D tunable filter fabrication ratio, easy on-chip integration and good power handling. technology over conventional approaches. This technology also However, their RF performance is suboptimal for SDR due has the potential to be extended to produce tunable resonators ≤ and filters in the millimeter wave region. [2013-0123] to their low-Q ( 200) [4], [16]. A third tunable filter family is the non-planar (3-D) Index Terms— Evanescent-mode cavity, MEMS, silicon, approach, which includes cavity-based technologies with inte- tunable resonator, electrostatic, tunable filter, high- Q. grated tuners. This approach is rapidly gaining popularity I. INTRODUCTION due to their significantly small size (compared to wavelength) and weight unlike half-wave cavity resonators, their ability to HE vision of the next-generation software defined radio achieve a higher Qu as compared to planar approach, wide T(SDR) is to have a single reconfigurable radio with tuning, large spurious-free region, high linearity and good multi-band and multi-standard compatibility, that can operate power handling [5], [17]–[26]. Of these 3-D technologies, effectively in dense electromagnetic radiation environments the capacitive-post loaded cavity filter technology has demon- by having the required frequency agility, necessary to com- strated state-of-the-art performance in the S and C-bands with municate using multiple waveforms in rapid succession. The a simultaneous high-Q (≥300) and tuning ratio (≥1:2) [5], SDR concept has been under development for several years [17], [18]. In the capacitive-post loaded filters, the resonant in both military and commercial sector [1], [2] but it is still frequency is highly sensitive to the parallel-plate capacitance far from complete. One main area requiring significant inno- between the post-top and cavity ceiling. By incorporating a vation is the tunable filters for their reconfigurable RF front- MEMS tuner directly above the capacitive post (as a moveable end (RFFE) [3]. The search for a tunable filter technology cavity ceiling), few micrometers of tuner displacement causes that completely fulfills the stringent SDR requirements like several gigahertz shift in the resonant frequency. High-Q . low insertion loss (high-Q), high tuning ratio (T R), easy resonators/filters with an octave (1:2) tuning range or higher integration, high linearity, high power handling, small size and can therefore be realized in both microwave and millimeter low manufacturing cost is ongoing [3]–[5]. wave frequencies. Table I summarizes some simulated designs Several existing tunable filter technologies have been eval- of such capacitive-post loaded resonators with a maintained uated for SDR applications. The yttrium-iron-garnet (YIG) Q ≥ 500 throughout the frequency tuning. ≥ u crystal based tunable filters demonstrate a high-Q ( 1 000) It may be noted from Table I that fabrication tolerances with multiple octave tuning range [6], [7]. However, YIG become critical in realizing repeatable and reliable filters, filters are not well suited for portable devices due to their especially for millimeter wave applications. Existing imple- mentations are based on cavities machined in the metallic Manuscript received April 23, 2013; revised August 13, 2013; accepted September 1, 2013. Date of publication September 20, 2013; date of current or ceramic substrates using conventional tooling techniques, version May 29, 2014. This work was supported by DARPA under the and their tuners are attached using solder, physical pressure Purdue Microwave Reconfigurable Evanescent-Mode Cavity Filters Study. or conductive epoxy [5], [17], [18], [27]. A conventionally Subject Editor D. Elata. The authors are with the School of Electrical and Computer Engineering, machined cavity suffers from high fabrication uncertainties Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (≥±20 μm) which inhibits reliable scaling of capacitive- USA (e-mail: [email protected]; [email protected]). post loaded filter technology beyond X-band (a capacitive- Color versions of one or more of the figures in this paper are available ≤ μ online at http://ieeexplore.ieee.org. post radius of 100 m is needed with a precision of Digital Object Identifier 10.1109/JMEMS.2013.2281119 ≤±10 μm). Moreover, the uncertainty due to surface 1057-7157 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 728 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 23, NO. 3, JUNE 2014 TABLE I TUNABLE CAPACITIVE-POST LOADED RESONATOR DESIGN EXAMPLES FOR MICROWAVE AND MILLIMETER WAV E roughness in the metallic or ceramic cavity substrates, and the uniformity issues inherent with the solder paste or conductive epoxy attachment like uneven application, shrinkage, and irregular grain size can cause substantial error in the desired post-ceiling gap (>2 μm) [5], [18], [27]. These uncertainties tend to create a significant disparity between the designed and fabricated performance. For instance, in the designs of Table I, a1-μm error in dmin due to epoxy attachment can lead to >15% reduction in the tuning ratio. Consequently, a fundamentally different fabrication tech- nology with tighter tolerances is needed for high-frequency applications. This requirement becomes the premise for all-silicon capacitive-post loaded tunable filter technology based on micro-fabrication. Several topologies for high-Q fixed-frequency (static) resonators and filters using micro- machined silicon cavities have already been demonstrated in the microwave and millimeter-wave regions [28]–[33]. Simi- larly, single-crystal-silicon has also been extensively explored as a choice material for MEMS actuators due to its superior mechanical properties [5], [34]–[37]. The all-silicon tunable filter technology aims to successfully exploit both the RF and mechanical advantages of silicon. Two noticeable performance outcomes demonstrated using this approach include 1) an X to Ku band capacitive-post loaded cavity tunable resonator with a tuning range of 9.5 to 17 GHz (1:1.87) and Qu of 650 to 950 using magnetostatic actuation [38], and 2) a C to K-band Fig. 1. (a) The assembly of three individually micro-fabricated constituents electrostatically tunable resonator demonstrating continuous to form an electrostatically-tuned all-silicon capacitive-post loaded cavity resonator. (b) Schematics and working principle. Tuning is achieved by tuning from 6.1 to 24.4 GHz (1:4) with a Qu varying from applying bias voltage to the electrode, causing a change in capacitive gap 300 to 1000 [39], which is state-of-the-art in the tunable filter between the cavity post and the Au/Si diaphragm due to electrostatic actuation. technology for simultaneous high-Q and wide tuning range. This paper details the groundwork, design methodology and the fabrication considerations involved in the implementation
Recommended publications
  • ANAN-8000DLE Users Guide
    Apache Labs LLC ANAN-8000DLE Users Guide This document contains the words Apache, ANAN-10, ANAN-10E, ANAN-100, ANAN-100D, ANAN-200D, ANAN-8000DLE in reference to the Apache Labs Transceiver products http://www.apache-labs.com In cooperation with VK6PH, NRØV, W5WC, K5SO and the OpenHPSDR Hardware and Software Projects http://openhpsdr.org all images and manufacturer data is copied here with permission of the owner Copyright Apache Labs © 15 March 2017 Contents - ANAN-8000DLE Users Guide Apache Labs LLC, Inc. - Declarations of Conformity.........................................................5 Apache Labs Products CE and RTTE Certified..................................................................5 Heat Dissipation............................................................................................................5 Clarification CCS [60W]/ICAS [200W] operation...............................................................5 1. ANAN-8000DLE Architecture.............................................................6 We are very proud of the 8000DLE Design Team.............................................................6 General Specifications:...................................................................................................6 Electrical Specifications:.................................................................................................6 Mechanical Specifications:..............................................................................................6 Receiver Specifications:..................................................................................................6
    [Show full text]
  • Kiwisdr Design Review Version 2.1 – February 2016
    KiwiSDR design review Version 2.1 – February 2016 John Seamons, ZL/KF6VO [email protected] Summary This document describes the design of KiwiSDR, a software-defined radio (SDR) add-on board (so-called "cape") for the popular BeagleBone Black single-board © bluebison.net computer. Although the first PCBs have been constructed, design feedback is still sought from experts in the community before more units are manufactured. Click for the live receiver in New Zealand. There are also now two beta units, at the University of Victoria, B.C., Canada and the SK3W Contest Station, Sweden. The KiwiSDRs are registered on the SDR.hu network. Complete sources are on github. The design is open-source / open-hardware with full details available to anyone (including PCB layout). The project leverages much existing open SDR technology, but especially the pioneering work of Pieter-Tjerk de Boer, PA3FWM, the creator of WebSDR, Andrew Holme's Homemade GPS Receiver and OpenWebRX from András Retzler, HA7ILM. If a reasonable retail price target can be achieved the intent is to produce and sell boards. Some form of crowd funding is being considered to bootstrap initial production and fund up-front costs such as regulatory compliance testing. The minimum-threshold aspect of crowd funding will also provide a good estimate of overall interest in the project given how crowded the SDR space is these days. TOC 1 How you can help I welcome advice of any kind. Especially if you see an error or misconception on my part. There is also a list of open questions at the end of each description section you can help answer.
    [Show full text]
  • 2015 Dcc Rest.Indd
    34th ARRL and TAPR DIGITAL COMMUNICATIONS CONFERENCE Chicago, Illinois October 9-11, 2015 ISBN: 978-1-62595-040-6 34th ARRL and TAPR DIGITAL COMMUNICATIONS CONFERENCE ARRL 225 Main Street Newington, CT 06111-1494 USA tel: 860-594-0200 www.arrl.org Tucson Amateur Packet Radio PO Box 852754 Richardson, TX 75085-2754 USA tel: 972-671-8277 www.tapr.org 1 Copyright ¤ 2015 The American Radio Relay League, Inc. Copyright secured under the Pan-American Convention International Copyright secured All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation reserved. Printed in USA. Quedan reservados todos los derechos. ISBN: 978-1-62595-040-6 First Edition Copies of this book can be ordered from www.lulu.com. 2 Welcome! The ARRL/TAPR Digital Communications Conference is the premier gathering of Amateur Radio digital enthusiasts in the country, if not the world. This year we welcome everyone to Chicago for the 34th meeting since these annual conferences began. As anyone who has ever attended a Digital Communications Conference will tell you, these gatherings are excellent venues for innovative ideas and discussions. Within these proceedings, for example, you’ll find papers on topics ranging from HF receiver testing to ARDOP, the Amateur Radio Digital Open Protocol. Most of these papers are appearing in public for the very first time. The ARRL thanks Tucson Amateur Packet Radio (TAPR) for all the hard work they do to make these conferences successful. Were it not for TAPR, it is possible that the conferences would not occur at all.
    [Show full text]
  • Redalyc.Software Defined Radio: Basic Principles and Applications
    Facultad de Ingeniería ISSN: 0121-1129 [email protected] Universidad Pedagógica y Tecnológica de Colombia Colombia Machado-Fernández, José Raúl Software Defined Radio: Basic Principles and Applications Facultad de Ingeniería, vol. 24, núm. 38, enero-junio, 2015, pp. 79-96 Universidad Pedagógica y Tecnológica de Colombia Tunja, Colombia Available in: http://www.redalyc.org/articulo.oa?id=413940775007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative José Raúl Machado-Fernández ISSN 0121-1129 eISSN 2357-5328 Software Defined Radio: Basic Principles and Applications Software Defined Radio: Principios y aplicaciones básicas Software Defined Radio: Princípios e Aplicações básicas Fecha de Recepción: 29 de Septiembre de 2014 José Raúl Machado-Fernández* Fecha de Aceptación: 15 de Noviembre de 2014 Abstract The author makes a review of the SDR (Software Defined Radio) technology, including hardware schemes and application fields. A low performance device is presented and several tests are executed with it using free software. With the acquired experience, SDR employment opportunities are identified for low-cost solutions that can solve significant problems. In addition, a list of the most important frameworks related to the technology developed in the last years is offered, recommending the use of three of them. Keywords: Software Defined Radio (SDR), radiofrequencies receiver, radiofrequencies transmitter, radio development frameworks, superheterodyne receiver, SDR hardware devices, SDR-Sharp, RTLSDR-Scanner. Resumen El autor realiza una revisión de la tecnología Radio Definido por Software (SDR, Software Defined Radio) incluyendo esquemas de hardware y campos de aplicación.
    [Show full text]
  • Design of Microwave Cavity Bandpass Filter from 25Ghz to 60Ghz
    Ashna Shaiba. Int. Journal of Engineering Research and Application www.ijera.com ISSN: 2248-9622, Vol. 7, Issue 9, (Part -6) September 2017, pp.64-69 RESEARCH ARTICLE OPEN ACCESS Design of Microwave Cavity Bandpass Filter from 25GHz TO 60GHz *Ashna Shaiba1, Dr. Agya Mishra2 1Department of Electronics & Telecommunication Engineering, Jabalpur Engineering College , Jabalpur Madhya Pradesh, Pin- 482011 India 2Department of Electronics & Telecommunication Engineering, Jabalpur Engineering College , Jabalpur Madhya Pradesh, Pin- 482011 India Corresponding Author: Ashna Shaiba1 ABSTRACT This paper presents the design of microwave cavity band pass filter and analyzes the quality factor and insertion loss upto 60GHz .This paper discusses the performance of a cavity filter for different size of cavity at different frequencies upto 60GHz with calculation of quality factor and insertion loss. This type of microwave cavity filter will be useful in any microwave system wherein low insertion loss and high frequency selectivity are crucial, such as in base station, radar and broadcasting system. It is shown that the basis for much fundamental microwave filter theory lies in the realm of cavity filters, which indeed are actually used directly for many applications at microwave frequencies as high as 60 GHz. Many types of algorithm are discussed and compared with the object of pointing out the most useful references, especially for a researcher to the field. Keywords: Microwave cavity filters, band pass filter(BPF), quality factor, s-parameter, insertion loss, TE101 mode. ----------------------------------------------------------------------------------------------------------------------------- --------- Date of Submission: 05-09-2017 Date of acceptance: 21-09-2017 ----------------------------------------------------------------------------------------------------------------------------- --------- I. INTRODUCTION II. CONCEPTS OF MICROWAVE A filter is an electronic device used to select CAVITY FILTER a particular pass band range.
    [Show full text]
  • High Performance, Continuously Tunable Microwave Filters Using MEMS Devices with Very Large, Controlled, Out-Of-Plane Actuation
    1 High Performance, Continuously Tunable Microwave Filters using MEMS Devices with Very Large, Controlled, Out-of-Plane Actuation Jackson Chang, Michael Holyoak, George Kannell, Marc Beacken, Matthias Imboden and David J. Bishop with a filter, quadrature detector and analog-to-digital Abstract— Software defined radios (SDR) in the microwave X converters to digitize the detector I/Q outputs for subsequent and K bands offer the promise of low cost, programmable digital processing. The filter is needed because of the challenge operation with real-time frequency agility. However, the real of detecting nanowatt signals in the presence of powerful out of world in which such radios operate requires them to be able to band transmissions and the finite dynamic range of the SDR. In detect nanowatt signals in the vicinity of 100 kW transmitters. this paper we discuss using novel MEMS devices in a This imposes the need for selective RF filters on the front end of the receiver to block the large, out of band RF signals so that the capacitance-post loaded cavity filter geometry [6]. We believe finite dynamic range of the SDR is not overwhelmed and the such filters can meet the considerable challenges of being low desired nanowatt signals can be detected and digitally processed. This is currently typically done with a number of narrow band filters that are switched in and out under program control. What is needed is a small, fast, wide tuning range, high Q, low loss filter that can continuously tune over large regions of the microwave spectrum. In this paper we show how extreme throw MEMS actuators can be used to build such filters operating up to 15 GHz and beyond.
    [Show full text]
  • Method Development for Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper
    Journal of Visualized Experiments www.jove.com Video Article Method Development for Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper Mary Kombolias1, Jan Obrzut2, Michael T. Postek3,4, Dianne L. Poster2, Yaw S. Obeng3 1 Testing and Technical Services, Plant Operations, United States Government Publishing Office 2 Materials Measurement Laboratory, National Institute of Standards and Technology 3 Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology 4 College of Pharmacy, University of South Florida Correspondence to: Mary Kombolias at [email protected], Yaw S. Obeng at [email protected] URL: https://www.jove.com/video/59991 DOI: doi:10.3791/59991 Keywords: Engineering, Issue 152, Resonant Cavity, dielectric spectroscopy, paper, fiber analysis, paper aging, recycled content Date Published: 10/4/2019 Citation: Kombolias, M., Obrzut, J., Postek, M.T., Poster, D.L., Obeng, Y.S. Method Development for Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper. J. Vis. Exp. (152), e59991, doi:10.3791/59991 (2019). Abstract The current analytical techniques for characterizing printing and graphic arts substrates are largely ex situ and destructive. This limits the amount of data that can be obtained from an individual sample and renders it difficult to produce statistically relevant data for unique and rare materials. Resonant cavity dielectric spectroscopy is a non-destructive, contactless technique which can simultaneously
    [Show full text]
  • Hamvention with TAPR by Steve Bible, N7HPR
    TAPR PSR #128 Spring 2015 President’s Corner Hamvention with TAPR By Steve Bible, N7HPR Hamvention is nearly here and TAPR will be present in full-force! The biggest ham radio convention of the year runs from May 15 to May 17 in the Greater Dayton, Ohio metroplex and TAPR has plans for the event to fill your weekend. Booths TAPR’s suite of booths will be in the Ballarena section of HARA at booths 451 through 454 (the same location as last year) where we will be showing what we have been up to lately. Our booths and other inside exhibits will be accessible 9 AM to 6 PM on Friday and 9 AM to 5 PM on Saturday from 9 AM to 1 PM on Sunday. Board Meeting The Hamvention in-person TAPR Board of Directors meeting will be Thursday evening at The Hamvention with TAPR 01 Hilton Garden Inn Dayton South/Austin Landing, 12000 Innovation Drive, just off I-75 (exit 41) Hamvention TAPR Forum Schedule 03 south of downtown Dayton. All TAPR members are invited to attend the meeting and speak their TAPR Calendar 04 piece. The meeting starts at approximately 7 PM. DCC in Chicago, October 9-11 05 TAPR Forum Penelope for PennyLane Friday morning, Scotty Cowling, WA2DFI, will moderate the TAPR Forum in Room 1 of the Trade-In Program 05 HARA Arena starting at 9:15 AM. Near Space Flights as a Tool for STEM Education 07 This years’ TAPR Forum speakers include: Build a Better Demodulator for • TAPR President Steve Bible, N7HPR’s “Introduction” APRS / AX.25 Packet 13 • Steve Ford, WB8IMY ‘s “Write for QST” Amateur Radio Lectures in India 24 • Bill Curtice, WA8APB and Bob Dixon, W8ERD on “Hamnet Mesh: Consider the Write Here! 30 Possibilities!” On the Net 30 • Bryan Fields, W9CR on “High Speed IP Radio” The Fine Print 31 • Chris Testa, KD2BMH on “Whitebox Project: New Charlie Prototype” Our Membership App 32 • Michael Ossman/AD0NR on “Spectrum Monitoring with Software Defined Radio.” TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.
    [Show full text]
  • A Dissertation Entitled Design of Microwave Front-End Narrowband
    A Dissertation entitled Design of Microwave Front-End Narrowband Filter and Limiter Components by Lee W. Cross Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering _________________________________________ Vijay Devabhaktuni, Ph.D., Committee Chair _________________________________________ Mansoor Alam, Ph.D., Committee Member _________________________________________ Mohammad Almalkawi, Ph.D., Committee Member _________________________________________ Matthew Franchetti, Ph.D., Committee Member _________________________________________ Daniel Georgiev, Ph.D., Committee Member _________________________________________ Telesphor Kamgaing, Ph.D., Committee Member _________________________________________ Roger King, Ph.D., Committee Member _________________________________________ Patricia Komuniecki, Ph.D., Dean College of Graduate Studies The University of Toledo May 2013 Copyright 2013, Lee Waid Cross This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Design of Microwave Front-End Narrowband Filter and Limiter Components by Lee W. Cross Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering The University of Toledo May 2013 This dissertation proposes three novel bandpass filter structures to protect systems exposed to damaging levels of electromagnetic (EM) radiation from intentional
    [Show full text]
  • Low Frequency Quadrature Detector Design, Simulation and Implementation for Use in Underground Communication
    Graduate Theses, Dissertations, and Problem Reports 2014 Low frequency Quadrature detector design, simulation and implementation for use in underground communication Zenaneh Ashebir Kebede West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Kebede, Zenaneh Ashebir, "Low frequency Quadrature detector design, simulation and implementation for use in underground communication" (2014). Graduate Theses, Dissertations, and Problem Reports. 219. https://researchrepository.wvu.edu/etd/219 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Low frequency Quadrature detector design, simulation and implementation for use in underground communication Zenaneh Ashebir Kebede Thesis submitted to Benjamin M. Statler college of Engineering and mineral resources at West Virginia University in partial fulfilment of the requirements for the degree of Master of Science in Electrical Engineering Roy S. Nutter, Jr. , Ph.D Matthew C. Valenti, Ph.D David W. Graham, Ph.D Lane department of computer science and electrical engineering Morgantown, West Virginia 2014 Key word: Low frequency quadrature detector.
    [Show full text]
  • Single Mode Circular Waveguide Applicator for Microwave Heating of Oblong Objects in Food Research
    ELECTRONICS AND ELECTRICAL ENGINEERING ISSN 1392 – 1215 2011. No. 8(114) ELEKTRONIKA IR ELEKTROTECHNIKA HIGH FREQUENCY TECHNOLOGY, MICROWAVES T 191 AUKŠTŲJŲ DAŽNIŲ TECHNOLOGIJA, MIKROBANGOS Single Mode Circular Waveguide Applicator for Microwave Heating of Oblong Objects in Food Research D. Kybartas, E. Ibenskis Department of Signal Processing, Kaunas University of Technology, Studentų str. 50, LT-51368, Kaunas, Lithuania, phone: +370 684 15999, e-mail: [email protected] R. Surna Department of Applied Electronics, Kaunas University of Technology, Studentų str. 50, LT-51368, Kaunas, Lithuania http://dx.doi.org/10.5755/j01.eee.114.8.701 Introduction pattern of standing waves with sharp peaks occurs in it. In order to obtain uniform heating, mode stirrers are Microwave heating is well known for more than sixty used or processed material has to be moved in the cavity years [1], [2]. Nowadays it is widely used in science and [2]. Multimode type of microwave heating is applicable technologies for fast increasing of temperature of various when large amounts of product should be processed objects and materials with significant dielectric dissipation uniformly. However, required microwave power in this factor. This method can be used for developing of new case can reach 10 kW [2]. materials, e.g. sintering of ceramics [3]. But the widest field Relatively small samples of food material are used of applications of microwave heating remains in food in development of new products. Therefore, uniform industry for thawing, cooking, drying sterilization and heating of large volume is not necessary but distribution pasteurization of various foods [4, 5]. A special application of electromagnetic field must correspond to the size or of microwave heating is very fast increase of temperature shape of samples.
    [Show full text]
  • THETIS User Manual
    THETIS User Manual Edited by Laurence Barker G8NJJ on behalf of the HPSDR Project THETIS User Manual Page 1 of 129 Table of Contents Contents 1 Introduction .................................................................................................................................... 7 1.1 History ..................................................................................................................................... 8 1.2 Purpose and Structure of this Document ............................................................................... 8 1.3 Writing Style ............................................................................................................................ 9 1.4 Alternatives to THETIS ............................................................................................................. 9 2 THETIS Overview ........................................................................................................................... 10 2.1 Screen Layout - Expanded view ............................................................................................ 10 2.2 Screen Layout - Collapsed view............................................................................................. 10 2.2.1 Classic ............................................................................................................................ 10 2.2.2 Andromeda view ........................................................................................................... 11 2.3 Changing Appearance with “Skins”
    [Show full text]