DEGREE PROJECT IN MECHANICAL ENGINEERING, SECOND CYCLE, 30 CREDITS
STOCKHOLM, SWEDEN 2020
Performance Prediction Program for Wind-Assisted Cargo Ships
Prestandaprognosprogram för fraktfartyg med vindassisterad framdrivning
MARTINA RECHE VILANOVA
KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES
Performance Prediction Program for Wind-Assisted Cargo Ships
MARTINA RECHE VILANOVA TRITA-SCI-GRU 2020:288
Degree Project in Mechanical Engineering, Second Cycle, 30 Credits Course SD271X, Degree Project in Naval Architecture Stockholm, Sweden 2020
School of Engineering Sciences KTH Royal Institute of Technology SE-100 44, Stockholm Sweden Telephone: +46 8 790 60 00
Per tu, Papi. Et trobem a faltar.
Acknowledgements
I wish to express my sincere appreciation to my supervisor from the Fluid Engineering Department of DNV GL, Heikki Hansen, for his wonderful support, guidance and honesty. I would also like to pay my special regards to Hasso Hoffmeister for his constant dedication and help and to everyone from DNV GL whose assistance was a milestone in the completion of this project: Uwe Hollenbach, Ole Hympendahl and Karsten Hochkirch. It was a pleasure to work with all of you.
Furthermore, I wish to express my deepest gratitude to my supervisor Prof. Harry B. Bingham from the section of Fluid Mechanics, Coastal and Maritime Engineering at DTU, who always supported, guided and steered me in the right direction. My thanks also go to my other supervisor, Hans Liwång from the Centre for Naval Architecture at KTH, who have always had an open ear for me since the first day we met.
The contribution of Ville Paakkari from Norsepower Oy Ltd, who provided the Maersk Pelican data for the validation of this Performance Prediction Program, is truly appreciated.
Finally, I would also like to acknowledge the love and the unconditional support of my family, my friends, my mother, Dolors; my father, Carlos; and my sister, Ariadna. Thank you!
Abstract
Due to the accelerating need for decarbonization in the shipping sector, wind-assisted cargo ships are able to play a key role in achieving the IMO 2050 targets on reducing the total annual GHG emissions from international shipping by at least 50%. The aim of this Master’s Thesis project is to develop a Performance Prediction Program for wind-assisted cargo ships to contribute knowledge on the performance of this technology. The three key characteristics of this model are its generic structure, the small number of input data needed and its ability to predict the performance of three possible Wind-Assisted Propulsion Systems (WAPS): Rotor Sails, Rigid Wing Sails and DynaRigs. It is a fast and easy tool able to predict, to a good level of accuracy and really low computational time, the performance of any commercial ship with these three WAPS options installed with only the main particulars and general dimensions as input data.
The hull and WAPS models predict the forces and moments, which the program balances in 6 degrees of freedom to predict the theoretical sailing performance of the wind-assisted cargo ship with the specified characteristics for various wind conditions. The model is able to play with different optimization objectives. This includes maximizing sailing speed if a VPP is run or maximizing total power savings if it is a PPP. The program is based on semi-empirical methods and a WAPS aerodynamic database created from published data on lift and drag coefficients. All WAPS data can be interpolated with the aim to scale to different sizes and configurations such as number of units and different aspect ratios. A model validation is carried out to evaluate its reliability. The model results are compared with the real sailing data of the Long Range 2 (LR2) class tanker vessel, the Maersk Pelican, which was recently fitted with two 30 meter high Rotor Sails; and results from another performance prediction program. In general, the two performance prediction programs and some of the real sailing measurements show good agreement. However, for some downwind sailing conditions, the performance predictions are more conservative than the measured values. Results showing and comparing power savings, thrust and side force coefficients for the different WAPS are also presented and discussed. The results of this Master’s Thesis project show how Wind-Assisted Propulsion Systems have high potential in playing a key role in the decarbonization of the shipping sector. WAPS can prove substantial power, fuel, cost, and emissions savings. Tankers and bulk-carriers are specially suitable for wind propulsion thanks to their available deck space and relatively low design speeds.
The Performance Prediction Program for wind-assisted cargo ships developed in this Master’s
Thesis shows promising results with a good level of accuracy despite its generic and small number of input data. It can be a useful tool in early project stages to quickly and accurately assess the potential and performance of WAPS systems.
Abstrakt
På grund av det accelererande behovet av att minska utsläppen från sjöfartssektorn, kan vindassisterade lastfartyg spela en nyckelroll för att uppnå IMO 2050. Syftet med detta examensarbete är att utveckla ett prestandaprognosprogram för vindassisterade lastfartyg för att bidra med kunskap om denna teknik. De tre viktigaste egenskaperna för denna modell är dess generiska struktur, det lilla antalet inmatningsdata som behövs och dess förmåga att förutsäga prestandan för tre möjliga vindassisterade framdrivningssystem (WAPS): Rotorsegel, styva vingsegel och DynaRigs. Det är ett snabbt och enkelt verktyg som med en hög grad av noggrannhet och med kort beräkningstid kan bedöma prestanda för kommersiella fartyg med dessa tre WAPS-alternativ.
Skrov- och WAPS-modellerna beräknar krafter och moment som balanseras i sex frihetsgrader.
Modellen kan utgå från olika optimeringsmål. Detta inkluderar maximering av segelfarten eller maximeras totala energibesparingar. Programmet är baserat på semi-empiriska metoder och en WAPS aerodynamisk databas skapad från publicerad data om lyft- och motståndskoefficienter. Alla WAPS-data kan interpoleras med syftet att skala till olika storlekar och konfigurationer, så- som antal enheter och olika aspektförhållanden. En modellvalidering utförs för att utvärdera dess tillförlitlighet. Modellresultaten jämförs med verkliga seglingsdata för tankfartyget Maersk Pelican (klass Long Range 2, LR2), som nyligen utrustades med två 30 meter höga rotorsegel; och resultat från en andra data. Resultaten visar i allmänhet bra överensstämmelse. För vissa seglingsförhållanden är emellertid bedömningarna mer konservativa än de uppmätta värdena. Resultat som visar och jämför energibesparingar, tryckkraft och sidokraftkoefficienter för de olika WAPS presenteras och diskuteras också. Resultaten av detta examensarbete visar hur vindassisterade framdrivningssystem har stor potential att spela en nyckelroll i utvecklingen för sjöfartssektorn. WAPS kan leda till betydande energi-, bränsle-, kostnads- och utsläppsbesparingar. Tankfartyg och bulkfartyg är speciellt lämpliga för vindframdrivning tack vare deras tillgängliga däckutrymme och relativt låga hastigheter.
Prestandaprognosprogrammet för vindassisterade lastfartyg utvecklat här visar därmed lovande resultat trots dess generiska upplägg och lilla antal inmatningsdata. Det kan vara ett användbart verktyg i tidiga projektsteg för att snabbt utvärdera potential och prestanda för WAPS-system.
Contents
Acknowledgements Abstract
iii
Abstrakt
iii v
Nomenclature
- 1
- Introduction
1
111
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
Physics of Sailing
2
23
2.1 Wind Velocity Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Basic Steady State Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Performance Prediction Program
6
699
3.1 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Free Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Force Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.6 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.7 User-Friendly interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
- 4
- Hull Model
13
4.1 Force Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.1 Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.2 Buoyant Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.3 Total Hull Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.4 Hull Roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.5 Side Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.6 Windage of the Superstructure . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.7 Propeller Thrust Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.8 Non-Moving Propeller Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.9 Rudder Hydrodynamic Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.10 Added Resistance in Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
- 5
- Wind-Assisted Propulsion Systems Model
20
5.1 Rotor Sails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.2 Aerodynamic Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1.3 Data Source and Data Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.1.4 Spinning Power Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.5 Windage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.6 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
iv
- CONTENTS
- CONTENTS
5.1.7 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Rigid Wing Sails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.2 Aerodynamic Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.3 Data Source and Data Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.4 Windage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.5 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.6 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Soft Sails: The DynaRig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3.2 Aerodynamic Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3.3 Data Source and Data Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3.4 Windage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3.5 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3.6 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
67
Validation
41
6.1 Rotor Sails - Maersk Pelican . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Applications 46
7.1 Rigid Wing Sails and DynaRigs - Case Study . . . . . . . . . . . . . . . . . . . . . 46
7.2 PPP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.3 WAPS Driving and Side Force Coefficients . . . . . . . . . . . . . . . . . . . . . . . 55
89
Conclusion References
59 63 64
A Macros
A.1 Import Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 A.2 Polar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 A.3 Calm Waters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A.4 Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
v
Nomenclature
Theory of Sailing
TWS, VT TWA AWS, VA
AWA TWC V s
True Wind Speed True Wind Angle Apparent Wind Speed Apparent Wind Angle True Wind Course Ship Speed
AOA
LA
Angle of Attack Aerodynamic Lift Force Aerodynamic Drag Force Total Aerodynamic Force Driving Force
DA RA FA SA
Aerodynamic Side Force Hydrodynamic Lift Force Hydrodynamic Drag Force Total Hydrodynamic Resistance Force Rotor Sail Velocity Ratio Revolutions Per Minute End-plate Size Factor Aspect Ratio
LH DH RH
U/V RPM De/D AR
PRS
Rotor Sail Spinning Power Required Rotor Sail Height
HRS DRS URS
Rotor Sail Diameter Rotor Sail Circumferential Speed Rotor Sail Angular Speed Flap Deflection Angle Flap Chord Ratio
ω
δf Cflap/CRW CRW HRW
Rigid Wing Sail Chord Length Rigid Wing Sail Height
vi
- NOMENCLATURE
- NOMENCLATURE
HDyna CL
DynaRig Height Lift Coefficient Drag Coefficient
CD
Naval Architecture
LOA
Length Over All
LPP
Length Between Perpendiculars Length of the Waterline Beam
LWL BT
Design Draft
D
Depth
h
Accommodation Height above Deck Righting Arm
GZ GM
Metacentric Height Waterplane Area
WPA
CW
Waterplane Area Coefficient Block Coefficient
CB CM
Midship Section Area Coefficient Wetted Area
S
Other Symbols
V PP PPP WAPS ρ
Velocity Prediction Program Power Prediction Program Wind-Assisted Propulsion Systems Density
Re
Reynolds Number Circulation
Γ
V
Flow Speed
R
Radius
D
Diameter
CoE
Centre of Effort vii
Chapter 1
Introduction
1.1 Background
Undoubtedly, humanity is facing challenging times. While we are coping with the COVID-19 pandemic, we are also setting targets to reduce greenhouse gas emissions with the aim to respond to the actual climate emergency. There is a clear need for decarbonization worldwide. Countries have committed to reduce their emissions under the Paris Agreement, which aims to limit global warming to well below 2◦C compared to pre-industrial levels and to pursue efforts to limit the increase to 1.5◦C. All economic sectors must find efficient and effective ways to do so. Maritime transport emits around 940 million tonnes of CO2 annually and is responsible for about 2.5% of global greenhouse gas (GHG) emissions according to the 3rd IMO GHG study [28]. The International Maritime Organization (IMO) has set its own strategy: the total annual GHG emissions should be reduced by at least 50% by 2050 compared to 2008, while, at the same time, pursuing efforts towards phasing them out entirely. This has driven ship owners and operators to re-think their propulsion systems. Introducing environmentally friendly fuels and alternative propulsion technology in the shipping industry is a must - we must move towards sustainability.
One green technology which is attracting a lot of attention again is wind propulsion: an old concept with a modern edge. For centuries, wind moved cargo around the globe, until it was replaced by steam and diesel during the industrial age. In fact, wind propulsion is defined as the use of a device, such as rotor sails, wing sails or soft sails, to capture the energy of the wind and generate forward thrust. Now, it comes back with a modern spin. Aeronautical technology has been implemented in wind propulsion devices to make them more efficient than traditional sails. Wind is easily available at sea and can directly drive ships without transformation losses. Implementation of weather routing can play a significant role in increasing performance and savings. Wind propulsion devices are easy to retrofit to existent ships as a mean of auxiliary power, the so-called wind-assisted propulsion. New research and designs are aiming to have wind propulsion as the main power source for vessels. However, this research project focuses mainly in wind propulsion in combination with another main power source.
After the industrial revolution and the combustion engine, the research on wind propulsion gains momentum again in times of high fuel prices or the prospect of a shortage of fossil fuel. During the 20th century, the most famous modern wind-assisted propulsion systems were invented. Anton Flettner, in the 1920s, invented the Rotor Sail whose performance was further studied by Thom in the 1930s. In the late 1960s, Wilhelm Prölss developed the famous DynaRig, a modern interpretation of the square rig, which had to wait 45 years to see the light on the mega yacht "Maltese Falcon". Kites, on the other hand, were designed and developed for the use on commercial vessels. In the 1980s, the famous french marine conservation pioneer, Jacques Cousteau, invented the Turbosail. Driven by the high performance sailing regattas such as America’s Cup, Rigid Wing Sails have been under constant development. Most of them have been recently picked up after a long "sleep" by the merchant shipping industry as a green alternative to reach environmental targets and save costs. There is a growing industry focusing on the development of these sort of technologies right now with leading companies such as Norsepower (Rotor Sails), Airseas (Kites) and Econowind (Turbosails). Start-ups are emerging as well like Bound4Blue (Rigid Wing Sails)
1
- 1.2. MISSION
- CHAPTER 1. INTRODUCTION
while some famous yacht designers are developing some wind-assisted projects such as VPLP (Soft Wing Sails) and Dykstra Naval Architects (DynaRig).
1.2 Mission
Despite having used wind in the maritime transport during centuries, there is still a substantial lack of knowledge on the performance of wind-assisted cargo ships. We are still missing test results confirming the cost-benefit value of this sort of technology. Further investigations are needed to identify the actual picture of wind propulsion. One major area is the performance data. Increased confidence with regard to wind-assisted propulsion systems is a must. Validated information must be generated to accurately predict the potential fuel savings resulting in cost savings. Thus, the mission of this Master’s Thesis research project is to contribute knowledge on the performance of Wind-Assisted Propulsion Systems (WAPS) on-board commercial vessels. To achieve it, a Performance Prediction Program for wind-assisted cargo ships is developed. Its two key features, which makes it different from anything out in the market right now, are the small number of input data needed and its generic approach which can treat any cargo ship with three possible different WAPS installed: Rotor Sails, Rigid Wing Sails and DynaRigs. It is a fast and easy tool able to predict, to a reasonable level of accuracy and really low computational time, the performance of any commercial ship with these three possible WAPS on-board with generic input data such as vessel main particulars and WAPS dimensions. It should be noted that no WAPS aerodynamic data is needed as input data, a data base is already introduced in the model. It is designed to be used as an early stage design tool. Its characteristics make it the perfect tool to provide a fast answer to customers when interested in the potential of wind-assisted propulsion systems.
1.3 Goals
The goals which need to be accomplished to implement the mission are the following ones:
• Researching the published data on lift and drag coefficients of three different types of windassisted propulsion systems: Rotor Sails, Rigid Wing Sails and DynaRigs.
• Implementing coefficients for performance predictions with the possibility of scaling to different sizes and configurations such as number of units and different aspect ratios.
• Building up a prediction program based on generic force approximations such as semiempirical methods to minimize the required input data. Thus, achieving a really low computational time.
• Creating a WAPS aerodynamic database. • Comparing the performance between the three different WAPS and defining pros and cons of each device.
• Prediction of power savings for each WAPS achieving the maximum level of accuracy despite its generic structure.