DPA Backs Texas Board of Professional Geologists by DANIEL J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: a Review
processes Review Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review Laura Pires da Mata Costa 1 ,Débora Micheline Vaz de Miranda 1, Ana Carolina Couto de Oliveira 2, Luiz Falcon 3, Marina Stella Silva Pimenta 3, Ivan Guilherme Bessa 3,Sílvio Juarez Wouters 3,Márcio Henrique S. Andrade 3 and José Carlos Pinto 1,* 1 Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP 68502, Rio de Janeiro 21941-972, Brazil; [email protected] (L.P.d.M.C.); [email protected] (D.M.V.d.M.) 2 Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP 68525, Rio de Janeiro 21941-598, Brazil; [email protected] 3 Braskem S.A., Rua Marumbi, 1400, Campos Elíseos, Duque de Caxias 25221-000, Brazil; [email protected] (L.F.); [email protected] (M.S.S.P.); [email protected] (I.G.B.); [email protected] (S.J.W.); [email protected] (M.H.S.A.) * Correspondence: [email protected]; Tel.: +55-21-3938-8709 Abstract: Plastic production has been increasing at enormous rates. Particularly, the socioenvi- ronmental problems resulting from the linear economy model have been widely discussed, espe- cially regarding plastic pieces intended for single use and disposed improperly in the environment. Nonetheless, greenhouse gas emissions caused by inappropriate disposal or recycling and by the Citation: Pires da Mata Costa, L.; many production stages have not been discussed thoroughly. Regarding the manufacturing pro- Micheline Vaz de Miranda, D.; Couto cesses, carbon dioxide is produced mainly through heating of process streams and intrinsic chemical de Oliveira, A.C.; Falcon, L.; Stella transformations, explaining why first-generation petrochemical industries are among the top five Silva Pimenta, M.; Guilherme Bessa, most greenhouse gas (GHG)-polluting businesses. -
Extragalactic Sources of Rapidly Variable High Energy Gamma Radiation
Dario Hrupec Extragalactic sources of rapidly variable high energy gamma radiation Doctoral Thesis submitted to the Department of Physics, Faculty of Science, University of Zagreb, for the academic degree of Doctor of Natural Sciences (Physics) Zagreb 2008. This thesis was done at Ruder Boˇskovi´c Institute under the supervision of Professor Daniel Ferenc from the University of California at Davis. ii Acknowledgments I would like to thank my mentor Dr. Daniel Ferenc from the University of California at Davis for his great professional and personal support during my work on this thesis. I have received precious inspiration from him. Finally, he encouraged me to read a lot. It was an invaluable advice. I am thankful to my co-mentor Dr. Silvio Pallua from the Faculty of Science at Zagreb for his support and for the thesis review. I am also thankful to Dr. Kreˇsimir Pavlovski from the Faculty of Science at Zagreb for the thesis review. I am particularly thankful to him for his valuable support. In addition, his terminological arguments impressed me a lot. Many thanks to Dr. Matko Milin from Faculty of Science at Zagreb for the time he spent on reading and commenting my thesis. I really appreciate his being my committee member. I owe many thanks to Dr. Eckart Lorenz from the University of California at Davis and ETH-Zurich who made possible my observations with the Cerenkovˇ telescope 1 (CT1) at La Palma in 2003. His donation of two Cerenkovˇ telescopes to Ruder Boˇskovi´c Institute established a base for the Cosmic Ray Observatory At The Eastern Adriatic (CROATEA) and also for my work in astroparticle physics in Croatia. -
Go for Lunar Landing Conference Report
CONFERENCE REPORT Sponsored by: REPORT OF THE GO FOR LUNAR LANDING: FROM TERMINAL DESCENT TO TOUCHDOWN CONFERENCE March 4-5, 2008 Fiesta Inn, Tempe, AZ Sponsors: Arizona State University Lunar and Planetary Institute University of Arizona Report Editors: William Gregory Wayne Ottinger Mark Robinson Harrison Schmitt Samuel J. Lawrence, Executive Editor Organizing Committee: William Gregory, Co-Chair, Honeywell International Wayne Ottinger, Co-Chair, NASA and Bell Aerosystems, retired Roberto Fufaro, University of Arizona Kip Hodges, Arizona State University Samuel J. Lawrence, Arizona State University Wendell Mendell, NASA Lyndon B. Johnson Space Center Clive Neal, University of Notre Dame Charles Oman, Massachusetts Institute of Technology James Rice, Arizona State University Mark Robinson, Arizona State University Cindy Ryan, Arizona State University Harrison H. Schmitt, NASA, retired Rick Shangraw, Arizona State University Camelia Skiba, Arizona State University Nicolé A. Staab, Arizona State University i Table of Contents EXECUTIVE SUMMARY..................................................................................................1 INTRODUCTION...............................................................................................................2 Notes...............................................................................................................................3 THE APOLLO EXPERIENCE............................................................................................4 Panelists...........................................................................................................................4 -
Through Astronaut Eyes: Photographing Early Human Spaceflight
Purdue University Purdue e-Pubs Purdue University Press Book Previews Purdue University Press 6-2020 Through Astronaut Eyes: Photographing Early Human Spaceflight Jennifer K. Levasseur Follow this and additional works at: https://docs.lib.purdue.edu/purduepress_previews This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. THROUGH ASTRONAUT EYES PURDUE STUDIES IN AERONAUTICS AND ASTRONAUTICS James R. Hansen, Series Editor Purdue Studies in Aeronautics and Astronautics builds on Purdue’s leadership in aeronautic and astronautic engineering, as well as the historic accomplishments of many of its luminary alums. Works in the series will explore cutting-edge topics in aeronautics and astronautics enterprises, tell unique stories from the history of flight and space travel, and contemplate the future of human space exploration and colonization. RECENT BOOKS IN THE SERIES British Imperial Air Power: The Royal Air Forces and the Defense of Australia and New Zealand Between the World Wars by Alex M Spencer A Reluctant Icon: Letters to Neil Armstrong by James R. Hansen John Houbolt: The Unsung Hero of the Apollo Moon Landings by William F. Causey Dear Neil Armstrong: Letters to the First Man from All Mankind by James R. Hansen Piercing the Horizon: The Story of Visionary NASA Chief Tom Paine by Sunny Tsiao Calculated Risk: The Supersonic Life and Times of Gus Grissom by George Leopold Spacewalker: My Journey in Space and Faith as NASA’s Record-Setting Frequent Flyer by Jerry L. Ross THROUGH ASTRONAUT EYES Photographing Early Human Spaceflight Jennifer K. -
Apollo Space Suit
APOLLO SPACE S UIT 1962–1974 Frederica, Delaware A HISTORIC MECHANICAL ENGINEERING LANDMARK SEPTEMBER 20, 2013 DelMarVa Subsection Histor y of the Apollo Space Suit This model would be used on Apollo 7 through Apollo 14 including the first lunar mission of Neil Armstrong and Buzz International Latex Corporation (ILC) was founded in Aldrin on Apollo 11. Further design improvements were made to Dover, Delaware in 1937 by Abram Nathanial Spanel. Mr. Spanel improve mobility for astronauts on Apollo 15 through 17 who was an inventor who became proficient at dipping latex material needed to sit in the lunar rovers and perform more advanced to form bathing caps and other commercial products. He became mobility exercises on the lunar surface. This suit was known as famous for ladies apparel made under the brand name of Playtex the model A7LB. A slightly modified ILC Apollo suit would also go that today is known worldwide. Throughout WWII, Spanel drove on to support the Skylab program and finally the American-Soyuz the development and manufacture of military rubberized products Test Program (ASTP) which concluded in 1975. During the entire to help our troops. In 1947, Spanel used the small group known time the Apollo suit was produced, manufacturing was performed as the Metals Division to develop military products including at both the ILC plant on Pear Street in Dover, Delaware, as well as several popular pressure helmets for the U.S. Air Force. the ILC facility in Frederica, Delaware. In 1975, the Dover facility Based upon the success of the pressure helmets, the Metals was closed and all operations were moved to the Frederica plant. -
Surveyor 1 Space- Craft on June 2, 1966 As Seen by the Narrow Angle Camera of the Lunar Re- Connaissance Orbiter Taken on July 17, 2009 (Also See Fig
i “Project Surveyor, in particular, removed any doubt that it was possible for Americans to land on the Moon and explore its surface.” — Harrison H. Schmitt, Apollo 17 Scientist-Astronaut ii Frontispiece: Landing site of the Surveyor 1 space- craft on June 2, 1966 as seen by the narrow angle camera of the Lunar Re- connaissance Orbiter taken on July 17, 2009 (also see Fig. 13). The white square in the upper photo outlines the area of the enlarged view below. The spacecraft is ca. 3.3 m tall and is casting a 15 m shadow to the East. (NASA/LROC/ ASU/GSFC photos) iii iv Surveyor I: America’s First Moon Landing by William F. Mellberg v © 2014, 2015 William F. Mellberg vi About the author: William Mellberg was a marketing and public relations representative with Fokker Aircraft. He is also an aerospace historian, having published many articles on both the development of airplanes and space vehicles in various magazines. He is the author of Famous Airliners and Moon Missions. He also serves as co-Editor of Harrison H. Schmitt’s website: http://americasuncommonsense.com Acknowledgments: The support and recollections of Frank Mellberg, Harrison Schmitt, Justin Rennilson, Alexander Gurshstein, Paul Spudis, Ronald Wells, Colin Mackellar and Dwight Steven- Boniecki is gratefully acknowledged. vii Surveyor I: America’s First Moon Landing by William F. Mellberg A Journey of 250,000 Miles . December 14, 2013. China’s Chang’e 3 spacecraft successfully touched down on the Moon at 1311 GMT (2111 Beijing Time). The landing site was in Mare Imbrium, the Sea of Rains, about 25 miles (40 km) south of the small crater, Laplace F, and roughly 100 miles (160 km) east of its original target in Sinus Iridum, the Bay of Rainbows. -
Russian and Chinese Responses to U.S. Military Plans in Space
Russian and Chinese Responses to U.S. Military Plans in Space Pavel Podvig and Hui Zhang © 2008 by the American Academy of Arts and Sciences All rights reserved. ISBN: 0-87724-068-X The views expressed in this volume are those held by each contributor and are not necessarily those of the Officers and Fellows of the American Academy of Arts and Sciences. Please direct inquiries to: American Academy of Arts and Sciences 136 Irving Street Cambridge, MA 02138-1996 Telephone: (617) 576-5000 Fax: (617) 576-5050 Email: [email protected] Visit our website at www.amacad.org Contents v PREFACE vii ACRONYMS 1 CHAPTER 1 Russia and Military Uses of Space Pavel Podvig 31 CHAPTER 2 Chinese Perspectives on Space Weapons Hui Zhang 79 CONTRIBUTORS Preface In recent years, Russia and China have urged the negotiation of an interna - tional treaty to prevent an arms race in outer space. The United States has responded by insisting that existing treaties and rules governing the use of space are sufficient. The standoff has produced a six-year deadlock in Geneva at the United Nations Conference on Disarmament, but the parties have not been inactive. Russia and China have much to lose if the United States were to pursue the programs laid out in its planning documents. This makes prob - able the eventual formulation of responses that are adverse to a broad range of U.S. interests in space. The Chinese anti-satellite test in January 2007 was prelude to an unfolding drama in which the main act is still subject to revi - sion. -
PDF Document Download
“We choose to go to the moon ...” President John F. Kennedy’s commitment to landing an astronaut “on the Moon and returning him back safely to the Earth” was particularly audacious considering when he fi rst voiced the challenge, only one American had been in space for a grand total of 15 minutes and 28 seconds. Here is a look back at some of the milestones NASA and its astronauts reached on their way to the Moon. Learn more by visiting the John F. Kennedy Presidential 2 Library & Museum at www.jfklibrary.org 3 Only in the Sixties The Sixties could be described in words Charles To put President Kennedy’s proclamation in pers- Sadly, Gordon Cooper’s Faith 7 mission was the last Dickens had written just over a century before the pective, it is useful to remember that he made the of NASA’s manned space fl ights to take place in decade began: “It was the best of times, it was the speech only 16 months after America’s fi rst manned President Kennedy’s lifetime. worst of times ... “ space flight and seven months after John Glenn became the fi rst American to orbit the Earth. NASA’s While John F. Kennedy would not live to see his It was a time of stark contrasts. On one hand, it was four manned fl ights had each lasted less than fi ve dream realized, his challenge stimulated the imagi- an era of enormous political and social unrest. On the hours. In fact, NASA had only been established four nations of people from every nation and motivated other, it offered unparalleled scientifi c advancement years earlier. -
Íítefuid*/;Or. Ríe %Urna,Mrn'
No. 28605-A Gaceta Oficial Digital, miércoles 05 de septiembre de 2018 1 ÍÍtefuid*/;or. rÍe %urna,mrn'. Ministerio de Economia y Finanzas Dirección General de lngresos Despacho del Director RESOLUC¡Ótrl trlo. 201 -5734 De 29 de agosto de 2018 "Por la cual se publica la lista de personas jurídicas con una morosidad de tres (3) años consecutivos del tributo de Tasa Unica, en cumplimiento de los parágrafos 2, 3 y 4 del ar1ículo 318-A del Código Fiscal, reformado por Ia Ley No.6 de 2 de febrero de 2005, Ley 49 de 17 de septiembre de 2009 y Ley 52 de 27 de octubre de 2016" EL D¡RECTOR GENERAL DE INGRESOS, ENCARGADO CONSIDERANDO: Que el Decreto de Gabinete No. 109 de 7 de mayo de 1970 y sus modificaciones establece en sus aftículos 5 y 6, que el Director Generalde lngresos es responsable por la permanente adecuación y perfeccionamiento de los procedimientos administrativos y lo facultan para regular las relaciones formales de los contribuyentes con el Fisco, en aras de mejorar el servicio y facilitar a los contribuyentes el cumplimiento de las obligaciones tributarias. Que el artículo 318-A del Código Fiscal, modificado por la Ley No. 6 de 2 de febrero de 2005, Ley No. 49 de 17 de septiembre de 2009 y Ley No. 52 de 27 de octubre de 2016, establece el pago del tributo denominado tasa única por las sociedades anónimas, sociedades de responsabilidad limitada y cualesquiera otras personas jurídicas al momento de su insóripción y en los años subsiguientes para mantener plena vigencia. -
Nuclear-Conventional-Firebreaks
NUCLEAR-CONVENTIONAL FIREBREAKS AND THE NUCLEAR TABOO BARRY D. WATTS NUCLEAR-COnVEnTIOnAL FIREBREAKS AnD THE NUCLEAR TABOO BY BARRy D. WATTS 2013 Acknowledgments The idea of exploring systematically why the leaders of various nations have chosen to maintain, or aspire to acquire, nuclear weapons was first suggested to me by Andrew W. Marshall. In several cases, the motivations attributed to national leaders in this report are undoubtedly speculative and open to debate. Nevertheless, it is a fact that the rulers of at least some nations entertain strong reasons for maintaining or acquiring nuclear weapons that have nothing to do with the nuclear competition between the United States and the former Soviet Union, either before or after 1991. Eric Edelman provided valuable suggestions on both substance and sources. At the Center for Strategic and Budgetary Assessments, Abby Stewart and Nick Setterberg did the majority of the editing. I am especially grateful to Nick for vetting the footnotes. Last but not least, Andrew Krepinevich’s suggestions on the narrative flow and the structure of the paper’s arguments greatly clarified the original draft. © 2013 Center for Strategic and Budgetary Assessments. All rights reserved. COnTEnTS 1 INTRODUCTION AND SUMMARY 5 THE AMERICAN SEARCH FOR ALTERNATIVES TO GENERAL NUCLEAR WAR 5 Context 7 Atomic Blackmail and Massive Nuclear Retaliation 11 Flexible Response and Assured Destruction 15 The Long Range Research and Development Planning Program 19 Selective Nuclear Options and Presidential Directive/NSC-59 23 The Strategic Defense Initiative 26 The Soviet General Staff, LNOs and Launch on Warning 29 POST-COLD WAR DEVELOPMENTS IN THE UNITED STATES AND RUSSIA 29 Evolving U.S. -
Appendix 15B. Tables of Operational Military Satellites TED MOLCZAN and JOHN PIKE*
Appendix 15B. Tables of operational military satellites TED MOLCZAN and JOHN PIKE* Table 15B.1. US operational military satellites, as of 31 December 2002a Common Official Intl NORAD Launched Launch Perigee Apogee Incl. Period name name name design. (date) Launcher site (km) (km) (deg.) (min.) Comments Navigation satellites in medium earth orbit GPS 2-02 SVN 13/USA 38 1989-044A 20061 10 June 89 Delta 6925 CCAFS 19 594 20 787 53.4 718.0 GPS 2-04b SVN 19/USA 47 1989-085A 20302 21 Oct 89 Delta 6925 CCAFS 21 204 21 238 53.4 760.2 (Retired, not in SEM Almanac) GPS 2-05 SVN 17/USA 49 1989-097A 20361 11 Dec 89 Delta 6925 CCAFS 19 795 20 583 55.9 718.0 GPS 2-08b SVN 21/USA 63 1990-068A 20724 2 Aug 90 Delta 6925 CCAFS 19 716 20 705 56.2 718.8 (Decommissioned Jan. 2003) GPS 2-09 SVN 15/USA 64 1990-088A 20830 1 Oct 90 Delta 6925 CCAFS 19 978 20 404 55.8 718.0 GPS 2A-01 SVN 23/USA 66 1990-103A 20959 26 Nov 90 Delta 6925 CCAFS 19 764 20 637 56.4 718.4 GPS 2A-02 SVN 24/USA 71 1991-047A 21552 4 July 91 Delta 7925 CCAFS 19 927 20 450 56.0 717.9 GPS 2A-03 SVN 25/USA 79 1992-009A 21890 23 Feb 92 Delta 7925 CCAFS 19 913 20 464 53.9 717.9 GPS 2A-04b SVN 28/USA 80 1992-019A 21930 10 Apr 92 Delta 7925 CCAFS 20 088 20 284 54.5 717.8 (Decommissioned May 1997) GPS 2A-05 SVN 26/USA 83 1992-039A 22014 7 July 92 Delta 7925 CCAFS 19 822 20 558 55.9 718.0 GPS 2A-06 SVN 27/USA 84 1992-058A 22108 9 Sep 92 Delta 7925 CCAFS 19 742 20 638 54.1 718.0 GPS 2A-07 SVN 32/USA 85 1992-079A 22231 22 Nov 92 Delta 7925 CCAFS 20 042 20 339 55.7 718.0 GPS 2A-08 SVN 29/USA 87 1992-089A -
Alan Bean, Apollo Moonwalker and Artist, Dies at 86
For Immediate Release Media Contacts: Laura Cutchens Astronaut Scholarship Foundation 407-403-5907 or 407-474-3196 [email protected] Justin Miller Astronaut Scholarship Foundation 407-403-5908 or 407-724-3002 [email protected] Alan Bean, Apollo Moonwalker and Artist, Dies at 86 HOUSTON, Texas — Apollo and Skylab astronaut Alan Bean, the fourth human to walk on the moon and an accomplished artist, has died. Bean, 86, died on Saturday, May 26, at Houston Methodist Hospital in Houston, Texas. His death followed his suddenly falling ill while on travel in Fort Wayne, Indiana two weeks before. “Alan was the strongest and kindest man I ever knew. He was the love of my life and I miss him dearly,” said Leslie Bean, Alan Bean’s wife of 40 years. “A native Texan, Alan died peacefully in Houston surrounded by those who loved him.” A test pilot in the U.S. Navy, Bean was one of 14 trainees selected by NASA for its third group of astronauts in October 1963. He flew twice into space, first as the lunar module pilot on Apollo 12, the second moon landing mission, in November 1969, and then as commander of the second crewed flight to the United States’ first space station, Skylab, in July 1973. “Alan and I have been best friends for 55 years — ever since the day we became astronauts,” said Walt Cunningham, who flew on Apollo 7. “When I became head of the Skylab Branch of the Astronaut Office, we worked together and Alan eventually commanded the second Skylab mission.” “We have never lived more than a couple of miles apart, even after we left NASA.