Dwelling Dinoflagellate Genus, Pachena (Dinophyceae), with Descriptions of Three New Species 1

Total Page:16

File Type:pdf, Size:1020Kb

Dwelling Dinoflagellate Genus, Pachena (Dinophyceae), with Descriptions of Three New Species 1 J. Phycol. 56, 798–817 (2020) © 2020 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. DOI: 10.1111/jpy.12984 MORPHOLOGY AND MOLECULAR PHYLOGENY OF A NEW MARINE, SAND-DWELLING DINOFLAGELLATE GENUS, PACHENA (DINOPHYCEAE), WITH DESCRIPTIONS OF THREE NEW SPECIES 1 Mona Hoppenrath 2 Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), S udstrand€ 44, Wilhelmshaven D – 26382, Germany Albert Re n~e Departament de Biologia Marina i Oceanografia, Institut de Ci encies del Mar (CSIC), Pg. Mar ıtim de la Barceloneta, 37-49, Barcelona, Catalonia 08003, Spain Cecilia Teodora Satta Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, Sassari 07100, Italy Agenzia Ricerca per l’Agricoltura (AGRIS), Loc Bonassai, Olmedo, Sassari 07100, Italy Aika Yamaguchi Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan and Brian S. Leander The Departments of Botany and Zoology, University of British Columbia, 6270 University Boulevard, Vancouver BC V6T 1Z4, Canada Marine benthic dinoflagellates are interesting not based on SSU and LSU rDNA sequences contribute only because some epiphytic genera can cause to understanding the evolution of the planktonic harmful algal blooms but also for understanding relatives of Pachena , the Thoracosphaeraceae. dinoflagellate evolution and diversification. Our Key index words: benthic; distribution; morphology; understanding of their biodiversity is far from Peridiniales; protists; taxonomy; Thoracosphaer- complete, and many thecate genera have unusual aceae tabulatio n patterns that are difficult to relate to the diverse known phytoplankton taxa. A new sand- Abbreviations : AICc, corrected Akaike information dwelling genus, Pachena gen. nov., is described based criterion; APC, apical pore complex; (B)PP, (Baye- on morphological and DNA sequence data. Three sian) posterior probability; BS, bootstrap; DIC, species were discovered in distant locations and are differential interference contrast; HMDS, hexam- circumscribed, namely, P. leibnizii sp. nov. from ethyldisilazane; ML, maximum likelihood; Po, apical Canada, P. abriliae sp. nov. from Spain, and P. pore plate; 1 0, first apical plate; 2 0, second apical plate; meriddae sp. nov. from Italy. All species are tiny 30, third apical plate; 4 0, forth apical plate; 1a, first (about 9 –23 lm long) and heterotrophic. Species are intercalary plate; 2a, second intercalary plate; 3a, third characterized by their tabulation (APC 4 0 3a 6 00 5c 5s intercalary plate; 1 00 , first precingular plate; 2 00 , second 5000 20000 ), an apical hook covering the apical pore, an precingular plate; 3 00 , third precingular plate; 4 00 , ascending cingulum, and a sulcus with central list. fourth precingular plate; 5 00 , fifth precingular plate; The first anterior intercalary plate is uniquely 600 , sixth precingular plate; c1, first cingular plate; c2, “sandwiched” between two plates. The species share second cingular plate; c3, third cingular plate; c4, these features and differ in the relative sizes and fourth cingular plate; c5, fifth cingular plate; Sa, ante- arrangements of their plates, especially on the rior sulcal plate; Sd, right sulcal plate; Ss, left sulcal epitheca. The ornamentation of thecal plates is plate; Sp, posterior sulcal plate; Sm, median sulcal species-specific. The new molecular phylogenies plate; 1 000 , first postcingular plate; 2 000 , second postcin- gular plate; 3 000 , third postcingular plate; 4 000 , fourth 1 Received 11 December 2019. Accepted 14 February 2020. First postcingular plate; 5 000 , fifth postcingular plate; 1 0000 , Published Online 6 March 2020. Published Online 2 April 2020, first antapical plate; 2 0000 , second antapical plate Wiley Online Library (wileyonlinelibrary.com). 2Author for correspondence: e-mail: mhoppenrath@sencken berg.de. Editorial Responsibility: C. Lane (Associate Editor) 798 DESCRIPTION OF PACHENA GEN. NOV. 799 The first studies on sand-dwelling dinoflagellates Studies on benthic dinoflagellates from the Mediter- were conducted in the early twentieth century ranean Sea have mainly focused on epiphytic toxic (Kofoid and Swezy 1921, Herdman 1922, 1924a,b, species (Vila et al. 2001, Aligizaki and Nikolaidis Balech 1956), even though they were not studied 2006, Aligizaki et al. 2009, Penna et al. 2012), comprehensively until the 2000s (Hoppenrath whereas sand-dwelling dinoflagellates have been 2000a, Murray 2003, Tamura 2005, Mohammad- poorly studied and information is scarce (Re n~e Noor et al. 2007, Al-Yamani and Saburova 2010). et al. 2020). Here, a new genus is described that was The studies showed that the species composition is first discovered on the western shoreline of Vancou- distinct from planktonic communities and the spe- ver Island, Canada and further species were cies diversity was largely unexplored (Hoppenrath recorded in Spanish and Italian Mediterranean Sea et al. 2014). Epiphytic species have received more samples. attention from the scientific community, mainly because many of them are toxin producers and are METHODS toxic to humans (Berdalet et al. 2017). Still there is undiscovered biodiversity among benthic, especially Sampling, cell extractions, and microscopy . Sand samples from sand-dwelling, dinoflagellates with new taxon Canada were collected with a spoon during low tide at Pachena Beach (48 °47 034.6 ″ N, 125 °07 019.0 ″ W), Vancou- descriptions nearly every year, including new gen- ver Island, British Columbia, in May and June 2005, April era: Vulcanodinium (N ezan and Chom erat 2011), and June 2006, and May and June 2007. The sand sam- Moestrupia (Hansen and Daugbjerg 2011), Ankistro- ples were transported directly to the laboratory, and dinium (Hoppenrath et al. 2012), Testudodinium dinoflagellates were separated from the sand by extraction (Horiguchi et al. 2012), Bispinodinium (Yamada through a fine filter (mesh size 45 lm) using melting sea- et al. 2013), Ailadinium (Saburova and Chom erat water ice (Uhlig 1964). Cells of the new taxon were observed directly with a Leica DMIL inverted microscope 2014), Madanidinium (Chom erat and Bilien 2014), (Wetzlar, Germany) and isolated by micropipetting for Aduncodinium (Kang et al. 2015), Fukuyoa (G omez the preparations described below. For differential interfer- et al. 2015), Pellucidodinium (Onuma et al. 2015), ence contrast (DIC) light microscopy, pipetted cells were Laciniporus (Saburova and Chom erat 2019), and viewed with a Zeiss Axioplan 2 imaging microscope (Carl- Psammodinium (Re n~e and Hoppenrath 2019). Zeiss, Oberkochen, Germany) connected to a Leica Benthic, sand-dwelling species seem to have mor- DC500 color digital camera. phological adaptations reflecting their life in the Mediterranean sediment samples from the Catalan Coast ° ″ interstitial habitat, such as smooth (i.e., without strik- were obtained at Castelldefels Beach (41 15 037.0 N; 1°55 048.8 ″ E) during spring and summer months from 2015 ing extensions like wings, spines, or horns) and flat- to 2017. Sediment samples from Sardinian beaches were tened cell shapes (Hoppenrath et al. 2014). Several obtained at Platamona Beach (40 °49 027.1 ″ N; 8 °31 036.4 ″ E) taxa cover their apical pore with thecal extensions and La Speranza Beach (40 °29 043.1 ″ N; 8 °22 012.1 ″ E) during (e.g., Rhinodinium has a large apical hook; Murray summer months in 2015 and 2018. Surface samples were et al. 2006); some Amphidiniopsis species and Herdma- taken by snorkeling at a depth of approximately 1.5 –2 m with nia have a small hook (Hoppenrath 2000b, Murray plastic bottles. The distance to the shore depended on the underwater slope of each beach. The sediments were kept at and Patterson 2002, Toriumi et al. 2002, Yamaguchi room temperature, in the dark, and immediately taken to the et al. 2011, Re n~e et al. 2020); Apicoporus has finger- laboratory. Once there, cells were extracted from the sedi- like projections (Sparmann et al. 2008); Laciniporus ment using the melting seawater-ice method (Uhlig 1964). has a small flap-shaped projection (Saburova and Subsamples were fixed with Lugol’s iodine or formaldehyde Chom erat 2019); and Sinophysis has parallel upright (2%) and preserved in the dark at 4 °C. Alive and fixed sam- projections (Hoppenrath 2000c, Chom erat 2016). ples from the Catalan coast were observed under a phase-con- trast Leica DM-IRB inverted microscope (Leica Microsystems, Many thecate, benthic dinoflagellate taxa have unu- Wetzlar, Germany) connected to a ProgRes C10 (Jenoptik sual tabulation patterns that are difficult to relate to Laser, Optik Systeme GmbH, Jena, Germany) digital camera. the known tabulations in planktonic taxa (Hoppen- Cell measurements were conducted using the ProgRes Cap- rath et al. 2014). For example, Madanidinium has no turePro software (Jenoptik Laser; Optik Systeme GmbH). Live apical pore (Chom erat and Bilien 2014); Plagiodinium samples from the Sardinian coast were observed under a Zeiss has no precingular or no apical plate series (Faust 100 inverted microscope (Carl Zeiss, Oberkochen, Germany), equipped with DIC. Digital photos were taken using a Zeiss and Balech 1993, Wakeman et al. 2018), depending Axiocam (Carl Zeiss). Cell measurements were obtained from on interpretation; Thecadinium sensu stricto and Pseu- LM and SEM images using the ImageJ
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Patrons De Biodiversité À L'échelle Globale Chez Les Dinoflagellés
    ! ! ! ! ! !"#$%&'%&'()!(*+!&'%&,-./01%*$0!2&30%**%&%!&4+*0%&).*0%& ! 0$'1&2(&3'!4!5&6(67&)!#2%&8)!9!:16()!;6136%2()!;&<)%=&3'!>?!@&<283! ! A%'=)83')!$2%! 45&/678&,9&:9;<6=! ! A6?% 6B3)8&% ()!7%2>) >) '()!%.*&>9&?-./01%*$0!2&30%**%&%!&4+*0%&).*0%! ! ! 0?C)3!>)!(2!3DE=)!4! ! @!!"#$%&'()*(+,%),-*$',#.(/(01.23*00*(40%+"0*(23*5(0*'( >A86B?7C9??D;&E?78<=68AFG9;&H7IA8;! ! ! ! 06?3)8?)!()!4!.+!FGH0!*+./! ! ;)<283!?8!C?%I!16#$6='!>)!4! ! 'I5&*6J987&$=9I8J!0&%!G(&=3)%!K2%>I!L6?8>23&68!M6%!N1)28!01&)81)!O0GKLN0PJ!A(I#6?3D!Q!H6I2?#)RS8&!! !!H2$$6%3)?%! 3I6B5&K78&37J?6J;LAJ!S8&<)%=&3'!>)!T)8E<)!Q!0?&==)! !!H2$$6%3)?%! 'I5&47IA87&468=I9;6IJ!032U&68)!V66(67&12!G8368!;6D%8!6M!W2$()=!Q!"32(&)! XY2#&823)?%! 3I6B5&,7I;&$=9HH788J!SAFZ,ZWH0!0323&68!V66(67&[?)!>)!@&(()M%281D)R=?%RF)%!Q!L%281)! XY2#&823)?%! 'I5&*7BB79?9&$A786J!;\WXZN,A)(276=J!"LHXFXH!!"#$%"&'"&(%")$*&+,-./0#1&Q!L%281)!!! !!!Z6R>&%)13)?%!>)!3DE=)! 'I5&)6?6HM78&>9&17IC7;J&SAFZ,ZWH0!0323&68!5&6(67&[?)!>)!H6=16MM!Q!L%281)! ! !!!!!!!!!;&%)13)?%!>)!3DE=)! ! ! ! "#$%&#'!()!*+,+-,*+./! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Remerciements* ! Remerciements* A!l'issue!de!ce!travail!de!recherche!et!de!sa!rédaction,!j’ai!la!preuve!que!la!thèse!est!loin!d'être!un!travail! solitaire.! En! effet,! je! n'aurais! jamais! pu! réaliser! ce! travail! doctoral! sans! le! soutien! d'un! grand! nombre! de! personnes!dont!l’amitié,!la!générosité,!la!bonne!humeur%et%l'intérêt%manifestés%à%l'égard%de%ma%recherche%m'ont% permis!de!progresser!dans!cette!phase!délicate!de!«!l'apprentiGchercheur!».!
    [Show full text]
  • Akashiwo Sanguinea
    Ocean ORIGINAL ARTICLE and Coastal http://doi.org/10.1590/2675-2824069.20-004hmdja Research ISSN 2675-2824 Phytoplankton community in a tropical estuarine gradient after an exceptional harmful bloom of Akashiwo sanguinea (Dinophyceae) in the Todos os Santos Bay Helen Michelle de Jesus Affe1,2,* , Lorena Pedreira Conceição3,4 , Diogo Souza Bezerra Rocha5 , Luis Antônio de Oliveira Proença6 , José Marcos de Castro Nunes3,4 1 Universidade do Estado do Rio de Janeiro - Faculdade de Oceanografia (Bloco E - 900, Pavilhão João Lyra Filho, 4º andar, sala 4018, R. São Francisco Xavier, 524 - Maracanã - 20550-000 - Rio de Janeiro - RJ - Brazil) 2 Instituto Nacional de Pesquisas Espaciais/INPE - Rede Clima - Sub-rede Oceanos (Av. dos Astronautas, 1758. Jd. da Granja -12227-010 - São José dos Campos - SP - Brazil) 3 Universidade Estadual de Feira de Santana - Departamento de Ciências Biológicas - Programa de Pós-graduação em Botânica (Av. Transnordestina s/n - Novo Horizonte - 44036-900 - Feira de Santana - BA - Brazil) 4 Universidade Federal da Bahia - Instituto de Biologia - Laboratório de Algas Marinhas (Rua Barão de Jeremoabo, 668 - Campus de Ondina 40170-115 - Salvador - BA - Brazil) 5 Instituto Internacional para Sustentabilidade - (Estr. Dona Castorina, 124 - Jardim Botânico - 22460-320 - Rio de Janeiro - RJ - Brazil) 6 Instituto Federal de Santa Catarina (Av. Ver. Abrahão João Francisco, 3899 - Ressacada, Itajaí - 88307-303 - SC - Brazil) * Corresponding author: [email protected] ABSTRAct The objective of this study was to evaluate variations in the composition and abundance of the phytoplankton community after an exceptional harmful bloom of Akashiwo sanguinea that occurred in Todos os Santos Bay (BTS) in early March, 2007.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • I Biology I Lecture Outline 9 Kingdom Protista
    I Biology I Lecture Outline 9 Kingdom Protista References (Textbook - pages 373-392, Lab Manual - pages 95-115) Major Characteristics Algae 1. Cbaracteristics 2. Classification 3. Division Cblorophyta 4. Division Chrysophyta 5. Division Phaeopbyta 6. Division Rhodopbyta Protozoans 1. Characteristics 2. Classification 3. Class FlageUata 4. Class Sarcodina 5. Class Ciliata 6. Class Sporozoa I Biology I Lecture Notes 9 Kingdom Protista References (Textbook - pages 373-392, Lab Manual- pages 95-115) Major Characteristics I. Protists possess eukaryotic cells with well defined nuclei and organelles 2. Most are unicellular, however there are multi-cellularforms 3. They are diverse in their structure 4. They vary in size from microscope algae to kelp that can be over 100feet in length 5. They are diverse (like bacteria) in the way they meet their nutritional needs A . Some are photosynthetic like land plants - are autotrophic B. Some ingest theirfood like animals - heterotrophic by ingestion C. Some absorb theirfood like bacteria andfungi - heterotrophic by absorption D. One species - Euglena - is mixotrophic meaning that it is capable ofboth autotrophic and heterotrophic life styles. 6. Reproduction in Protists A. is usually asexual by mitosis B. sexual reproduction involves meiosis and spore formation and usualJy occurs only when environmental conditions are hostile C. spores are resistant and can withstand adverse conditions 7. Some protozoans form cysts - a type ofresting stage 8. Photosynthetic protists (mostly algae) are part ofplankton. Plankton are those organisms suspended infresh and marine waters that serve asfood for -- heterotrophic animals and other protists 9. There are diverse opinions on how to classify members ofthe Kingdom Protista.
    [Show full text]
  • Brown Algae and 4) the Oomycetes (Water Molds)
    Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level.
    [Show full text]
  • Morphology and Molecular Phylogeny of Amphidiniopsis Rotundata Sp
    Phycologia (2012) Volume 51 (2), 157–167 Published 12 March 2012 Morphology and molecular phylogeny of Amphidiniopsis rotundata sp. nov. (Peridiniales, Dinophyceae), a benthic marine dinoflagellate 1,3 2 3 3 MONA HOPPENRATH *, MARINA SELINA ,AIKA YAMAGUCHI AND BRIAN LEANDER 1Senckenberg Research Institute, German Centre for Marine Biodiversity Research, Su¨dstrand 44, D-26382 Wilhelmshaven, Germany 2A. V. Zhirmunsky Institute of Marine Biology FEB RAS, Far Eastern Federal University,Vladivostok 690041, Russia 3University of British Columbia, Departments of Botany and Zoology, #3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada HOPPENRATH M., SELINA M., YAMAGUCHI A. AND LEANDER B. 2012. Morphology and molecular phylogeny of Amphidiniopsis rotundata sp. nov. (Peridiniales, Dinophyceae), a benthic marine dinoflagellate. Phycologia 51: 157–167. DOI: 10.2216/11-35.1 A new dinoflagellate species within the benthic, heterotrophic, and thecate genus Amphidiniopsis was discovered, independently, in sediment samples taken on opposite sides of the Pacific Ocean: (1) the Vancouver area, Canada, and (2) Vostok Bay, the Sea of Japan, Russia. The cell morphology was characterized using light and scanning electron microscopy, and the phylogenetic position of this species was inferred from small-subunit ribosomal DNA sequences. The thecal plate pattern [formula: apical pore complex 49 3a 70 5c 5(6)s 5- 2-9] and ornamentation, as well as the general cell shape without an apical hook or posterior spines, demonstrated that this taxon is different from all other described species within the genus. Amphidiniopsis rotundata sp. nov. was dorsoventrally flattened, 24.5–38.5 mm long, 22.6– 32.5 mm wide. The sulcus was characteristically curved and shifted to the left of the ventral side of the cell.
    [Show full text]
  • Scrippsiella Trochoidea (F.Stein) A.R.Loebl
    MOLECULAR DIVERSITY AND PHYLOGENY OF THE CALCAREOUS DINOPHYTES (THORACOSPHAERACEAE, PERIDINIALES) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie der Ludwig-Maximilians-Universität München zur Begutachtung vorgelegt von Sylvia Söhner München, im Februar 2013 Erster Gutachter: PD Dr. Marc Gottschling Zweiter Gutachter: Prof. Dr. Susanne Renner Tag der mündlichen Prüfung: 06. Juni 2013 “IF THERE IS LIFE ON MARS, IT MAY BE DISAPPOINTINGLY ORDINARY COMPARED TO SOME BIZARRE EARTHLINGS.” Geoff McFadden 1999, NATURE 1 !"#$%&'(&)'*!%*!+! +"!,-"!'-.&/%)$"-"!0'* 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 2& ")3*'4$%/5%6%*!+1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 7! 8,#$0)"!0'*+&9&6"*,+)-08!+ 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 :! 5%*%-"$&0*!-'/,)!0'* 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 ;! "#$!%"&'(!)*+&,!-!"#$!'./+,#(0$1$!2! './+,#(0$1$!-!3+*,#+4+).014!1/'!3+4$0&41*!041%%.5.01".+/! 67! './+,#(0$1$!-!/&"*.".+/!1/'!4.5$%"(4$! 68! ./!5+0&%!-!"#$!"#+*10+%,#1$*10$1$! 69! "#+*10+%,#1$*10$1$!-!5+%%.4!1/'!$:"1/"!'.;$*%."(! 6<! 3+4$0&41*!,#(4+)$/(!-!0#144$/)$!1/'!0#1/0$! 6=! 1.3%!+5!"#$!"#$%.%! 62! /0+),++0'* 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<=!
    [Show full text]
  • Reference Database for the 18S Rrna Gene
    Received: 3 November 2017 | Revised: 15 February 2018 | Accepted: 24 February 2018 DOI: 10.1111/1755-0998.12781 RESOURCE ARTICLE DINOREF: A curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene Solenn Mordret1 | Roberta Piredda1 | Daniel Vaulot2 | Marina Montresor1 | Wiebe H. C. F. Kooistra1 | Diana Sarno1 1Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy Abstract 2Sorbonne Universite, CNRS, UMR Dinoflagellates are a heterogeneous group of protists present in all aquatic ecosys- Adaptation et Diversite en Milieu Marin, tems where they occupy various ecological niches. They play a major role as primary Station Biologique, Roscoff, France producers, but many species are mixotrophic or heterotrophic. Environmental Correspondence metabarcoding based on high-throughput sequencing is increasingly applied to Diana Sarno, Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, assess diversity and abundance of planktonic organisms, and reference databases Italy. are definitely needed to taxonomically assign the huge number of sequences. We Email: [email protected] provide an updated 18S rRNA reference database of dinoflagellates: DINOREF. Funding information Sequences were downloaded from GENBANK and filtered based on stringent quality Italian Ministry of Education, University and Research criteria. All sequences were taxonomically curated, classified taking into account classical morphotaxonomic studies and molecular phylogenies, and linked to a series of metadata. DINOREF includes 1,671 sequences representing 149 genera and 422 species. The taxonomic assignation of 468 sequences was revised. The largest num- ber of sequences belongs to Gonyaulacales and Suessiales that include toxic and symbiotic species. DINOREF provides an opportunity to test the level of taxonomic resolution of different 18S barcode markers based on a large number of sequences and species.
    [Show full text]
  • A New Heterotrophic Dinoflagellate from the North-Eastern Pacific
    The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE A New Heterotrophic Dinoflagellate from the North-eastern Pacific, Protoperidinium fukuyoi: Cyst–Theca Relationship, Phylogeny, Distribution and Ecology Kenneth N. Mertensa, Aika Yamaguchib,c, Yoshihito Takanod, Vera Pospelovae, Martin J. Headf, Taoufik Radig, Anna J. Pienkowski h, Anne de Vernalg, Hisae Kawamid & Kazumi Matsuokad a Research Unit for Palaeontology, Ghent University, Krijgslaan 281 s8, 9000, Ghent, Belgium b Okinawa Institution of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami, Okinawa, 904-0412, Japan c Kobe University Research Center for Inland Seas, Rokkodai, Kobe, 657-8501, Japan d Institute for East China Sea Research (ECSER), 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan e School of Earth and Ocean Sciences, University of Victoria, OEASB A405, P. O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada f Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, L2S 3A1, Canada g GEOTOP, UniversiteduQu ebec a Montreal, P. O. Box 8888, Montreal, Qubec, H3C 3P8, Canada h School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom Keywords ABSTRACT LSU rDNA; round spiny brown cyst; Saanich – Inlet; San Pedro Harbor; single-cell PCR; The cyst theca relationship of Protoperidinium fukuyoi n. sp. (Dinoflagellata, SSU rDNA; Strait of Georgia. Protoperidiniaceae) is established by incubating resting cysts from estuarine sediments off southern Vancouver Island, British Columbia, Canada, and San Correspondence Pedro Harbor, California, USA. The cysts have a brown-coloured wall, and are K.
    [Show full text]
  • Kingdom Protista Protista
    KINGDOM PROTISTA PROTISTA Taxonomy Domain Eukarya Kingdom Protista Bacteria Archaea Protista Plants Fungi Animals 2 General Characteristics Cellular organization Most unicellular; some multicellular Size Microscopic >100 m in length Reproduction Asexual (binary fission or budding) OR sexual Metabolism Autotrophic, heterotrophic, or both 3 General Characteristics A “kingdom of convenience” Not fungi, plants or animals Volvox Amoeba Sea Palm Kelp Trichomonas 4 Diatoms Phylogeny diplomonadsFlagellated Continual flux parabasalids Protozoans trypanosomes euglenoids ~80,000 named species radiolarians Shelled cells foraminiferans 7 groups prokaryotic ancestor ciliates Alveolates dinoflagellates Flagellated protozoans apicomplexans water molds Shelled cells diatoms Stramenopiles brown algae Alveolates red algae chlorophyte algaeGreen Stramenopiles charophyte algae Algae land plants Red & green algae amoebas Amoebozoans slime molds Amoebozoans fungi Fig. 22-2f, p. 352 choanoflagellates Choanoflagellates animals 5 Quick Quiz: Based on the cladogram on the previous slide, which group of protists is most closely related to land plants? A) Flagellated protozoans B) Shelled cells C) Alveolates D) Stramenopiles E) Red & Green Algae F) Ameobozoans G) Choanoflagellates 6 Flagellated Protozoans General characteristics Single-celled No cell wall One or more flagella Reproduce by binary fission 3 representative groups Anaerobic flagellates Trypanosomes Euglenoids 7 Flagellated Protozoans Anaerobic flagellates – live without
    [Show full text]