A New Heterotrophic Dinoflagellate from the North-Eastern Pacific

Total Page:16

File Type:pdf, Size:1020Kb

A New Heterotrophic Dinoflagellate from the North-Eastern Pacific The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE A New Heterotrophic Dinoflagellate from the North-eastern Pacific, Protoperidinium fukuyoi: Cyst–Theca Relationship, Phylogeny, Distribution and Ecology Kenneth N. Mertensa, Aika Yamaguchib,c, Yoshihito Takanod, Vera Pospelovae, Martin J. Headf, Taoufik Radig, Anna J. Pienkowski h, Anne de Vernalg, Hisae Kawamid & Kazumi Matsuokad a Research Unit for Palaeontology, Ghent University, Krijgslaan 281 s8, 9000, Ghent, Belgium b Okinawa Institution of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami, Okinawa, 904-0412, Japan c Kobe University Research Center for Inland Seas, Rokkodai, Kobe, 657-8501, Japan d Institute for East China Sea Research (ECSER), 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan e School of Earth and Ocean Sciences, University of Victoria, OEASB A405, P. O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada f Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, L2S 3A1, Canada g GEOTOP, UniversiteduQu ebec a Montreal, P. O. Box 8888, Montreal, Qubec, H3C 3P8, Canada h School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom Keywords ABSTRACT LSU rDNA; round spiny brown cyst; Saanich – Inlet; San Pedro Harbor; single-cell PCR; The cyst theca relationship of Protoperidinium fukuyoi n. sp. (Dinoflagellata, SSU rDNA; Strait of Georgia. Protoperidiniaceae) is established by incubating resting cysts from estuarine sediments off southern Vancouver Island, British Columbia, Canada, and San Correspondence Pedro Harbor, California, USA. The cysts have a brown-coloured wall, and are K. Mertens, Research Unit for Palaeontolo- characterized by a saphopylic archeopyle comprising three apical plates, the gy, Ghent University, Krijgslaan 281 s8, apical pore plate and canal plate; and acuminate processes typically arranged in 9000 Ghent, Belgium linear clusters. We elucidate the phylogenetic relationship of P. fukuyoi through Telephone number: +32-9-264-4609; large and small subunit (LSU and SSU) rDNA sequences, and also report the FAX number: +32-9-264-4608; SSU of the cyst-defined species Islandinium minutum (Harland & Reid) Head e-mail: [email protected] et al. 2001. Molecular phylogenetic analysis by SSU rDNA shows that both species are closely related to Protoperidinium americanum (Gran & Braarud Received: 31 January 2013; revised 3 April 1935) Balech 1974. Large subunit rDNA phylogeny also supports a close rela- 2013; accepted April 3, 2013. tionship between P. fukuyoi and P. americanum. Three subgroups in total are further characterized within the Monovela group. The cyst of P. fukuyoi shows doi:10.1111/jeu.12058 a wide geographical range along the coastal tropical to temperate areas of the North-east Pacific, its distribution reflecting optimal summer sea-surface temperatures of ~14–18 °C and salinities of 22–34 psu. FREE-LIVING marine dinoflagellates comprise a diverse palaeontologists and based on resting cyst morphology. group of organisms, currently encompassing approxi- Linking both stages is important for both biological and mately 1,555 species (Gomez 2005). In addition to a geological studies. This was traditionally established by motile stage, some dinoflagellates produce resting cysts incubating living cysts and identifying the emergent motile as part of their life cycle, allowing them to endure unfa- stage (e.g. Wall and Dale 1968). Molecular analyses are vourable environmental conditions. Resting cysts are now an important additional tool, utilizing the polymerase assumed to be hypnozygotes based on the relatively few chain reaction (PCR) technique either on single cells or species for which this has been confirmed (e.g. Figueroa single cysts (e.g. Bolch 2001; Matsuoka and Head in et al. 2011; von Stosch 1973), and resting cysts are press; Matsuoka et al. 2006; Takano and Horiguchi 2006). usually the only geologically preservable stage in the dino- Some cysts are brown in colour with a distinct spheroi- flagellate life cycle. The existence of these two life cycle dal, process-bearing shape and are therefore informally stages has resulted in the creation of two taxonomic designated as round brown spiny cysts (Radi et al. 2013). systems: one used by biologists and based on the mor- Two cyst-defined genera, using palaeontological nomen- phology of living motile cells, and the other developed by clature, presently accommodate these species. Cysts © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists Journal of Eukaryotic Microbiology 2013, 60, 545–563 545 New Dinoflagellate Protoperidinium fukuyoi Mertens et al. belonging to the genus Echinidinium Zonneveld 1997 inferred by SSU rDNA show that it is closely related to ex Head et al. 2001 are characterized by a theropylic Protoperidinium americanum, Protoperidinium fusiforme, archeopyle (Head et al. 2001), i.e. an angular slit that fol- Protoperidinium parthenopes, P. tricingulatum and the lows plate boundaries but without complete release of cyst-defined species I. minutum. By quantitatively docu- plates (Matsuoka 1988). Cysts belonging to the genus Is- menting the cyst in surface sediments and sediment landinium Head et al. 2001 open with a saphopylic arche- traps, we show its wide distribution along the northwest opyle, which is defined as having a free operculum American margin. (Matsuoka 1988). At the species level, process (spine), characteristics (hollow or solid, size, lateral profile, surface MATERIALS AND METHODS ornamentation including striations or spinules, heterogene- ity, density of distribution) and wall texture (granular to Incubation studies were performed by K.N.M. at the Insti- smooth) are important attributes for distinguishing species tute for East China Sea Research at Nagasaki University. (e.g. Head 2003; Head et al. 2001; Mertens et al. 2012a; Molecular work was carried out at the same location by Pospelova and Head 2002; Radi et al. 2013; Zonneveld Y.T. and H.K. Palynological work was conducted by V.P., 1997). T.R. and M.J.H. at the University of Victoria, GEOTOP, Cyst–motile stage relationships have been established and Brock University, respectively. for very few species producing round brown spiny cysts, these being: Diplopelta parva (Matsuoka 1988), Protoperi- Germination experiments dinium monospinum (Zonneveld & Dale 1994), Oblea acanthacysta (Kawami et al. 2006), Protoperidinium tricin- To obtain cysts of P. fukuyoi n. sp. for incubation studies, gulatum (Kawami et al. 2009), and several cyst morpho- surface sediment samples containing round brown spiny types of Archaeperidinium minutum (Mertens et al. 2012a; cysts were collected at three locations around southern Ribeiro et al. 2010) and the closely related species Archae- Vancouver Island, British Columbia, Canada, in October peridinium saanichi (both reviewed in Mertens et al. 2011: (1) Patricia Bay, Saanich Inlet (site A), (2) Brentwood 2012a). Archaeperidinium minutum was previously called Bay, Saanich Inlet (site B), and (3) central Strait of Georgia Protoperidinium minutum, the genus Archaeperidinium (site C) and two locations around San Pedro Harbor, having been reinstated by Yamaguchi et al. (2011) based California, USA (sites E and F) (Table 1 and Fig. S1). The on morphological and phylogenetic observations. No studied cyst type had been previously identified as “cyst cyst-defined names have been erected for any of these type A” in the following North Pacific settings: the Strait motile-stage defined species, mostly to avoid unnecessary of Georgia (Pospelova et al. 2010; Radi et al. 2007), taxonomic complexity. However, with the advent of coastal bays of southern Vancouver Island (Krepakevich molecular techniques, it has become increasingly apparent and Pospelova 2010), Saanich Inlet (Price and Pospelova that cyst characteristics such as the archeopyle (e.g. 2011), the Santa Barbara Basin (Bringue et al. 2013; Matsuoka 1988; Matsuoka and Head in press) and thecal Pospelova et al. 2006), and off Mexico (Limoges et al. characteristics including details of the sulcal plates – as 2010). All samples were stored in plastic bags in a refrig- suggested early by Abe (1936) and more recently by erator at 4 °C. In situ sea-surface salinities (SSSs) and Matsuoka and Kawami (in press) – are of primary impor- sea-surface temperatures (SSTs) were measured when tance in grouping species. collecting samples (Table S1). In addition to their taxonomic interest, these round About 0.5–1.0 cm3 of wet sediment was immersed in fil- brown spiny cysts are important for palaeoclimatological tered seawater and, after 1 min of ultrasonication using an studies because their distributions are related to tempera- As OneTM (As One Corp., Osaka, Japan) US2R ultrasonic ture, salinity, trophic state and sea-ice cover (Radi et al. bath, the sediment was rinsed through a 20 lm metallic- 2013; Zonneveld et al. 2013). Some species, notably meshed calibrated SanpoTM (Sanpo, Tokyo, Japan) sieve Echinidinium karaense, Islandinium minutum and Islandini- using filtered seawater. From this residue, the cyst fraction um? cezare s.l., have distinct cold-water distributions was separated using the heavy-liquid sodium polytungstate (Head et al. 2001) and have been associated with sea-ice at a density of 1.3 g/cm (Bolch 1997). Single cysts were cover (e.g. Radi et al. 2013). Recent molecular
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Patrons De Biodiversité À L'échelle Globale Chez Les Dinoflagellés
    ! ! ! ! ! !"#$%&'%&'()!(*+!&'%&,-./01%*$0!2&30%**%&%!&4+*0%&).*0%& ! 0$'1&2(&3'!4!5&6(67&)!#2%&8)!9!:16()!;6136%2()!;&<)%=&3'!>?!@&<283! ! A%'=)83')!$2%! 45&/678&,9&:9;<6=! ! A6?% 6B3)8&% ()!7%2>) >) '()!%.*&>9&?-./01%*$0!2&30%**%&%!&4+*0%&).*0%! ! ! 0?C)3!>)!(2!3DE=)!4! ! @!!"#$%&'()*(+,%),-*$',#.(/(01.23*00*(40%+"0*(23*5(0*'( >A86B?7C9??D;&E?78<=68AFG9;&H7IA8;! ! ! ! 06?3)8?)!()!4!.+!FGH0!*+./! ! ;)<283!?8!C?%I!16#$6='!>)!4! ! 'I5&*6J987&$=9I8J!0&%!G(&=3)%!K2%>I!L6?8>23&68!M6%!N1)28!01&)81)!O0GKLN0PJ!A(I#6?3D!Q!H6I2?#)RS8&!! !!H2$$6%3)?%! 3I6B5&K78&37J?6J;LAJ!S8&<)%=&3'!>)!T)8E<)!Q!0?&==)! !!H2$$6%3)?%! 'I5&47IA87&468=I9;6IJ!032U&68)!V66(67&12!G8368!;6D%8!6M!W2$()=!Q!"32(&)! XY2#&823)?%! 3I6B5&,7I;&$=9HH788J!SAFZ,ZWH0!0323&68!V66(67&[?)!>)!@&(()M%281D)R=?%RF)%!Q!L%281)! XY2#&823)?%! 'I5&*7BB79?9&$A786J!;\WXZN,A)(276=J!"LHXFXH!!"#$%"&'"&(%")$*&+,-./0#1&Q!L%281)!!! !!!Z6R>&%)13)?%!>)!3DE=)! 'I5&)6?6HM78&>9&17IC7;J&SAFZ,ZWH0!0323&68!5&6(67&[?)!>)!H6=16MM!Q!L%281)! ! !!!!!!!!!;&%)13)?%!>)!3DE=)! ! ! ! "#$%&#'!()!*+,+-,*+./! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Remerciements* ! Remerciements* A!l'issue!de!ce!travail!de!recherche!et!de!sa!rédaction,!j’ai!la!preuve!que!la!thèse!est!loin!d'être!un!travail! solitaire.! En! effet,! je! n'aurais! jamais! pu! réaliser! ce! travail! doctoral! sans! le! soutien! d'un! grand! nombre! de! personnes!dont!l’amitié,!la!générosité,!la!bonne!humeur%et%l'intérêt%manifestés%à%l'égard%de%ma%recherche%m'ont% permis!de!progresser!dans!cette!phase!délicate!de!«!l'apprentiGchercheur!».!
    [Show full text]
  • Akashiwo Sanguinea
    Ocean ORIGINAL ARTICLE and Coastal http://doi.org/10.1590/2675-2824069.20-004hmdja Research ISSN 2675-2824 Phytoplankton community in a tropical estuarine gradient after an exceptional harmful bloom of Akashiwo sanguinea (Dinophyceae) in the Todos os Santos Bay Helen Michelle de Jesus Affe1,2,* , Lorena Pedreira Conceição3,4 , Diogo Souza Bezerra Rocha5 , Luis Antônio de Oliveira Proença6 , José Marcos de Castro Nunes3,4 1 Universidade do Estado do Rio de Janeiro - Faculdade de Oceanografia (Bloco E - 900, Pavilhão João Lyra Filho, 4º andar, sala 4018, R. São Francisco Xavier, 524 - Maracanã - 20550-000 - Rio de Janeiro - RJ - Brazil) 2 Instituto Nacional de Pesquisas Espaciais/INPE - Rede Clima - Sub-rede Oceanos (Av. dos Astronautas, 1758. Jd. da Granja -12227-010 - São José dos Campos - SP - Brazil) 3 Universidade Estadual de Feira de Santana - Departamento de Ciências Biológicas - Programa de Pós-graduação em Botânica (Av. Transnordestina s/n - Novo Horizonte - 44036-900 - Feira de Santana - BA - Brazil) 4 Universidade Federal da Bahia - Instituto de Biologia - Laboratório de Algas Marinhas (Rua Barão de Jeremoabo, 668 - Campus de Ondina 40170-115 - Salvador - BA - Brazil) 5 Instituto Internacional para Sustentabilidade - (Estr. Dona Castorina, 124 - Jardim Botânico - 22460-320 - Rio de Janeiro - RJ - Brazil) 6 Instituto Federal de Santa Catarina (Av. Ver. Abrahão João Francisco, 3899 - Ressacada, Itajaí - 88307-303 - SC - Brazil) * Corresponding author: [email protected] ABSTRAct The objective of this study was to evaluate variations in the composition and abundance of the phytoplankton community after an exceptional harmful bloom of Akashiwo sanguinea that occurred in Todos os Santos Bay (BTS) in early March, 2007.
    [Show full text]
  • Trait Changes Induced by Species Interactions in Two Phenotypically Distinct Strains of a Marine Dinoflagellate
    The ISME Journal (2016) 10, 2658–2668 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Trait changes induced by species interactions in two phenotypically distinct strains of a marine dinoflagellate Sylke Wohlrab, Urban Tillmann, Allan Cembella and Uwe John Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Bremerhaven, Germany Populations of the toxigenic marine dinoflagellate Alexandrium are composed of multiple genotypes that display phenotypic variation for traits known to influence top-down processes, such as the ability to lyse co-occurring competitors and prospective grazers. We performed a detailed molecular analysis of species interactions to determine how different genotypes perceive and respond to other species. In a controlled laboratory culture study, we exposed two A. fundyense strains that differ in their capacity to produce lytic compounds to the dinoflagellate grazer Polykrikos kofoidii, and analyzed transcriptomic changes during this interaction. Approximately 5% of all analyzed genes were differentially expressed between the two Alexandrium strains under control conditions (without grazer presence) with fold-change differences that were proportionally higher than those observed in grazer treatments. Species interactions led to the genotype-specific expression of genes involved in endocytotic processes, cell cycle control and outer membrane properties, and signal transduction and gene expression
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Grazing Impacts of the Heterotrophic Dinoflagellate Polykrikos Kofoidii on a Bloom of Gymnodinium Catenatum
    AQUATIC MICROBIAL ECOLOGY Published April 30 Aquat Microb Ecol NOTE Grazing impacts of the heterotrophic dinoflagellate Polykrikos kofoidii on a bloom of Gymnodinium catenatum Yukihiko Matsuyama'f*,Masahide Miyamoto2, Yuichi ~otani' 'National Research Institute of Fisheries and Environment of Inland Sea, Maruishi, Ohno, Saeki, Hiroshima 739-0452, Japan 2KumamotoAriake Fisheries Direction Office, Iwasaki, Tamana, Kumamoto 865-0016, Japan ABSTRACT: In 1998, a red tide of the paralytic shellfish an assessment of the natural population of G. catena- poisoning (PSP)-producing dinoflagellate Gymnodinium cate- turn coupled with a laboratory incubation experiment naturn Graham occurred in Yatsushiro Sea, western Japan. to evaluate the bloom fate. We present data showing The dramatic decline of dominant G. catenatum cells oc- curred during the field and laboratory assessments, accompa- considerable predation by the pseudocolonial hetero- nied with growth of the heterotrophic dinoflagellate Poly- trophic dinoflagellate Polykrikos kofoidii Chatton on knkos kofoidii Chatton. Microscopic observations on both the dominant G. catenatum population, and discuss field and laboratory cultured bloom water revealed that the ecological importance of the genus Polykrikos and >50% of P. kofoidii predated on the natural population of G. catenaturn, and 1 to 8 G. catenatum cells were found in its grazing impact on harmful algal blooms. food vacuoles of P. kofoidii pseudocolonies. Our results sug- Materials and methods. Filed population surveys: gest that predation by P. kofoidii contributes to the cessation The Gymnodinium catenatum bloom occurred from 19 of a G. catenatum bloom. January to 5 February in Miyano-Gawachi Bay, west- ern Yatsushiro Sea, Kyushu Island (Fig. 1). Five cruises KEY WORDS: PSP - Gymnodimurn catenatum .
    [Show full text]
  • A Parasite of Marine Rotifers: a New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae)
    Hindawi Publishing Corporation Journal of Marine Biology Volume 2015, Article ID 614609, 5 pages http://dx.doi.org/10.1155/2015/614609 Research Article A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae) Fernando Gómez1 and Alf Skovgaard2 1 Laboratory of Plankton Systems, Oceanographic Institute, University of Sao˜ Paulo, Prac¸a do Oceanografico´ 191, Cidade Universitaria,´ 05508-900 Butanta,˜ SP, Brazil 2Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Denmark Correspondence should be addressed to Fernando Gomez;´ [email protected] Received 11 July 2015; Accepted 27 August 2015 Academic Editor: Gerardo R. Vasta Copyright © 2015 F. Gomez´ and A. Skovgaard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera), collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches amongthe dinokaryotic dinoflagellates. 1. Introduction form independent lineages with no evident relation to other dinoflagellates [12]. In this study, we describe a new lineage of The alveolates (or Alveolata) are a major lineage of protists an undescribed parasitic dinoflagellate that largely diverged divided into three main phyla: ciliates, apicomplexans, and from other known dinoflagellates.
    [Show full text]
  • Morphology and Molecular Phylogeny of Amphidiniopsis Rotundata Sp
    Phycologia (2012) Volume 51 (2), 157–167 Published 12 March 2012 Morphology and molecular phylogeny of Amphidiniopsis rotundata sp. nov. (Peridiniales, Dinophyceae), a benthic marine dinoflagellate 1,3 2 3 3 MONA HOPPENRATH *, MARINA SELINA ,AIKA YAMAGUCHI AND BRIAN LEANDER 1Senckenberg Research Institute, German Centre for Marine Biodiversity Research, Su¨dstrand 44, D-26382 Wilhelmshaven, Germany 2A. V. Zhirmunsky Institute of Marine Biology FEB RAS, Far Eastern Federal University,Vladivostok 690041, Russia 3University of British Columbia, Departments of Botany and Zoology, #3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada HOPPENRATH M., SELINA M., YAMAGUCHI A. AND LEANDER B. 2012. Morphology and molecular phylogeny of Amphidiniopsis rotundata sp. nov. (Peridiniales, Dinophyceae), a benthic marine dinoflagellate. Phycologia 51: 157–167. DOI: 10.2216/11-35.1 A new dinoflagellate species within the benthic, heterotrophic, and thecate genus Amphidiniopsis was discovered, independently, in sediment samples taken on opposite sides of the Pacific Ocean: (1) the Vancouver area, Canada, and (2) Vostok Bay, the Sea of Japan, Russia. The cell morphology was characterized using light and scanning electron microscopy, and the phylogenetic position of this species was inferred from small-subunit ribosomal DNA sequences. The thecal plate pattern [formula: apical pore complex 49 3a 70 5c 5(6)s 5- 2-9] and ornamentation, as well as the general cell shape without an apical hook or posterior spines, demonstrated that this taxon is different from all other described species within the genus. Amphidiniopsis rotundata sp. nov. was dorsoventrally flattened, 24.5–38.5 mm long, 22.6– 32.5 mm wide. The sulcus was characteristically curved and shifted to the left of the ventral side of the cell.
    [Show full text]
  • Cell Lysis of a Phagotrophic Dinoflagellate, Polykrikos Kofoidii Feeding on Alexandrium Tamarense
    Plankton Biol. Ecol. 47 (2): 134-136,2000 plankton biology & ecology f The Plankton Society of Japan 2(100 Note Cell lysis of a phagotrophic dinoflagellate, Polykrikos kofoidii feeding on Alexandrium tamarense Hyun-Jin Cho1 & Kazumi Matsuoka2 'Graduate School of Marine Science and Engineering, Nagasaki University, 1-14 Bunkyo-inachi, Nagasaki 852-8521. Japan 2Laboratory of Coastal Environmental Sciences, Faculty of Fisheries. Nagasaki University. 1-14 Bunkyo-machi, Nagasaki 852-8521. Japan Received 9 December 1999; accepted 10 April 2000 In many cases, phytoplankton blooms terminate suddenly dinoflagellate, Alexandrium tamarense (Lebour) Balech. within a few days. For bloom-forming phytoplankton, grazing P. kofoidii was collected from Isahaya Bay in western is one of the major factors in the decline of blooms as is sexual Kyushu, Japan, on 3 November, 1998. We isolated actively reproduction to produce non-dividing gametes and planozy- swimming P. kofoidii using a capillary pipette and individually gotes (Anderson et al. 1983; Frost 1991). Matsuoka et al. transferred them into multi-well tissue culture plates contain (2000) reported growth rates of a phagotrophic dinoflagellate, ing a dense suspension of the autotrophic dinoflagellate, Polykrikos kofoidii Chatton, using several dinoflagellate Gymnodinium catenatum Graham (approximately 700 cells species as food organisms. They noted that P. kofoidii showed ml"1) isolated from a bloom near Amakusa Island, western various feeding and growth responses to strains of Alexan Japan, 1997. The P. kofoidii were cultured at 20°C with con drium and Prorocentrum. This fact suggests that for ecological stant lighting to a density of 60 indiv. ml"1, and then starved control of phytoplankton blooms, we should collect infor until no G.
    [Show full text]
  • Scrippsiella Trochoidea (F.Stein) A.R.Loebl
    MOLECULAR DIVERSITY AND PHYLOGENY OF THE CALCAREOUS DINOPHYTES (THORACOSPHAERACEAE, PERIDINIALES) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie der Ludwig-Maximilians-Universität München zur Begutachtung vorgelegt von Sylvia Söhner München, im Februar 2013 Erster Gutachter: PD Dr. Marc Gottschling Zweiter Gutachter: Prof. Dr. Susanne Renner Tag der mündlichen Prüfung: 06. Juni 2013 “IF THERE IS LIFE ON MARS, IT MAY BE DISAPPOINTINGLY ORDINARY COMPARED TO SOME BIZARRE EARTHLINGS.” Geoff McFadden 1999, NATURE 1 !"#$%&'(&)'*!%*!+! +"!,-"!'-.&/%)$"-"!0'* 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 2& ")3*'4$%/5%6%*!+1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 7! 8,#$0)"!0'*+&9&6"*,+)-08!+ 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 :! 5%*%-"$&0*!-'/,)!0'* 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 ;! "#$!%"&'(!)*+&,!-!"#$!'./+,#(0$1$!2! './+,#(0$1$!-!3+*,#+4+).014!1/'!3+4$0&41*!041%%.5.01".+/! 67! './+,#(0$1$!-!/&"*.".+/!1/'!4.5$%"(4$! 68! ./!5+0&%!-!"#$!"#+*10+%,#1$*10$1$! 69! "#+*10+%,#1$*10$1$!-!5+%%.4!1/'!$:"1/"!'.;$*%."(! 6<! 3+4$0&41*!,#(4+)$/(!-!0#144$/)$!1/'!0#1/0$! 6=! 1.3%!+5!"#$!"#$%.%! 62! /0+),++0'* 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<=!
    [Show full text]
  • Sexual Reproduction and Bloom Dynamics of Toxic Dinoflagellates
    SEXUAL REPRODUCTION AND BLOOM DYNAMICS OF TOXIC DINOFLAGELLATES FROM AUSTRALIAN ESTUARINE WATERS by Naomi S. Parker BSc., Grad. Dip. ASOS (Hons), MSc. Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy School of Aquaculture University of Tasmania Hobart June,2002 DECLARATION AND AUTHORITY OF ACCESS This thesis contains no material which has been accepted for the award of a degree or a diploma in any university, and to the best of the author's knowledge and belief, the thesis contains no material previously published or written by another person, except where due acknowledgement is made in the text. This thesis may be made available for loan. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Naomi S. Parker June 2002 ABSTRACT Of the dinoflagellates known to form toxic blooms in Australian estuaries three, Alexandrium minurum, Alexandrium catenella and Gymnodinium catenatum produce paralytic shellfish toxins that can lead to the potentially fatal paralytic shellfish poisoning in humans. These three species and a fourth dinoflagellate Protoceratium reticulatum all have the capacity to reproduce both by vegetative cell division and by sexual reproduction. The product of sexual reproduction in all cases is a resting cyst, which can sink to the sediments and remain dormant for a time. Resting cyst production results in a coupling between the benthic and pelagic components of estuarine systems and forms an important part of the ecological strategy of dinoflagellates. A variety of aspects of sexual reproduction of these four species were investigated.
    [Show full text]
  • Ichthyotoxic Cochlodinium Polykrikoides Red Tides Offshore in the South Sea, Korea in 2014: II
    Research Article Algae 2017, 32(3): 199-222 https://doi.org/10.4490/algae.2017.32.8.25 Open Access Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms An Suk Lim1,2, Hae Jin Jeong1,3,*, Kyeong Ah Seong4, Moo Joon Lee1, Nam Seon Kang5, Se Hyeon Jang1, Kyung Ha Lee1, Jae Yeon Park3, Tae Young Jang1 and Yeong Du Yoo4 1School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea 2Brain Korea 21 Plus, School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea 3Advanced Institutes of Convergence Technology, Suwon 16229, Korea 4Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Korea 5Marine Biodiversity Institute of Korea, Seochun 33662, Korea Occurrence of Cochlodinium polykrikoides red tides have resulted in considerable economic losses in the aquaculture industry in many countries, and thus predicting the process of C. polykrikoides red tides is a critical step toward minimiz- ing those losses. Models predicting red tide dynamics define mortality due to predation as one of the most important parameters. To investigate the roles of heterotrophic protists in red tide dynamics in the South Sea of Korea, the abun- dances of heterotrophic dinoflagellates (HTDs), tintinnid ciliates (TCs), and naked ciliates (NCs) were measured over one- or two-week intervals from May to Nov 2014. In addition, the grazing impacts of dominant heterotrophic protists on each red tide species were estimated by combining field data on red tide species abundances and dominant heterotro- phic protist grazers with data obtained from the literature concerning ingestion rates of the grazers on red tide species.
    [Show full text]