Sexual Reproduction and Bloom Dynamics of Toxic Dinoflagellates

Total Page:16

File Type:pdf, Size:1020Kb

Sexual Reproduction and Bloom Dynamics of Toxic Dinoflagellates SEXUAL REPRODUCTION AND BLOOM DYNAMICS OF TOXIC DINOFLAGELLATES FROM AUSTRALIAN ESTUARINE WATERS by Naomi S. Parker BSc., Grad. Dip. ASOS (Hons), MSc. Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy School of Aquaculture University of Tasmania Hobart June,2002 DECLARATION AND AUTHORITY OF ACCESS This thesis contains no material which has been accepted for the award of a degree or a diploma in any university, and to the best of the author's knowledge and belief, the thesis contains no material previously published or written by another person, except where due acknowledgement is made in the text. This thesis may be made available for loan. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Naomi S. Parker June 2002 ABSTRACT Of the dinoflagellates known to form toxic blooms in Australian estuaries three, Alexandrium minurum, Alexandrium catenella and Gymnodinium catenatum produce paralytic shellfish toxins that can lead to the potentially fatal paralytic shellfish poisoning in humans. These three species and a fourth dinoflagellate Protoceratium reticulatum all have the capacity to reproduce both by vegetative cell division and by sexual reproduction. The product of sexual reproduction in all cases is a resting cyst, which can sink to the sediments and remain dormant for a time. Resting cyst production results in a coupling between the benthic and pelagic components of estuarine systems and forms an important part of the ecological strategy of dinoflagellates. A variety of aspects of sexual reproduction of these four species were investigated. These included: life cycle description (A. minutum); mating system studies (all four species); assessing the use of sexually compatible strains in high biomass culture systems (A. minutum); experimental studies of encystment and excystment cues (A, minutum and G. catenatum); and a three-year field study of vegetative and sexual reproduction of G. catenatum in an estuary in south-east Tasmania. The complete life cycle of A, minutum was described and was found to be similar to other Alexandrium species. Alexandrium minutum was also found to produce temporary resting cysts in response to cold shock and to have a short (approximately 4 weeks) minimum requisite dormancy period. The mating systems of all four species were investigated. Alexandrium catenella strains from three Australian populations were found to have simple heterothallic mating systems with essentially two mating types. The other three species all had mating systems of greater complexity with gradients of affinity between strains rather than discrete mating types. These mating type affinities were also found to vary over years in A. minutum and G. catenatum. Cluster analysis was demonstrated to be a useful method for describing these gradients. Encystment and excystment of A. minutum and G. catenatum involves both biological and environmental factors. Both these dinoflagellates had defined temperature ranges.. for encystment and excystment and evidence was found for the action of pheromone-like substances in encystment. Low irradiance and low nutrients influenced encystment, and nutrient depletion had a greater effect on encystment of A, minutum than of G. catenatum. The influence of algicidal bacteria on both encystment and excystment was tested for the first time and found to have no effect while low oxygen and low light greatly reduced excystment. The capacity for sexual reproduction by A, rninutum did not significantly effect biomass production in high biomass culture systems while growth rate increased with aeration. In the three year field study, four G. catenatum blooms were observed, two in summer and two in autumn. Sexual reproduction occurred throughout summer blooms but was below detection levels in autumn blooms and probably controlled by temperature. The importance of river flow for dinoflagellate blooms in this system was identified. Dinoflagellate blooms, including G. catenatum, were absent in the first year of the study which may be attributed to increased flushing of the estuary due to high and persistent flow of the Huon River in that year which may also have reduced diatom biomass and subsequent nutrient remineralisation. A dual strategy for the contribution of resting cysts in this system is suggested whereby frequent germination of resting cysts from shallow sediments contributes to bloom populations and overwintering biomass while deeply buried and rarely resuspended resting cysts contribute to long-term survival of the population in the estuary. The results of all investigations for A. minutum and G. catenatum were synthesised into conceptual frameworks of sexual reproduction and bloom dynamics within natural systems. ACKNOWLEDGEMENTS Peter Thompson - Many thanks for all the stimulating scientific discussions, for sharing your wealth of knowledge, and for your encouragement and support. Susan Blackburn - Many thanks for all your work in nurturing both the scientist and the person. Thanks also for your encouragement and advice and for being excited about my research. Kerrie Swadling - Thankyou so much for your advice, support, encouragement, and in particular for your expertise on all things statistical. The staff of Tassal Killala Bay and Tas Blue Mussels - My thanks for all the field work support and for sharing your 'on the ground' expertise with me. Andrew Negri -My thanks for advice and discussions on toxins and toxin analysis and for very prompt return of drafts! Lesley Clementson - Thanks for all the help with the Huon Study, and in particular for your pigment and Access expertise. Pru Bonham -Many thanks for all those cell counts in the first two years, for phytoplankton discussions and enjoyable field trips. The Huon Estuary Study Team - Thanks for providing a great field work environment, in particular thanks to Pru Bonham, Ali Turnbull, Kate Beny, Ros Watson, Don McKenzie, and John Parslow. Mario Tredici and Liliana Rodolfi - My thanks for introducing me to the world of photobioreactors and the beauty of Toscana. Funding - Thanks to CSIRO Marine Research for financial support of my research, in particular for awarding me a top-up scholarship, which enabled me to attend two conferences in Italy and to generally live a little more comfortably. Thanks also to FRDC and LWRRDC for partial funding. Thanks to those who helped with final editing of chapters, Phillip, Ian and Alicja. Jennifer Skerratt - Many thanks for support, encouragement, your companionship during field work, snorkelling, and conferences and for collaboration on the algicidal bacteria experiments. Phillip Tracey -Thanks for the support, the encouragement, the editing, for putting up with me and for oh so many dinners! Kirsten LeMar -Thanks for so much support and understanding and the afternoon cuppas at Fullers. ~ieka'~abart- Thanks for being a great housemate and a wonderful friend - it's the end of a long road, my thanks to you for helping me along it. To my fellow PhD sufferers - Jen, Phil, Kirsten, Thomo, Ross, Martina, Lynda, Richard, Malcolm - for being in the struggle and for showing me it is possible. Fi, Mal, Zoe and Sam - What would I do without you, thanks for the meals, the smiles, the hugs and the warmth of your welcome. Mum, Dad, Andrew, Jillian, Sophie, Lucy and Abby - Thanks for your constant love and support. Jeannie and Cathy - thanks for all your logistic support and for running a very efficient lab! The coffee club - Dion, Ian, Mal, Mal, Stan, Stefano, and Richard - Many thanks for stimulating afternoon conversations, support, laughter, and for helping me stay sane. The Saturday morning coffee crew - Thomo, Scotty, Jen, Phil, Kirsten, Litz, Anth, Goldie, Belinda, Russel, Shavawn, Nev, Kim, Al, Denbeigh, Andrew, etc. etc. you know who you are. Thanks for making Saturday mornings relaxing and enjoyable. Malcolm Brown, Peter Thompson, Sue Blackburn, Dick Martin, Andy Revill, the National Oceans Ofice and the Cookie Consumers -Thanks for the interesting part-time projects which supported me through the final year. Miscellaneous thanks to - Tas Coffee Roasters, Fullers and the Afterword Cafk, Machine Laundry Cafe, and The Retro. DEDICATION This thesis is dedicated to my Grandfather, Ira Mark Parker - who helped me to realise that there's a fascinating world out there and its not as big as it looks - I've finally finished Grandpa! TABLE OF CONTENTS DECLARATIONS ABSTRACT iii ACKNOWLEDGMENTS TABLE OF CONTENTS vii CHAPTER 1: INTRODUCTION GENERALINTRODUCTION 1.1 Reproduction of Dinoflagellates 1.2 Sexual Reproduction of Dinoflagellates 1 -2.1 Mating Systems 1.2.2 Encystrnent 1.2.3 Excystment 1.3 The Role of Sexual Reproduction in the Bloom Dynamics of Dinoflagellates 1.4 ' Australian Toxic Dinoflagellates 1.5 Gymnodinium catenatum 1.6 Alexandrium minutum 1.7 Alexandrium catenella 1 .S * Protoceratium reticulatum RESEARCH AIMSAND CHAPTERSUMMARY REFERENCES CHAPTER 2: THE SEXUAL LIFE CYCLE OF THE TOXIC DINOFLAGELLATE ALEXANDRIUM MINUTUM (DINOPHYCEAE) FROM THE PORT RIVER ESTUARY, SOUTH AUSTRALIA 29 INTRODUCTION 30 METHODS 3 1 2.1 Strain Details 3 1 2.2 Life Cycle Observations 32 2.2.1 Resting Cyst Formation 32 2.2.2 Resting Cyst Germination 32 RESULTS 33 2.3 Life Cycle Observations 33 DISCUSSION 37 , REFERENCES 42 CHAPTER 3: DINOFLAGELLATE MATING SYSTEMS . INTRODUCTION MATERIALSAND METHODS 3.1 Strain Details 3.2 Mating System Determination 3.3 Crossing
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Trait Changes Induced by Species Interactions in Two Phenotypically Distinct Strains of a Marine Dinoflagellate
    The ISME Journal (2016) 10, 2658–2668 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Trait changes induced by species interactions in two phenotypically distinct strains of a marine dinoflagellate Sylke Wohlrab, Urban Tillmann, Allan Cembella and Uwe John Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Bremerhaven, Germany Populations of the toxigenic marine dinoflagellate Alexandrium are composed of multiple genotypes that display phenotypic variation for traits known to influence top-down processes, such as the ability to lyse co-occurring competitors and prospective grazers. We performed a detailed molecular analysis of species interactions to determine how different genotypes perceive and respond to other species. In a controlled laboratory culture study, we exposed two A. fundyense strains that differ in their capacity to produce lytic compounds to the dinoflagellate grazer Polykrikos kofoidii, and analyzed transcriptomic changes during this interaction. Approximately 5% of all analyzed genes were differentially expressed between the two Alexandrium strains under control conditions (without grazer presence) with fold-change differences that were proportionally higher than those observed in grazer treatments. Species interactions led to the genotype-specific expression of genes involved in endocytotic processes, cell cycle control and outer membrane properties, and signal transduction and gene expression
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics
    toxins Article Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics Bryan John J. Subong 1,2,* , Arturo O. Lluisma 1, Rhodora V. Azanza 1 and Lilibeth A. Salvador-Reyes 1,* 1 Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines; [email protected] (A.O.L.); [email protected] (R.V.A.) 2 Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-8654, Japan * Correspondence: [email protected] (B.J.J.S.); [email protected] (L.A.S.-R.) Abstract: Alexandrium minutum and Alexandrium tamutum are two closely related harmful algal bloom (HAB)-causing species with different toxicity. Using isobaric tags for relative and absolute quantita- tion (iTRAQ)-based quantitative proteomics and two-dimensional differential gel electrophoresis (2D-DIGE), a comprehensive characterization of the proteomes of A. minutum and A. tamutum was performed to identify the cellular and molecular underpinnings for the dissimilarity between these two species. A total of 1436 proteins and 420 protein spots were identified using iTRAQ-based proteomics and 2D-DIGE, respectively. Both methods revealed little difference (10–12%) between the proteomes of A. minutum and A. tamutum, highlighting that these organisms follow similar cellular and biological processes at the exponential stage. Toxin biosynthetic enzymes were present in both organisms. However, the gonyautoxin-producing A. minutum showed higher levels of osmotic growth proteins, Zn-dependent alcohol dehydrogenase and type-I polyketide synthase compared to the non-toxic A. tamutum. Further, A. tamutum had increased S-adenosylmethionine transferase that may potentially have a negative feedback mechanism to toxin biosynthesis.
    [Show full text]
  • Grazing Impacts of the Heterotrophic Dinoflagellate Polykrikos Kofoidii on a Bloom of Gymnodinium Catenatum
    AQUATIC MICROBIAL ECOLOGY Published April 30 Aquat Microb Ecol NOTE Grazing impacts of the heterotrophic dinoflagellate Polykrikos kofoidii on a bloom of Gymnodinium catenatum Yukihiko Matsuyama'f*,Masahide Miyamoto2, Yuichi ~otani' 'National Research Institute of Fisheries and Environment of Inland Sea, Maruishi, Ohno, Saeki, Hiroshima 739-0452, Japan 2KumamotoAriake Fisheries Direction Office, Iwasaki, Tamana, Kumamoto 865-0016, Japan ABSTRACT: In 1998, a red tide of the paralytic shellfish an assessment of the natural population of G. catena- poisoning (PSP)-producing dinoflagellate Gymnodinium cate- turn coupled with a laboratory incubation experiment naturn Graham occurred in Yatsushiro Sea, western Japan. to evaluate the bloom fate. We present data showing The dramatic decline of dominant G. catenatum cells oc- curred during the field and laboratory assessments, accompa- considerable predation by the pseudocolonial hetero- nied with growth of the heterotrophic dinoflagellate Poly- trophic dinoflagellate Polykrikos kofoidii Chatton on knkos kofoidii Chatton. Microscopic observations on both the dominant G. catenatum population, and discuss field and laboratory cultured bloom water revealed that the ecological importance of the genus Polykrikos and >50% of P. kofoidii predated on the natural population of G. catenaturn, and 1 to 8 G. catenatum cells were found in its grazing impact on harmful algal blooms. food vacuoles of P. kofoidii pseudocolonies. Our results sug- Materials and methods. Filed population surveys: gest that predation by P. kofoidii contributes to the cessation The Gymnodinium catenatum bloom occurred from 19 of a G. catenatum bloom. January to 5 February in Miyano-Gawachi Bay, west- ern Yatsushiro Sea, Kyushu Island (Fig. 1). Five cruises KEY WORDS: PSP - Gymnodimurn catenatum .
    [Show full text]
  • MAST/IOC Advanced Phytoplankton Course on Taxonomy and Syste
    Optical Character Recognition (OCR) document. WARNING! Spelling errors might subsist. In order to access to the original document in image form, click on "Original" button on 1st page. Intergovernmental Oceanographic Commission Training Course Reports 36 MAST-IOC Advanced Phytoplankton Course on Taxonomy and Systematics Marine Botany Laboratory Stazione Zoologica ‘A. Dohrn’ di Napoli Casamicciola Terme (Island of Ischia), Naples, Italy 24 September - 14 October 1995 UNESCO Optical Character Recognition (OCR) document. WARNING! Spelling errors might subsist. In order to access to the original document in image form, click on "Original" button on 1st page. IOC Training Course Report No. 36 page (i) TABLE OF CONTENTS Page iii ABSTRACT 1. BACKGROUND, ORGANIZATION AND GOALS 1 1.1 BACKGROUND 1 1.2 ORGANIZATION 1 1.3 GOALS 2 2. CONTENT 2 2.1 OPENING AND INTRODUCTION 3 2.2 MANUALS 3 2.3 THEORETICAL SESSIONS 3 2.4 PRACTICAL SESSIONS 3 2.4.1. Species observation 3 2.4.2. Techniques 4 2.4.3. Exercises 4 2.5 FIELD TRIP AND OBSERVATION OF LIVE NATURAL SAMPLES 4 2.6 SCANNING (SEM) AND TRANSMISSION ELECTRON MICROSCOPE (TEM) DEMONSTRATIONS 5 2.7 WORKSHOPS 5 2.8 REGIONAL REPORTS ON HARMFUL ALGAL BLOOMS 5 2.9 SEMINARS 5 3. QUESTIONNAIRE AND CONCLUDING REMARKS 6 3.1 QUESTIONNAIRE 6 3.1 CONCLUDING REMARKS 6 ANNEXES I Programme II Faculty III Participants to the five previous Courses IV Organizing Committee V List of participants VI Financial statement VII Workshops VIII Regional reports IX Questionnaire X List of Acronyms Optical Character Recognition (OCR) document. WARNING! Spelling errors might subsist.
    [Show full text]
  • The Toxic Dinoflagellate Alexandrium Minutum Impairs the Performance Of
    The toxic dinoflagellate Alexandrium minutum impairs the performance of oyster embryos and larvae Justine Castrec, Helene Hegaret, Matthias Huber, Jacqueline Le Grand, Arnaud Huvet, Kevin Tallec, Myrina Boulais, Philippe Soudant, Caroline Fabioux To cite this version: Justine Castrec, Helene Hegaret, Matthias Huber, Jacqueline Le Grand, Arnaud Huvet, et al.. The toxic dinoflagellate Alexandrium minutum impairs the performance of oyster embryos and larvae. Harmful Algae, Elsevier, 2020, 92, pp.101744. 10.1016/j.hal.2020.101744. hal-02879884 HAL Id: hal-02879884 https://hal.archives-ouvertes.fr/hal-02879884 Submitted on 24 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 The toxic dinoflagellate Alexandrium minutum impairs the performance of oyster 2 embryos and larvae 3 Justine Castrec1, Hélène Hégaret1, Matthias Huber2, Jacqueline Le Grand2, Arnaud Huvet2, 4 Kevin Tallec2, Myrina Boulais1, Philippe Soudant1, and Caroline Fabioux1. 5 1 Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France 6 2 Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzane, France 7 * Corresponding author: [email protected] 8 Abstract 9 The dinoflagellate genus Alexandrium comprises species that produce highly potent 10 neurotoxins known as paralytic shellfish toxins (PST), and bioactive extracellular compounds 11 (BEC) of unknown structure and ecological significance.
    [Show full text]
  • Harmful Algae 91 (2020) 101587
    Harmful Algae 91 (2020) 101587 Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review Progress and promise of omics for predicting the impacts of climate change T on harmful algal blooms Gwenn M.M. Hennona,c,*, Sonya T. Dyhrmana,b,* a Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States b Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States c College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States ARTICLE INFO ABSTRACT Keywords: Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past Genomics twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have trans- Transcriptomics formed that data landscape of many fields including the study of HABs. Advances in technology have facilitated Proteomics the creation of many publicly available omics datasets that are complementary and shed new light on the Metabolomics mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity Climate change and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species Phytoplankton Harmful algae responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In Cyanobacteria this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world.
    [Show full text]
  • A Parasite of Marine Rotifers: a New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae)
    Hindawi Publishing Corporation Journal of Marine Biology Volume 2015, Article ID 614609, 5 pages http://dx.doi.org/10.1155/2015/614609 Research Article A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae) Fernando Gómez1 and Alf Skovgaard2 1 Laboratory of Plankton Systems, Oceanographic Institute, University of Sao˜ Paulo, Prac¸a do Oceanografico´ 191, Cidade Universitaria,´ 05508-900 Butanta,˜ SP, Brazil 2Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Denmark Correspondence should be addressed to Fernando Gomez;´ [email protected] Received 11 July 2015; Accepted 27 August 2015 Academic Editor: Gerardo R. Vasta Copyright © 2015 F. Gomez´ and A. Skovgaard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera), collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches amongthe dinokaryotic dinoflagellates. 1. Introduction form independent lineages with no evident relation to other dinoflagellates [12]. In this study, we describe a new lineage of The alveolates (or Alveolata) are a major lineage of protists an undescribed parasitic dinoflagellate that largely diverged divided into three main phyla: ciliates, apicomplexans, and from other known dinoflagellates.
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Sexual Reproduction and Ecophysiology of the Marine Dinoflagellate Alexandrium Minutum Halim
    .• . • - • ...L-- • • --- _1 .. Sexual reproduction and ecophysiology of the marine dinoflagellate Alexandrium minutum Halim lan P. Probert Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy University of Westminster, London Ifremer, Brest June 1999 Jury Professor Chris Bucke Examiner Mr John Leftley Examiner Mrs Jane Lewis Director of Studies Mrs Evelyne Erard-Le Denn Second Supervisor Professor Jenny George Second Supervisor Sexual reproduction and ecophysiology of the marine dinoflagellate Alexandrium minutum Halim lan P. Probert Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy University of Westminster, London lfremer, Brest June 1999 Jury Professor Chris Bucke Examiner Mr John Leftley Examiner Mrs Jane Lewis Director of Studies Mrs Evelyne Erard-Le Denn Second Supervisor Professor Jenny George Second Supervisor Contents Acknowledgements Chapter 1 Introduction 1 A. Objectives of this study 1 B. Dinoflagellates 1 1. Evolutionary history 1 2. General characteristics 1 3. 'Red tides' 2 4. Dinoflagellate toxins 2 5. Economie impact 2 C. Life Cycles 3 1. Asexuallife history 3 2. Sexuallife history 3 3. Life cycle control 4 4. Environmental triggers for sexual reproduction 4 D. Nutrients and Sexuality 6 1. Microalgal nutrient physiology 6 2. Nutrient stress and the cell's responses 9 3. The sexual induction mechanism 10 4. Nutrient physiology through the time-course of transition from asexual to sexual reproduction 10 E. The Experimental Species 12 Chapter 2 The life history of Alexandrium minutum Halim 12 A. Introduction 12 1. The genusAlexandrium 12 2. Alexandrium minutum Halim 13 3. Dinoflagellate reproductive morphology and ultrastructure 13 B.
    [Show full text]