Character Evolution in Polykrikoid Dinoflagellates1

Total Page:16

File Type:pdf, Size:1020Kb

Character Evolution in Polykrikoid Dinoflagellates1 J. Phycol. 43, 366–377 (2007) r 2007 by the Phycological Society of America DOI: 10.1111/j.1529-8817.2007.00319.x CHARACTER EVOLUTION IN POLYKRIKOID DINOFLAGELLATES1 Mona Hoppenrath2 and Brian S. Leander Departments of Botany and Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4 A synthesis of available data on the morphological Ti:Tv, transition/transversion ratio; WNJ, weighted diversity of polykrikoid dinoflagellates allowed neighbor joining us to formulate a hypothesis of relationships that help explain character evolution within the group. Phylogenetic analyses of new SSU rDNA sequences from Pheopolykrikos beauchampii Chatton, Polykrikos kofoidii Chatton, and Polykrikos lebourae Herdman The dinoflagellate genus Polykrikos was erected by helped refine this hypothetical framework. Our re- Bu¨tschli (1873), with the type species P. schwartzii sults demonstrated that ‘‘pseudocolonies’’ in dino- Bu¨tschli. The most distinctive feature of this athecate flagellates evolved convergently at least three times genus is the formation of multinucleated pseudocolo- independently from different Gymnodinium-like nies comprised of an even number of zooids that are ancestors: once in haplozoans; once in Ph. beau- otherwise similar in morphology to individual dino- champii; and at least once within a lineage contain- flagellates in external view. However, despite every ing Ph. hartmannii, P.kofoidii,andP. lebourae.The zooid having its own cingulum and pair of flagella, the Gymnodiniales sensu stricto was strongly supported zooid sulci are fused together. A pseudocolony often by the data, and the type species for the genus, name- has half the number of nuclei because it has zooids. ly Gymnodinium fuscum (Ehrenb.)F.Stein,formedthe Trichocysts, nematocysts, taeniocysts, mucocysts, and nearest sister lineage to a well-supported Polykrikos plastids have all been reported from different mem- clade. The best synapomorphy for the Polykrikos bers within the group. The genus currently comprises clade was the presence of two nuclei irrespective of four species: P. schwartzii, P. kofoidii, P. lebourae, and zooid number. Two unidentified Gymnodinium spe- P. grassei Lecal. The first three species are relatively cies formed the nearest sister clade to Ph. beau- well described and distinguishable from one another champii, which has four nuclei and four zooids per (Chatton 1914, Kofoid and Swezy 1921, Herdman pseudocolony. The chain-forming dinoflagellate G. 1923, Kofoid 1931, Balech 1956, Dragesco 1965, Hop- catenatum L. W. Graham branched closely to the penrath 2000, Matsuoka et al. 2000, Nagai et al. 2002); clade containing all members of Polykrikos and Pheo- however, the taxonomic separation between P.schwartz- polykrikos, suggesting that an ancestral capacity to- ii and P. kofoidii is difficult because characters like size, ward chain formation existed before the evolution of zooid number, and cingular displacement are overlap- pseudocolonies in this group. Our results also clari- ping in these two species (Kofoid and Swezy 1921, fied the phylogenetic significance of nematocysts, Nagai et al. 2002, Throndsen et al. 2003). The most ocelloids, and photosynthesis in reconstructing the reliable distinguishing character between them is the evolution of polykrikoids and warnowiids. The mo- presence of striated ribs on the posterior-most zooid or lecular phylogenies exposed taxonomic problems ‘‘hyposome’’ of the pseudocolony in P. kofoidii (Nagai associated with Polykrikos, Pheopolykrikos,andGym- et al. 2002). To the best of our knowledge, P.grassei has nodinium, and suggested that a revision for some of only been observed and recorded once (Lecal 1972), these genera is warranted. and doubts about the identity of P. grassei have been expressed in the literature (Greuet and Hovasse 1977, Key index words: character evolution; dinoflagel- Sournia 1986). The reexamination of this species is late; Dinophyceae; Gymnodinium; Pheopolykrikos; critical from a phylogenetic point of view because it is phylogeny; Polykrikos; small subunit ribosomal described to possess an ocelloid (Lecal 1972). These RNA complex organelles otherwise exist only in warnowiid Abbreviations: AU, approximately unbiased; GTR dinoflagellates (Greuet 1987). model, general-time-reversible model; HKY model, The second genus of polykrikoid dinoflagellates is Hasegawa–Kishino–Yano model; MCMC, Monte- Pheopolykrikos, which was first described by Chatton Carlo–Markov chains; ML, maximum likelihood; (1933), with the type species Ph. beauchampii, and sub- sequently emended by Matsuoka and Fukuyo (1986). Pheopolykrikos is different from Polykrikos in having the same number of nuclei as zooids and being able to disassociate into single cells (Chatton 1933, 1952). 1Received 28 January 2006. Accepted 1 November 2006. Pheopolykrikos beauchampii is photosynthetic and ap- 2Author for correspondence: e-mail [email protected]. pears to lack the ability to phagocytize (Chatton 366 CHARACTER EVOLUTION IN POLYKRIKOID DINOFLAGELLATES 367 1933). When emending the genus Pheopolykrikos, hypothesis of relationships that helps explain character Matsuoka and Fukuyo (1986) transferred P.hartmannii evolution within the group. M. H. Zimm. (see also Hulburt 1957) into Pheopolykri- kos for several reasons: the number of nuclei and zo- MATERIALS AND METHODS oids is the same, there is a single-cell life-cycle stage, and the cells are photosynthetic. Furthermore, these Organisms and light microscopy. Near-surface plankton sam- ples were collected in the morning hours with a small net authors emphasized the different cyst morphologies (mesh size 20 mm) at the docks of the Bamfield Marine Sci- present in the two genera and the possibility of differ- ences Center, Vancouver Island (BC, Canada), in June and ent excystment conditions. It is noteworthy that no cyst August of 2005. Immediately after sampling, single cells of stage is known for the type species of Pheopolykrikos, P. kofoidii and Ph. beauchampii were identified at magnifica- namely Ph. beauchampii, and therefore, the value of the tions of Â40 to Â250 (Fig. 1) and isolated from the mixed cyst morphology to separate the two genera remains to plankton sample by micropipetting. Sand samples containing P. l e b o u r a e were collected with a spoon during low tide at be demonstrated. Centennial Beach, Boundary Bay (BC, Canada), in October Polykrikos barnegatensis G. W. Martin is described as a 2005. The sand samples were transported directly to the lab- two-zooid pseudocolony with one large nucleus, with oratory, and the flagellates were separated from the sand by plastids, and without nematocysts (Martin 1929). It has extraction through a fine filter (mesh size 45 mm) using melt- subsequently been synonymized with P. hartmannii ing seawater ice (Uhlig 1964). The flagellates accumulated in (Chatton 1952), but as Hulburt (1957) pointed out, a petri dish beneath the filter and were then identified at magnifications of Â40 to Â250 (Fig. 1). Cells were isolated the ‘‘species’’ differ in the number of nuclei (one in the by micropipetting for the preparations described below. former, and two in the latter). Because Martin (1929) Cells were observed directly and micromanipulated with a based the description of the new species on the obser- Leica DMIL inverted microscope (Wetzlar, Germany) connected vation of only one living cell, P.barnegatensis is in need to a PixeLink Megapixel color digital camera (PL-A662-KIT, of reinvestigation. This uncertainty led us to disregard Ottawa, ON, Canada). For DIC LM, micropipetted cells were this species in the following discussion. placed on a glass specimen slide and covered with a coverslip. There are also different views about the generic Images were produced directly with either the PixeLink Meg- apixel color digital camera or a Zeiss Axioplan 2 imaging micro- classification of polykrikoid dinoflagellates. Loeblich scope (Carl–Zeiss, Oberkochen, Germany) connected to a Leica (1980) transferred Ph. beauchampii into the genus DC500 color digital camera (Wetzlar, Germany). Polykrikos; Dodge (1982) and Sournia (1986) recog- Molecular phylogenetic analysis. Individually isolated pseu- nized only the genus Polykrikos and treated Pheopolykri- docolonies (five for P. k o f o i d i i ,nineforPh. beauchampii,and kos as a junior synonym. As mentioned previously, four for P. lebourae) were individually washed four times in Matsuoka and Fukuyo (1986) retained Pheopolykrikos filtered (eukaryote free) seawater. All pseudocolonies of one species were deposited into a 1.5 mL Eppendorf tube (Dia- as a separate genus from Polykrikos. Fensome et al. Med Lab Supplies Inc., Mississauga, ON, Canada), resulting (1993) were of the opinion that Pheopolykrikos and Poly- in one multispecimen sample for each of the three species. krikos were distinctive enough to be classified into dif- Genomic DNA was extracted using a standard hexadecyltri- ferent families—Pheopolykrikos in the Gymnodiniaceae, methylammonium bromide (CTAB) extraction protocol (Zo- and Polykrikos in the Polykrikaceae. Steidinger and lan and Pukkila 1986) or by placing washed pseudocolonies Tangen (1997) distinguished the two genera but clas- in distilled water that was directly used for PCR. The PCR was carried out using puReTaq Ready-To-Go PCR Beads sified them both into the family Polykrikaceae. Table 1 (Amersham Biosciences, Piscataway, NJ, USA). The PCR am- summarizes the diversity of morphological character- plification protocol using universal eukaryotic primers con-
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Patrons De Biodiversité À L'échelle Globale Chez Les Dinoflagellés
    ! ! ! ! ! !"#$%&'%&'()!(*+!&'%&,-./01%*$0!2&30%**%&%!&4+*0%&).*0%& ! 0$'1&2(&3'!4!5&6(67&)!#2%&8)!9!:16()!;6136%2()!;&<)%=&3'!>?!@&<283! ! A%'=)83')!$2%! 45&/678&,9&:9;<6=! ! A6?% 6B3)8&% ()!7%2>) >) '()!%.*&>9&?-./01%*$0!2&30%**%&%!&4+*0%&).*0%! ! ! 0?C)3!>)!(2!3DE=)!4! ! @!!"#$%&'()*(+,%),-*$',#.(/(01.23*00*(40%+"0*(23*5(0*'( >A86B?7C9??D;&E?78<=68AFG9;&H7IA8;! ! ! ! 06?3)8?)!()!4!.+!FGH0!*+./! ! ;)<283!?8!C?%I!16#$6='!>)!4! ! 'I5&*6J987&$=9I8J!0&%!G(&=3)%!K2%>I!L6?8>23&68!M6%!N1)28!01&)81)!O0GKLN0PJ!A(I#6?3D!Q!H6I2?#)RS8&!! !!H2$$6%3)?%! 3I6B5&K78&37J?6J;LAJ!S8&<)%=&3'!>)!T)8E<)!Q!0?&==)! !!H2$$6%3)?%! 'I5&47IA87&468=I9;6IJ!032U&68)!V66(67&12!G8368!;6D%8!6M!W2$()=!Q!"32(&)! XY2#&823)?%! 3I6B5&,7I;&$=9HH788J!SAFZ,ZWH0!0323&68!V66(67&[?)!>)!@&(()M%281D)R=?%RF)%!Q!L%281)! XY2#&823)?%! 'I5&*7BB79?9&$A786J!;\WXZN,A)(276=J!"LHXFXH!!"#$%"&'"&(%")$*&+,-./0#1&Q!L%281)!!! !!!Z6R>&%)13)?%!>)!3DE=)! 'I5&)6?6HM78&>9&17IC7;J&SAFZ,ZWH0!0323&68!5&6(67&[?)!>)!H6=16MM!Q!L%281)! ! !!!!!!!!!;&%)13)?%!>)!3DE=)! ! ! ! "#$%&#'!()!*+,+-,*+./! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Remerciements* ! Remerciements* A!l'issue!de!ce!travail!de!recherche!et!de!sa!rédaction,!j’ai!la!preuve!que!la!thèse!est!loin!d'être!un!travail! solitaire.! En! effet,! je! n'aurais! jamais! pu! réaliser! ce! travail! doctoral! sans! le! soutien! d'un! grand! nombre! de! personnes!dont!l’amitié,!la!générosité,!la!bonne!humeur%et%l'intérêt%manifestés%à%l'égard%de%ma%recherche%m'ont% permis!de!progresser!dans!cette!phase!délicate!de!«!l'apprentiGchercheur!».!
    [Show full text]
  • Trait Changes Induced by Species Interactions in Two Phenotypically Distinct Strains of a Marine Dinoflagellate
    The ISME Journal (2016) 10, 2658–2668 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Trait changes induced by species interactions in two phenotypically distinct strains of a marine dinoflagellate Sylke Wohlrab, Urban Tillmann, Allan Cembella and Uwe John Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section Ecological Chemistry, Bremerhaven, Germany Populations of the toxigenic marine dinoflagellate Alexandrium are composed of multiple genotypes that display phenotypic variation for traits known to influence top-down processes, such as the ability to lyse co-occurring competitors and prospective grazers. We performed a detailed molecular analysis of species interactions to determine how different genotypes perceive and respond to other species. In a controlled laboratory culture study, we exposed two A. fundyense strains that differ in their capacity to produce lytic compounds to the dinoflagellate grazer Polykrikos kofoidii, and analyzed transcriptomic changes during this interaction. Approximately 5% of all analyzed genes were differentially expressed between the two Alexandrium strains under control conditions (without grazer presence) with fold-change differences that were proportionally higher than those observed in grazer treatments. Species interactions led to the genotype-specific expression of genes involved in endocytotic processes, cell cycle control and outer membrane properties, and signal transduction and gene expression
    [Show full text]
  • FIRST RECORD of Erythropsidinium Agile (GYMNODINIALES: WARNOWIACEAE) in the MEXICAN PACIFIC
    CICIMAR Oceánides 25(2): 137-142 (2010) FIRST RECORD OF Erythropsidinium agile (GYMNODINIALES: WARNOWIACEAE) IN THE MEXICAN PACIFIC Primer registro de Erythropsidinium agile et Swezy, 1921, Proterythropsis Kofoid et Swezy, (Gymnodiniales: Warnowiaceae) en el 1921, Warnowia Lindemann, 1928, Greuetodinium Pacífico Mexicano Loeblich III, 1980, and Erythropsidinium P.C. Silva, 1960. Ten species of Erythropsidinium have been RESUMEN. Se registra por primera vez Erythropsi- described from warm and temperate seas. However, dinium agile, un dinoflagelado de la Familia Warno- a taxonomical study based on the changes in struc- wiaceae para el Pacífico Mexicano, dentro de Bahía ture, position, and coloration of the ocelloid in the de La Paz (Golfo de California). Se observaron 26 course of the cell division or individual development ejemplares de E. agile, principalmente en muestras revealed that some species had different morpho- de fitoplancton de red para el periodo de estudio (Ju- types (Elbrächter, 1979). At present the valid species nio, 2006 a Junio, 2010). En muestras de botella se currently considered to belong to this genus are: estimaron densidades entre 80 y 1000 cél. L–1. Los ejemplares de E. agile mostraron gran variación en E. agile (Hertwig, 1884) P.C. Silva, 1960, E. cochlea forma, tamaño y coloración; se presentaron princi- (Schütt, 1895) P.C. Silva, 1960, E. extrudens (Ko- palmente en el período invierno-primavera, cuando foid et Swezy, 1921) P.C. Silva, 1960, and E. minus la columna del agua está homogénea, a temperatu- (Kofoid et Swezy, 1921) P.C. Silva, 1960. For the ras entre 19 y 22 °C y rica en nutrientes.
    [Show full text]
  • Grazing Impacts of the Heterotrophic Dinoflagellate Polykrikos Kofoidii on a Bloom of Gymnodinium Catenatum
    AQUATIC MICROBIAL ECOLOGY Published April 30 Aquat Microb Ecol NOTE Grazing impacts of the heterotrophic dinoflagellate Polykrikos kofoidii on a bloom of Gymnodinium catenatum Yukihiko Matsuyama'f*,Masahide Miyamoto2, Yuichi ~otani' 'National Research Institute of Fisheries and Environment of Inland Sea, Maruishi, Ohno, Saeki, Hiroshima 739-0452, Japan 2KumamotoAriake Fisheries Direction Office, Iwasaki, Tamana, Kumamoto 865-0016, Japan ABSTRACT: In 1998, a red tide of the paralytic shellfish an assessment of the natural population of G. catena- poisoning (PSP)-producing dinoflagellate Gymnodinium cate- turn coupled with a laboratory incubation experiment naturn Graham occurred in Yatsushiro Sea, western Japan. to evaluate the bloom fate. We present data showing The dramatic decline of dominant G. catenatum cells oc- curred during the field and laboratory assessments, accompa- considerable predation by the pseudocolonial hetero- nied with growth of the heterotrophic dinoflagellate Poly- trophic dinoflagellate Polykrikos kofoidii Chatton on knkos kofoidii Chatton. Microscopic observations on both the dominant G. catenatum population, and discuss field and laboratory cultured bloom water revealed that the ecological importance of the genus Polykrikos and >50% of P. kofoidii predated on the natural population of G. catenaturn, and 1 to 8 G. catenatum cells were found in its grazing impact on harmful algal blooms. food vacuoles of P. kofoidii pseudocolonies. Our results sug- Materials and methods. Filed population surveys: gest that predation by P. kofoidii contributes to the cessation The Gymnodinium catenatum bloom occurred from 19 of a G. catenatum bloom. January to 5 February in Miyano-Gawachi Bay, west- ern Yatsushiro Sea, Kyushu Island (Fig. 1). Five cruises KEY WORDS: PSP - Gymnodimurn catenatum .
    [Show full text]
  • Seasonal and Interannual Changes in Ciliate and Dinoflagellate
    ORIGINAL RESEARCH published: 07 February 2017 doi: 10.3389/fmars.2017.00016 Seasonal and Interannual Changes in Ciliate and Dinoflagellate Species Assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada) Edited by: Deo F. L. Onda 1, 2, 3, Emmanuelle Medrinal 1, 3, André M. Comeau 1, 3 †, Mary Thaler 1, 2, 3, George S. Bullerjahn, Marcel Babin 1, 2 and Connie Lovejoy 1, 2, 3* Bowling Green State University, USA Reviewed by: 1 Département de Biologie and Québec-Océan, Université Laval, Quebec, QC, Canada, 2 Takuvik, Joint International Rebecca Gast, Laboratory, UMI 3376, Centre National de la Recherche Scientifique (CNRS, France) and Université Laval, Québec, QC, Woods Hole Oceanographic Canada, 3 Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada Institution, USA Alison Clare Cleary, Independent Researcher, San Recent studies have focused on how climate change could drive changes in Francisco, United States phytoplankton communities in the Arctic. In contrast, ciliates and dinoflagellates that can *Correspondence: contribute substantially to the mortality of phytoplankton have received less attention. Connie Lovejoy Some dinoflagellate and ciliate species can also contribute to net photosynthesis, [email protected] which suggests that species composition could reflect food web complexity. To identify †Present Address: André M. Comeau, potential seasonal and annual species occurrence patterns and to link species with Centre for Comparative Genomics and environmental conditions, we first examined the seasonal pattern of microzooplankton Evolutionary Bioinformatics-Integrated Microbiome Resource, Department of and then performed an in-depth analysis of interannual species variability. We used Pharmacology, Dalhousie University, high-throughput amplicon sequencing to identify ciliates and dinoflagellates to the lowest Canada taxonomic level using a curated Arctic 18S rRNA gene database.
    [Show full text]
  • A Parasite of Marine Rotifers: a New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae)
    Hindawi Publishing Corporation Journal of Marine Biology Volume 2015, Article ID 614609, 5 pages http://dx.doi.org/10.1155/2015/614609 Research Article A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae) Fernando Gómez1 and Alf Skovgaard2 1 Laboratory of Plankton Systems, Oceanographic Institute, University of Sao˜ Paulo, Prac¸a do Oceanografico´ 191, Cidade Universitaria,´ 05508-900 Butanta,˜ SP, Brazil 2Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Denmark Correspondence should be addressed to Fernando Gomez;´ [email protected] Received 11 July 2015; Accepted 27 August 2015 Academic Editor: Gerardo R. Vasta Copyright © 2015 F. Gomez´ and A. Skovgaard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera), collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches amongthe dinokaryotic dinoflagellates. 1. Introduction form independent lineages with no evident relation to other dinoflagellates [12]. In this study, we describe a new lineage of The alveolates (or Alveolata) are a major lineage of protists an undescribed parasitic dinoflagellate that largely diverged divided into three main phyla: ciliates, apicomplexans, and from other known dinoflagellates.
    [Show full text]
  • Metagenomic Characterization of Unicellular Eukaryotes in the Urban Thessaloniki Bay
    Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay George Tsipas SCHOOL OF ECONOMICS, BUSINESS ADMINISTRATION & LEGAL STUDIES A thesis submitted for the degree of Master of Science (MSc) in Bioeconomy Law, Regulation and Management May, 2019 Thessaloniki – Greece George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ Student Name: George Tsipas SID: 268186037282 Supervisor: Prof. Dr. Savvas Genitsaris I hereby declare that the work submitted is mine and that where I have made use of another’s work, I have attributed the source(s) according to the Regulations set in the Student’s Handbook. May, 2019 Thessaloniki - Greece Page 2 of 63 George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ 1. Abstract The present research investigates through metagenomics sequencing the unicellular protistan communities in Thermaikos Gulf. This research analyzes the diversity, composition and abundance in this marine environment. Water samples were collected monthly from April 2017 to February 2018 in the port of Thessaloniki (Harbor site, 40o 37’ 55 N, 22o 56’ 09 E). The extraction of DNA was completed as well as the sequencing was performed, before the downstream read processing and the taxonomic classification that was assigned using PR2 database. A total of 1248 Operational Taxonomic Units (OTUs) were detected but only 700 unicellular eukaryotes were analyzed, excluding unclassified OTUs, Metazoa and Streptophyta. In this research-based study the most abundant and diverse taxonomic groups were Dinoflagellata and Protalveolata. Specifically, the most abundant groups of all samples are Dinoflagellata with 190 OTUs (27.70%), Protalveolata with 139 OTUs (20.26%) Ochrophyta with 73 OTUs (10.64%), Cercozoa with 67 OTUs (9.77%) and Ciliophora with 64 OTUs (9.33%).
    [Show full text]
  • Manual for Phytoplankton Sampling and Analysis in the Black Sea
    Manual for Phytoplankton Sampling and Analysis in the Black Sea Dr. Snejana Moncheva Dr. Bill Parr Institute of Oceanology, Bulgarian UNDP-GEF Black Sea Ecosystem Academy of Sciences, Recovery Project Varna, 9000, Dolmabahce Sarayi, II. Hareket P.O.Box 152 Kosku 80680 Besiktas, Bulgaria Istanbul - TURKEY Updated June 2010 2 Table of Contents 1. INTRODUCTION........................................................................................................ 5 1.1 Basic documents used............................................................................................... 1.2 Phytoplankton – definition and rationale .............................................................. 1.3 The main objectives of phytoplankton community analysis ........................... 1.4 Phytoplankton communities in the Black Sea ..................................................... 2. SAMPLING ................................................................................................................. 9 2.1 Site selection................................................................................................................. 2.2 Depth ............................................................................................................................... 2.3 Frequency and seasonality ....................................................................................... 2.4 Algal Blooms................................................................................................................. 2.4.1 Phytoplankton bloom detection
    [Show full text]
  • Recent Dinoflagellate Cysts from the Chesapeake Estuary (Maryland and Virginia, U.S.A.): Taxonomy and Ecological Preferences
    Recent dinoflagellate cysts from the Chesapeake estuary (Maryland and Virginia, U.S.A.): taxonomy and ecological preferences. Tycho Van Hauwaert Academic year 2015–2016 Master’s dissertation submitted in partial fulfillment of the requirements for the degree of Master in Science in Geology Promotor: Prof. Dr. S. Louwye Co-promotor: Dr. K. Mertens Tutor: P. Gurdebeke Jury: Dr. T. Verleye, Dr. E. Verleyen Picture on the cover An exceptionally dense bloom of Alexandrium monilatum was observed in lower Chesapeake Bay along the north shore of the York River between Sarah's Creek and the Perrin River on 17 August 2015. Credit: W. Vogelbein/VIMS ii ACKNOWLEDGEMENTS First of all I want to thank my promoters, Prof. Dr. S. Louwye and Dr. K. Mertens. They introduced me into the wonderful world of dinoflagellates and the dinocysts due to the course Advanced Micropaleontology. I did not have hesitated long to choose a subject within the research unit of paleontology. Thank you for the proofreading, help with identification and many discussions. A special mention for Pieter Gurdebeke. This appreciation you can imagine as a 22-minutes standing ovation for the small talks and jokes only! If you include the assistance in the thesis, I would not dare to calculate the time of applause. I remember when we were discussing the subject during the fieldtrip to the Alps in September. We have come a long way and I am pleased with the result. Thank you very much for helping me with the preparation of slides, identification of dinocysts, some computer programs, proofreading of the different chapters and many more! When I am back from my trip to Canada, I would like to discuss it with a (small) bottle of beer.
    [Show full text]
  • Cell Lysis of a Phagotrophic Dinoflagellate, Polykrikos Kofoidii Feeding on Alexandrium Tamarense
    Plankton Biol. Ecol. 47 (2): 134-136,2000 plankton biology & ecology f The Plankton Society of Japan 2(100 Note Cell lysis of a phagotrophic dinoflagellate, Polykrikos kofoidii feeding on Alexandrium tamarense Hyun-Jin Cho1 & Kazumi Matsuoka2 'Graduate School of Marine Science and Engineering, Nagasaki University, 1-14 Bunkyo-inachi, Nagasaki 852-8521. Japan 2Laboratory of Coastal Environmental Sciences, Faculty of Fisheries. Nagasaki University. 1-14 Bunkyo-machi, Nagasaki 852-8521. Japan Received 9 December 1999; accepted 10 April 2000 In many cases, phytoplankton blooms terminate suddenly dinoflagellate, Alexandrium tamarense (Lebour) Balech. within a few days. For bloom-forming phytoplankton, grazing P. kofoidii was collected from Isahaya Bay in western is one of the major factors in the decline of blooms as is sexual Kyushu, Japan, on 3 November, 1998. We isolated actively reproduction to produce non-dividing gametes and planozy- swimming P. kofoidii using a capillary pipette and individually gotes (Anderson et al. 1983; Frost 1991). Matsuoka et al. transferred them into multi-well tissue culture plates contain (2000) reported growth rates of a phagotrophic dinoflagellate, ing a dense suspension of the autotrophic dinoflagellate, Polykrikos kofoidii Chatton, using several dinoflagellate Gymnodinium catenatum Graham (approximately 700 cells species as food organisms. They noted that P. kofoidii showed ml"1) isolated from a bloom near Amakusa Island, western various feeding and growth responses to strains of Alexan Japan, 1997. The P. kofoidii were cultured at 20°C with con drium and Prorocentrum. This fact suggests that for ecological stant lighting to a density of 60 indiv. ml"1, and then starved control of phytoplankton blooms, we should collect infor until no G.
    [Show full text]
  • Redalyc.Occurrence of Cochlodinium Fulvescens(Gymnodiniales
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Gárate-Lizárraga, Ismael Occurrence of Cochlodinium fulvescens(Gymnodiniales: Dinophyceae) in the southwestern Gulf of California Revista de Biología Marina y Oceanografía, vol. 49, núm. 1, abril-, 2014, pp. 123-127 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47931255013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 49, Nº1: 123-127, abril 2014 RESEARCH NOTE Occurrence of Cochlodinium fulvescens (Gymnodiniales: Dinophyceae) in the southwestern Gulf of California Ocurrencia de Cochlodinium fulvescens (Gymnodiniales: Dinophyceae) en el suroeste del Golfo de California Ismael Gárate-Lizárraga1 1Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Departamento de Plancton y Ecología Marina, Apartado postal 592, La Paz, B.C.S. 23000, México. [email protected] Abstract.- The naked dinoflagellate Cochlodinium fulvescens was rarely observed in Bahía de La Paz since 2008. Sporadic observations were made in 2010 and 2012. The species re-appeared from October 2012 to April 2013. Abundance of C. fulvescens ranged from 600 to 45,800 cells L–1 during this period in seawater temperature at 22-27°C and salinity of 35.25- 35.75. This species appeared as single cells or two-celled chains and co-occurred with Cochlodinium polykrikoides at the end of the bloom.
    [Show full text]