Containing Plasma Physics : a Disciplinary History 1950-1980

Total Page:16

File Type:pdf, Size:1020Kb

Containing Plasma Physics : a Disciplinary History 1950-1980 CONTAINING PLASMA PHYSICS: A DISCIPLINARY HISTORY, 1950-1980 BY GARY JAMES WEISEL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULHLLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2001 Copyright 2001 by Gary James Weisel ACKNOWLEDGMENTS A number of people have helped me with this project. My dissertation advisor, Frederick Gregory has been highly supportive and has given me equal measures of constructive criticism and patient understanding as the project developed over a period of five years. V. Betty Smocovitis and Harry Paul were a great help to me in classes and private meetings in 1995 and 1996, when I was first conceiving of this project. I also was lucky to meet Hendrik Monkhorst of the UP Department of Physics, who made the original suggestion that I consider working on a history of fusion research. In part because Joan Bromberg had already written such a study, and because I became interested in plasma research more generally, Henk's original suggestion has become the present disciplinary history of plasma physics. Henk's own interest in fusion research brought veteran of the field Norman Rostoker to UP for a series of lectures in April, 1996. These lectures were an auspicious beginning to my study of plasma physics. In addition, I took the opportunity to conduct two oral interviews with Norman. One of my most important sources was the Joan Bromberg papers at the Niels Bohr Library of the American Institute of Physics (AIP). Bromberg was kind enough to allow me access to the collection, which was unprocessed at the time of my visits. The materials in the Bromberg papers are from a variety of sources. However, I have only cited them as being from the Bromberg papers (noted as AR47/AIP in the footnotes) and have not specified the original provenances. A generous grant-in-aid from the AIP allowed me to visit the Niels Bohr Library three times during 1998. There, I found a large number of other useful sources. While visiting the AIP, I also had a number of meetings with Spencer Weart, who gave me some helpful pointers on doing a disciplinary history. One of his most important iii suggestions, that I count articles and personnel in order to gain a statistical portrait of the plasma community, has not been followed up in the present study as much as it should. This has been due simply to a limit of time and my future work will include more extensive statistics. A final bonus of my AIP visits was that I met Barrett Ripin, who had recently left the Naval Research Laboratory (NRL) to work as the editor of the AIP News . In two oral interviews. Dr. Ripin gave me a great deal of insight on his work in plasma astrophysics at NRL as well as the institutional relationships among different parts of the plasma community. , I would like to thank a number of librarians and archivists who helped me dig out the sources for the present study and to learn the ropes of archival research: Caroline Mosley and Katherine Hayes at the Niels Bohr Library; Marie Hallion and Cliff Scroger at the Department of Energy; Margaret Sherry at the Special Collections of Princeton's Firestone Library; Daniel J. Linke of Princeton's Mudd Library; Mitchell Brown and Luan Huang at the library of the Princeton Plasma Physics Laboratory; and Denise Anderson of the Main Library at the University of Iowa. The notation used in the - footnotes is as follows: , AIP: Niels Bohr Library. American Institute of Physics, College Park, MD. AR47/AIP: Joan Lisa Bromberg Papers, 1922-1982, AIP. (I do not specify boxes and folders for items from this collection; at the time of my visits it was unprocessed.) AR155/AIP: the Lewi Tonks papers, 1921-1967, AIP. HO/DOE: Historian's Office of the Department of Energy, Germantown, MD. JAVA/UI: the James A. Van Allen Papers. Special Collections of the Main Library of The University of Iowa. LSP/PU: the Lyman Spitzer Papers, 1914-1997. Special Collections of the Firestone Library at Princeton University. PPPL/PU: Library of the Princeton Plasma Physics Laboratory, Princeton, NJ. RAPS/AIP: Records of the American Physical Society, AIP. ' iv At my home institution, Penn State Altoona, I also was fortunate to have Robert DeWitt as a colleague. My discussions with Bob about his career at the NRL, the Naval Surface Warfare Center, and the Department of Energy, alerted me to the persistent military applications of plasma physics. Bob's aid in helping me understand plasma physics and his generosity in commenting on my work, has been a great boon. Finally, I would like to thank a number of scientists who communicated with me privately and offered information or advice regarding my project: Vincent Chan, C. Stewart Gillmor, Arthur Kantrowitz, Charles Kennel, Robert Piejak, Harry Robertson, David Stem, and James Van Allen. Of course, none of the people named above are responsible for any of the errors or shortcomings of the present study. V TABLE OF CONTENTS page ACKNOWLEDGMENTS iii LIST OF FIGURES viii ABSTRACT ix CHAPTERS 1 INTRODUCTION 1 Cognitive Interconnectedness 8 Institutional Context 13 Cultural Studies 15 Patron Relationships 23 International Politics 32 Summary of the Chapters 34 Review of the PubUshed Literature 41 2 SEPARATE SPECIALTIES: TO 1955 47 Gaseous Electronics 48 Early Gaseous Electronics 48 The Early Twentieth Century 56 Geophysics 63 The Aurora 63 Ionospheric Physics 67 Astrophysics 73 The Second World War 78 3 FOUNDING A DISCIPLINE: 1950-1962 93 Fusion machines 94 Political and Cultural Context 108 Fusion Theory 127 The Great Instauration 143 The Primacy of Fusion Research 143 Plasma Communities 150 Industrial Research 160 The Great Segregation 164 Gaseous Electronics 164 Space Science 169 vi Military Patronage 182 Plasma dynamics 183 High-Altitude Nuclear Tests 193 Conclusions 197 4 CRISIS AND RECOVERY: 1960-1980 200 A Decade of Difficulties 201 Industrial Funding 203 University Plasma Physics Programs 207 Basic Plasma Physics 212 Theory Leading Experiment 216 The Instrumental Tradition 221 Anomalous Diffusion 228 A Precarious Identity 232 The Pake Committee 232 Facing Complexity 240 Instrumental Shift: the Tokamak 246 Instrumental Shift: Inertial-Confmement Fusion 253 Concurrent Developments 261 A Renewed Enthusiasm 262 Big Science 267 Theory and Numerical Simulation 279 Between Fusion, Space, and Astrophysics 288 5 EPILOGUE AND CONCLUSIONS 300 The Consequences of Big Science 309 The Strategic Defense Initiative 320 Persistent Interconnections 324 Space and Astrophysics 325 Gaseous Electronics 329 Containing Plasma Physics 334 REFERENCES 362 BIOGRAPHICAL SKETCH 384 LIST OF FIGURES Figure page 2-1. The glow discharge showing its characteristic regions 53 2-2. Alfven's model of the aurora 76 3- 1. Princeton University's stellarator .....103 3-2. Two simple plasma instabilities 129 3-3. Cross-sectional view showing the intensity of trapped radiation in the two Van Allen Belts 174 3-4. Shock-tube device used at AVCO Research Laboratory 184 4- 1 . The Q machine 1^6 4-2. A variant of the "Kantrowitz-Petschek map" used in the next NRC review after the Pake Report 234 4-3. Laser amplifying system used by Basov and coworkers to heat a pellet of deuterium fuel 257 4-4. Neutral plasma sheet, formed through the interaction of the solar wind with the Earth's magnetosphere 293 5- . 1. Trends in the magnetic fusion community 319 . , viH Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CONTAINING PLASMA PHYSICS: A DISCIPLINARY HISTORY, 1950-1980 By Gary James Weisel August, 2001 Chair: Frederick Gregory , Major Department: History This dissertation investigates the development of plasma physics as a scientific discipline, concentrating on the American community. Themes include the role of patronage in modifying disciplinary research interests, the interrelation of the specialties that compose a discipUne, and disciplinary identity. The study begins by reviewing work on ionized gases accomplished during the late nineteenth and early twentieth centuries, in specialties concerning the Earth's ionosphere, the Aurora, and the discharge of electricity through gases. During the late 1950s and early 1960s, a new plasma specialty, research on controlled thermonuclear fusion energy, dominated the foundation of plasma physics. The political context of the Cold War shaped the discipline, both in terms of its social makeup and its scientific style. Fusion research continued to exert a preponderant influence; during the late 1960s and early 1970s, plasma physics was transformed by research with new fusion machines (the tokamak and inertial-confmement fusion) and by political pressures bom of the anti-war movement and the energy crisis. ix The dissertation highlights the troubled relationship between the fusion community and the other plasma specialties. At the same time, it gives attention to scientists who attempted to link different plasma specialties in their work, especially fusion research, space physics, and astrophysics. There also is discussion of the military applications of plasma physics, such as plasma dynamics and the simulation of nuclear explosions. Throughout its history, the plasma community nurtured visions of plasma physics that not only recognized the radical diversity of plasma behavior but also affirmed the unity of the study of "the fourth state of matter." However, neither the American funding agencies nor the general scientific community accepted such broad visions of the discipline. The plasma community argued for funding more and more on the basis of fusion as a potential source of abundant and clean energy. The outcome was disappointing both for fusion research and for plasma physics. The American funding process proved incapable of the long-term planning needed either to follow through on its fusion commitments or to maintain a modest program of basic plasma research.
Recommended publications
  • The Quest for a Fusion Energy Reactor This Page Intentionally Left Blank the Quest for a Fusion Energy Reactor
    The Quest for a Fusion Energy Reactor This page intentionally left blank The Quest for a Fusion Energy Reactor An Insider’s Account of the INTOR Workshop Weston M. Stacey 1 2010 3 Oxford University Press, Inc., publishes works that further Oxford University’s objective of excellence in research, scholarship, and education. Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offi ces in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 2010 by Oxford University Press, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Stacey, Weston M. The quest for a fusion energy reactor : an insider’s account of the INTOR Workshop / Weston M. Stacey. p. cm. Includes bibliographical references and index. ISBN 978-0-19-973384-2 1. Fusion reactors—Design and construction. 2. Engineering test reactors—Design and construction. 3. Tokamaks. 4. Fusion reactors— Research—International coorporation. 5. International Tokamak Reactor Workshop I. Title. TK9204.S62 2010 621.48’4—dc22 2009022620 987654321 Printed in the United States of America on acid-free paper To all of those who contributed to the INTOR Workshop.
    [Show full text]
  • Rutherford's Nuclear World: the Story of the Discovery of the Nuc
    Rutherford's Nuclear World: The Story of the Discovery of the Nuc... http://www.aip.org/history/exhibits/rutherford/sections/atop-physic... HOME SECTIONS CREDITS EXHIBIT HALL ABOUT US rutherford's explore the atom learn more more history of learn about aip's nuclear world with rutherford about this site physics exhibits history programs Atop the Physics Wave ShareShareShareShareShareMore 9 RUTHERFORD BACK IN CAMBRIDGE, 1919–1937 Sections ← Prev 1 2 3 4 5 Next → In 1962, John Cockcroft (1897–1967) reflected back on the “Miraculous Year” ( Annus mirabilis ) of 1932 in the Cavendish Laboratory: “One month it was the neutron, another month the transmutation of the light elements; in another the creation of radiation of matter in the form of pairs of positive and negative electrons was made visible to us by Professor Blackett's cloud chamber, with its tracks curled some to the left and some to the right by powerful magnetic fields.” Rutherford reigned over the Cavendish Lab from 1919 until his death in 1937. The Cavendish Lab in the 1920s and 30s is often cited as the beginning of modern “big science.” Dozens of researchers worked in teams on interrelated problems. Yet much of the work there used simple, inexpensive devices — the sort of thing Rutherford is famous for. And the lab had many competitors: in Paris, Berlin, and even in the U.S. Rutherford became Cavendish Professor and director of the Cavendish Laboratory in 1919, following the It is tempting to simplify a complicated story. Rutherford directed the Cavendish Lab footsteps of J.J. Thomson. Rutherford died in 1937, having led a first wave of discovery of the atom.
    [Show full text]
  • CONTENTS Group Membership, January 2002 2
    CONTENTS Group Membership, January 2002 2 APPENDIX 1: Report on Activities 2000-2002 & Proposed Programme 2002-2006 4 1OPAL 4 2H1 7 3 ATLAS 11 4 BABAR 19 5DØ 24 6 e-Science 29 7 Geant4 32 8 Blue Sky and applied R&D 33 9 Computing 36 10 Activities in Support of Public Understanding of Science 38 11 Collaborations and contacts with Industry 41 12 Other Research Related Activities by Group Members 41 13 Staff Management and Implementation of Concordat 41 APPENDIX 2: Request for Funds 1. Support staff 43 2. Travel 55 3. Consumables 56 4. Equipment 58 APPENDIX 3: Publications 61 1 Group Membership, May 2002 Academic Staff Dr John Allison Senior Lecturer Professor Roger Barlow Professor Dr Ian Duerdoth Senior Lecturer Dr Mike Ibbotson Reader Dr George Lafferty Reader Dr Fred Loebinger Senior Lecturer Professor Robin Marshall Professor, Group Leader Dr Terry Wyatt Reader Dr A N Other (from Sept 2002) Lecturer Fellows Dr Brian Cox PPARC Advanced Fellow Dr Graham Wilson (leave of absence for 2 yrs) PPARC Advanced Fellow James Weatherall PPARC Fellow PPARC funded Research Associates∗ Dr Nick Malden Dr Joleen Pater Dr Michiel Sanders Dr Ben Waugh Dr Jenny Williams PPARC funded Responsive Research Associate Dr Liang Han PPARC funded e-Science Research Associates Steve Dallison core e-Science Sergey Dolgobrodov core e-Science Gareth Fairey EU/PPARC DataGrid Alessandra Forti GridPP Andrew McNab EU/PPARC DataGrid PPARC funded Support Staff∗ Phil Dunn (replacement) Technician Andrew Elvin Technician Dr Joe Foster Physicist Programmer Julian Freestone
    [Show full text]
  • 2015 Annual Report
    2015 AMERICAN PHYSICAL SOCIETY ANNUAL TM ADVANCING PHYSICS REPORT TM THE AMERICAN PHYSICAL SOCIETY STRIVES TO Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity Collaborate with national scientific societies for the advancement of science, science education, and the science community Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration Have an active, engaged, and diverse membership, and support the activities of its units and members © 2016 American Physical Society During 2015, APS worked to institute the governance objective: “the advancement and diffusion of the knowledge changes approved by the membership in late 2014. In of physics.” APS is fully committed to the principles of OA accordance with the new Constitution & Bylaws, in to the extent that we can continue to support the production February the Board appointed our first Chief Executive of high-quality peer-reviewed journals. For many years APS Officer—Kate Kirby, the former Executive Officer—to has supported “green” OA and we have been fully compliant head the APS. Kate’s major task has been to transition with the 2013 directive from the Office of Science and the management of APS to a CEO model with a Senior Technology Policy that the publications resulting from Management Team. She appointed Mark Doyle as Chief U.S. federally funded research be accessible to the public 12 Information Officer, James Taylor as Chief Operating months after publication. Since APS is a major international Officer, and Matthew Salter as the new Publisher.
    [Show full text]
  • Digital Physics: Science, Technology and Applications
    Prof. Kim Molvig April 20, 2006: 22.012 Fusion Seminar (MIT) DDD-T--TT FusionFusion D +T → α + n +17.6 MeV 3.5MeV 14.1MeV • What is GOOD about this reaction? – Highest specific energy of ALL nuclear reactions – Lowest temperature for sizeable reaction rate • What is BAD about this reaction? – NEUTRONS => activation of confining vessel and resultant radioactivity – Neutron energy must be thermally converted (inefficiently) to electricity – Deuterium must be separated from seawater – Tritium must be bred April 20, 2006: 22.012 Fusion Seminar (MIT) ConsiderConsider AnotherAnother NuclearNuclear ReactionReaction p+11B → 3α + 8.7 MeV • What is GOOD about this reaction? – Aneutronic (No neutrons => no radioactivity!) – Direct electrical conversion of output energy (reactants all charged particles) – Fuels ubiquitous in nature • What is BAD about this reaction? – High Temperatures required (why?) – Difficulty of confinement (technology immature relative to Tokamaks) April 20, 2006: 22.012 Fusion Seminar (MIT) DTDT FusionFusion –– VisualVisualVisual PicturePicture Figure by MIT OCW. April 20, 2006: 22.012 Fusion Seminar (MIT) EnergeticsEnergetics ofofof FusionFusion e2 V ≅ ≅ 400 KeV Coul R + R V D T QM “tunneling” required . Ekin r Empirical fit to data 2 −VNuc ≅ −50 MeV −2 A1 = 45.95, A2 = 50200, A3 =1.368×10 , A4 =1.076, A5 = 409 Coefficients for DT (E in KeV, σ in barns) April 20, 2006: 22.012 Fusion Seminar (MIT) TunnelingTunneling FusionFusion CrossCross SectionSection andand ReactivityReactivity Gamow factor . Compare to DT . April 20, 2006: 22.012 Fusion Seminar (MIT) ReactivityReactivity forfor DTDT FuelFuel 8 ] 6 c e s / 3 m c 6 1 - 0 4 1 x [ ) ν σ ( 2 0 0 50 100 150 200 T1 (KeV) April 20, 2006: 22.012 Fusion Seminar (MIT) Figure by MIT OCW.
    [Show full text]
  • The Discovery of the Higgs Boson at the LHC
    Chapter 6 The Discovery of the Higgs Boson at the LHC Peter Jenni and Tejinder S. Virdee 6.1 Introduction and the Standard Model The standard model of particle physics (SM) is a theory that is based upon principles of great beauty and simplicity. The theory comprises the building blocks of visible matter, the fundamental fermions: quarks and leptons, and the fundamental bosons that mediate three of the four fundamental interactions; photons for electromag- netism, the W and Z bosons for the weak interaction and gluons for the strong interaction (Fig. 6.1). The SM provides a very successful description of the visible universe and has been verified in many experiments to a very high precision. It has an enormous range of applicability and validity. So far no significant deviations have been observed experimentally. The possibility of installing a proton-proton accelerator in the LEP tunnel, after the e+e− programme, was being discussed in the 1980’s. At the time there were many profound open questions in particle physics, and several are still present. In simple terms these are: what is the origin of mass i.e. how do fundamental particles acquire mass, and why do they have the masses that they have? Why is there more matter than anti-matter? What is dark matter? What is the path towards unification of all forces? Do we live in a world with more space-time dimensions than the familiar four? The LHC [1, 2] was conceived to address or shed light on these questions. P. Jenni CERN, Geneva, Switzerland Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany T.
    [Show full text]
  • Download Report 2010-12
    RESEARCH REPORt 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Cover: Aurora borealis paintings by William Crowder, National Geographic (1947). The International Geophysical Year (1957–8) transformed research on the aurora, one of nature’s most elusive and intensely beautiful phenomena. Aurorae became the center of interest for the big science of powerful rockets, complex satellites and large group efforts to understand the magnetic and charged particle environment of the earth. The auroral visoplot displayed here provided guidance for recording observations in a standardized form, translating the sublime aesthetics of pictorial depictions of aurorae into the mechanical aesthetics of numbers and symbols. Most of the portait photographs were taken by Skúli Sigurdsson RESEARCH REPORT 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Introduction The Max Planck Institute for the History of Science (MPIWG) is made up of three Departments, each administered by a Director, and several Independent Research Groups, each led for five years by an outstanding junior scholar. Since its foundation in 1994 the MPIWG has investigated fundamental questions of the history of knowl- edge from the Neolithic to the present. The focus has been on the history of the natu- ral sciences, but recent projects have also integrated the history of technology and the history of the human sciences into a more panoramic view of the history of knowl- edge. Of central interest is the emergence of basic categories of scientific thinking and practice as well as their transformation over time: examples include experiment, ob- servation, normalcy, space, evidence, biodiversity or force.
    [Show full text]
  • An Improbable Venture
    AN IMPROBABLE VENTURE A HISTORY OF THE UNIVERSITY OF CALIFORNIA, SAN DIEGO NANCY SCOTT ANDERSON THE UCSD PRESS LA JOLLA, CALIFORNIA © 1993 by The Regents of the University of California and Nancy Scott Anderson All rights reserved. Library of Congress Cataloging in Publication Data Anderson, Nancy Scott. An improbable venture: a history of the University of California, San Diego/ Nancy Scott Anderson 302 p. (not including index) Includes bibliographical references (p. 263-302) and index 1. University of California, San Diego—History. 2. Universities and colleges—California—San Diego. I. University of California, San Diego LD781.S2A65 1993 93-61345 Text typeset in 10/14 pt. Goudy by Prepress Services, University of California, San Diego. Printed and bound by Graphics and Reproduction Services, University of California, San Diego. Cover designed by the Publications Office of University Communications, University of California, San Diego. CONTENTS Foreword.................................................................................................................i Preface.........................................................................................................................v Introduction: The Model and Its Mechanism ............................................................... 1 Chapter One: Ocean Origins ...................................................................................... 15 Chapter Two: A Cathedral on a Bluff ......................................................................... 37 Chapter Three:
    [Show full text]
  • Nuclear Fusion Enhances Cancer Cell Killing Efficacy in a Protontherapy Model
    Nuclear fusion enhances cancer cell killing efficacy in a protontherapy model GAP Cirrone*, L Manti, D Margarone, L Giuffrida, A. Picciotto, G. Cuttone, G. Korn, V. Marchese, G. Milluzzo, G. Petringa, F. Perozziello, F. Romano, V. Scuderi * Corresponding author Abstract Protontherapy is hadrontherapy’s fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy’s superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11Bà3a reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha-particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy’s ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated. 1 The urgent need for radical radiotherapy research to achieve improved tumour control in the context of reducing the risk of normal tissue toxicity and late-occurring sequelae, has driven the fast- growing development of cancer treatment by accelerated beams of charged particles (hadrontherapy) in recent decades (1). This appears to be particularly true for protontherapy, which has emerged as the most-rapidly expanding hadrontherapy approach, totalling over 100,000 patients treated thus far worldwide (2).
    [Show full text]
  • John Von Neumann's “Impossibility Proof” in a Historical Perspective’, Physis 32 (1995), Pp
    CORE Metadata, citation and similar papers at core.ac.uk Provided by SAS-SPACE Published: Louis Caruana, ‘John von Neumann's “Impossibility Proof” in a Historical Perspective’, Physis 32 (1995), pp. 109-124. JOHN VON NEUMANN'S ‘IMPOSSIBILITY PROOF’ IN A HISTORICAL PERSPECTIVE ABSTRACT John von Neumann's proof that quantum mechanics is logically incompatible with hidden varibales has been the object of extensive study both by physicists and by historians. The latter have concentrated mainly on the way the proof was interpreted, accepted and rejected between 1932, when it was published, and 1966, when J.S. Bell published the first explicit identification of the mistake it involved. What is proposed in this paper is an investigation into the origins of the proof rather than the aftermath. In the first section, a brief overview of the his personal life and his proof is given to set the scene. There follows a discussion on the merits of using here the historical method employed elsewhere by Andrew Warwick. It will be argued that a study of the origins of von Neumann's proof shows how there is an interaction between the following factors: the broad issues within a specific culture, the learning process of the theoretical physicist concerned, and the conceptual techniques available. In our case, the ‘conceptual technology’ employed by von Neumann is identified as the method of axiomatisation. 1. INTRODUCTION A full biography of John von Neumann is not yet available. Moreover, it seems that there is a lack of extended historical work on the origin of his contributions to quantum mechanics.
    [Show full text]
  • 11 European Fusion Theory Conference
    SCIENTIFIC PROGRAMME COMMITTEE F. Zonca(chair) ENEA, Italy D. Borba IST, Portugal M. Lisak VR, Sweden S. Cappello CNR, Italy V. Naulin Risø, Denmark F. Castejon CIEMAT, Spain M. Ottaviani CEA, France D. Van Eester TEC, Belgium O. Sauter CRPP, Switzerland th S. Günter IPP, Germany M. Tokar TEC, Germany 11 European J. Heikkinen Tekes, Finland M. Vlad INFLPR, Romania P. Helander UKAEA, UK Fusion Theory Conference Organised by: Association EURATOM-CEA and Université de Provence IMPORTANT DATES 30 April 2005 Deadline for submission of abstracts 15 June 2005 Information for contributors 30 June 2005 Deadline for registration and hotel reservation 26 -28 September 2005 11th EFTC LOCAL ORGANISING COMMITTEE M. Ottaviani (chairman) P. Beyer H. Capes A. Corso-Leclercq T. Hutter (scientific secretary) G. Huysmans (webmaster) R. Stamm Mailing Address: Mrs. A. Corso-Leclercq 11th EFTC Conference Secretariat 26 -28 September 2005 DRFC/SCCP/G2IC, bât. 513, Conference Centre CEA Cadarache, Aix-en-Provence, France 13108 St-Paul-lez-Durance, France Website : http://www-fusion-magnetique.cea.fr/eftc11/index.html E-mail : [email protected] Announcement and Call for Abstracts Photos by J-C Carbone SUBJECT MATTER A confirmation of receipt will be sent by e-mail within a week. Submissions printed on paper should be made only if severe problems The 11th European Fusion Theory Conference will be held in Aix-en- arise with electronic submission. The Scientific Committee will select the Provence in the south of France from the 26th to the 28th of September contributions on the basis of the submitted abstracts. Authors will be 2005.
    [Show full text]
  • Frontiers in Plasma Physics Research: a Fifty-Year Perspective from 1958 to 2008-Ronald C
    • At the Forefront of Plasma Physics Publishing for 50 Years - with the launch of Physics of Fluids in 1958, AlP has been publishing ar In« the finest research in plasma physics. By the early 1980s it had St t 5 become apparent that with the total number of plasma physics­ related articles published in the journal- afigure then approaching 5,000 - asecond editor would be needed to oversee contributions in this field. And indeed in 1982 Fred L. Ribe and Andreas Acrivos were tapped to replace the retiring Fran~ois Frenkiel, Physics of Fluids' founding editor. Dr. Ribe assumed the role of editor for the plasma physics component of the journal and Dr. Acrivos took on the fluid Editor Ronald C. Davidson dynamics papers. This was the beginning of an evolution that would see Physics of Fluids Resident Associate Editor split into Physics of Fluids A and B in 1989, and culminate in the launch of Physics of Stewart J. Zweben Plasmas in 1994. Assistant Editor Sandra L. Schmidt Today, Physics of Plasmas continues to deliver forefront research of the very Assistant to the Editor highest quality, with a breadth of coverage no other international journal can match. Pick Laura F. Wright up any issue and you'll discover authoritative coverage in areas including solar flares, thin Board of Associate Editors, 2008 film growth, magnetically and inertially confined plasmas, and so many more. Roderick W. Boswell, Australian National University Now, to commemorate the publication of some of the most authoritative and Jack W. Connor, Culham Laboratory Michael P. Desjarlais, Sandia National groundbreaking papers in plasma physics over the past 50 years, AlP has put together Laboratory this booklet listing many of these noteworthy articles.
    [Show full text]