Download Report 2010-12

Total Page:16

File Type:pdf, Size:1020Kb

Download Report 2010-12 RESEARCH REPORt 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Cover: Aurora borealis paintings by William Crowder, National Geographic (1947). The International Geophysical Year (1957–8) transformed research on the aurora, one of nature’s most elusive and intensely beautiful phenomena. Aurorae became the center of interest for the big science of powerful rockets, complex satellites and large group efforts to understand the magnetic and charged particle environment of the earth. The auroral visoplot displayed here provided guidance for recording observations in a standardized form, translating the sublime aesthetics of pictorial depictions of aurorae into the mechanical aesthetics of numbers and symbols. Most of the portait photographs were taken by Skúli Sigurdsson RESEARCH REPORT 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Introduction The Max Planck Institute for the History of Science (MPIWG) is made up of three Departments, each administered by a Director, and several Independent Research Groups, each led for five years by an outstanding junior scholar. Since its foundation in 1994 the MPIWG has investigated fundamental questions of the history of knowl- edge from the Neolithic to the present. The focus has been on the history of the natu- ral sciences, but recent projects have also integrated the history of technology and the history of the human sciences into a more panoramic view of the history of knowl- edge. Of central interest is the emergence of basic categories of scientific thinking and practice as well as their transformation over time: examples include experiment, ob- servation, normalcy, space, evidence, biodiversity or force. Because the research of the Institute pursues questions of philosophical epistemology historically, the com- mon perspective of the diverse research activities is often called “historical epistemol- ogy.” This Research Report describes in detail the work of all of the MPIWG’s research units 2010–12. This work would not have been possible without the support of our Advisory Board. We hope that the results presented in this report will reward the reading. At any given moment, there are approximately seventy-five scholars working at the MPIWG, from pre- and post-doctoral fellows to senior visiting scholars. Their back- grounds are multi-disciplinary and international; their projects engage topics from ancient cosmologies to the acoustical design of modern theatres, from Renaissance alchemical laboratories to the sciences of Big Data. Although many are working on individual projects (a dissertation, an article, a monograph), all are part of the larger thematic research projects described in these pages. Since its inception, the MPIWG has encouraged collective research and publication in the humanities in the form of Working Groups that combine the expertise of many specialties and encourage sus- tained discussion on topics that cut across continents, centuries, and disciplines. The three Departments of the Institute approach questions of historical epistemology in different ways. The Departments are organized neither along disciplinary lines, nor according to historical periods. Their work embraces numerous scientific disciplines and large historical timescales. Department I, directed by Jürgen Renn, focuses on Introduction structural changes in systems of knowledge and investigates long-term processes of changes in scientific knowledge. Longitudinal studies examining the development of scientific knowledge from ancient to modern times are complemented by transversal studies dedicated to global processes of knowledge transfer and transformation. Department II, directed by Lorraine Daston, investigates the history of the ideals and practices of rationality: epistemic categories and associated practices that have be- come so fundamental for the modern natural and human sciences that they seem- ingly defy history, including scientific objectivity, observation, and data. Department III, directed by Hans-Jörg Rheinberger, studies experimental systems and spaces of knowledge. The scope of its historical subjects is broad, with special emphasis on the history of the modern life sciences and the epistemology of experiments. Department III completed its work in January 2011 with a festive retrospective of its many pro- jects; Hans-Jörg Rheinberger himself will remain at the Institute until 2014. Professor Dagmar Schäfer, formerly of the University of Manchester, U.K., has accepted the directorship of Department III and will begin building up its research program on “Artefacts and Action in Systems of Knowledge” as of August 1, 2013. Department III will study the history of knowledge and action. Its topics will be the processes and structures that lead to varying configurations of collaborative and indi- vidual bodies of knowledge as well as the changing role of artefacts — texts, objects and spaces — in the creation, diffusion, and use of scientific and technological knowl- edge. Research cases will include Asian cultures and the Pre-modern era. In 2011, Professor Glenn W. Most (Scuola Normale, Pisa, Italy/ University of Chicago, USA) was elected External Member of the MPIWG by the Max Planck Society. Together with Professor Anthony Grafton (Princeton University, USA), he organized a Working Group on the “Learned Practices of Canonical Texts” at the MPIWG in 2012 (see p. 82–83). As of this writing, the MPIWG is proud host to seven smaller independent research groups, variously funded, led by Sabine Arnaud, Jochen Büttner, Vincenzo De Risi, Sven Dupré, Elaine Leong, Veronika Lipphardt, and Viktoria Tkaczyk. All MPIWG research units cooperate with one another both for- mally and informally, as common interests dictate. Over the past years, local cooperation with Berlin universities has intensified, result- ing in a formal cooperation agreement in 2007 involving the Max Planck Society, the Free University and the Humboldt University and extending to the Technische Uni- versität Berlin in 2011. The result has been shared independent research groups be- tween the MPIWG and the Berlin universities as well as the creation of new positions in the history of science at the universities. Additionally, the MPIWG is part of the Excellence Cluster TOPOI (see p. 46) and the Berlin School of Mind and Brain. These developments have led to an extraordinary concentration of scholarly talent in Berlin, representing the most diverse specialties in the history of science, technology, and medicine. But the whole is still less than the sum of the parts. The next step toward greater integration of MPIWG and university resources in the history of science would be the creation of a Berlin Center for the History of Knowledge. The Center would pursue three closely connected goals: encouraging an interdisciplinary dia- logue with the goal of developing a comprehensive cultural history of knowledge, promoting exchanges among natural, social, and cultural sciences, and supporting 6 MPIWG RESEARCH REPORT 2010–2012 Introduction the creation of international research networks. As a first step in this direction, the MPIWG and the three Berlin universities will jointly advertise eight postdoctoral fel- lowships in the history of science and knowledge in 2013 with support of a Network Grant from the Max Planck Society. The MPIWG has undertaken collaborative research projects with other Max Planck Institutes such as the Bibliotheca Hertziana in Rome, the Max Planck Institute for European Legal History in Frankfurt am Main, the Kunsthistorisches Institut in Florence, the Fritz Haber Institute in Berlin, the Albert Einstein Institute for Gravita- tional Research in Golm, and the Max Planck Institute for Comparative Public Law and International Law in Heidelberg. International cooperations have been extended beyond the well-established close partnerships in Europe, with universities and research institutions in Brazil, Canada, China, India, Israel, Mexico, Mongolia and the United States. Although the MPIWG aims to innovate first and foremost in research, it has also pio- neered new forms of publication and the exploitation of new source materials. The MPIWG has created a new genre of publication, “Working Group volumes,” which are the result of years of collaborative research by teams of scholars, in contrast to the more familiar conference proceedings or edited volumes. Sources of the Max Planck Research Library for the History and Development of Knowledge, a new series that makes volumes available by print-on-demand and as open-access online, exploits the rapidly evolving electronic facilities that are transforming scholarly publication. Supporting the scholars at the MPIWG is an unusually friendly and efficient, if chron- ically over-worked staff. The Library (which has now grown to some 70,000 volumes plus many digitalized sources), the IT Group, the secretaries, the student research assistants, the Research Coordinators, and the Administration make our research possible, and we take this opportunity to thank them warmly. Berlin, April 2013 MPIWG RESEARCH REPORT 2010–2012 7 Obituaries Obituaries Peter Damerow (1939–2011) We mourn the loss of Peter Damerow, mathematician, philosopher, educational re- searcher, and historian of science, as well as the first senior scientist of this institute. He substantially contributed to its development from its foundation to the last days of his life. It is impossible to overestimate
Recommended publications
  • The Pursuit of Quantum Gravity
    The Pursuit of Quantum Gravity Cécile DeWitt-Morette The Pursuit of Quantum Gravity Memoirs of Bryce DeWitt from 1946 to 2004 123 Cécile DeWitt-Morette Department of Physics Center for Relativity University of Texas at Austin Austin Texas USA [email protected] ISBN 978-3-642-14269-7 e-ISBN 978-3-642-14270-3 DOI 10.1007/978-3-642-14270-3 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011921724 c Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con- cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publica- tion or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protec- tive laws and regulations and therefore free for general use. Cover design:WMXDesignGmbH,Heidelberg Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to our daughters, Nicolette, Jan, Christiane, Abigail Preface This book is written for the curious reader. I hope it will also be a good read for the professional physicist.
    [Show full text]
  • What the Renaissance Knew Piero Scaruffi Copyright 2018
    What the Renaissance knew Piero Scaruffi Copyright 2018 http://www.scaruffi.com/know 1 What the Renaissance knew • The 17th Century – For tens of thousands of years, humans had the same view of the universe and of the Earth. – Then the 17th century dramatically changed the history of humankind by changing the way we look at the universe and ourselves. – This happened in a Europe that was apparently imploding politically and militarily, amid massive, pervasive and endless warfare – Grayling refers to "the flowering of genius“: Galileo, Pascal, Kepler, Newton, Cervantes, Shakespeare, Donne, Milton, Racine, Moliere, Descartes, Spinoza, Leibniz, Locke, Rubens, El Greco, Rembrandt, Vermeer… – Knowledge spread, ideas circulated more freely than people could travel 2 What the Renaissance knew • Collapse of classical dogmas – Aristotelian logic vs Rene Descartes' "Discourse on the Method" (1637) – Galean medicine vs Vesalius' anatomy (1543), Harvey's blood circulation (1628), and Rene Descartes' "Treatise of Man" (1632) – Ptolemaic cosmology vs Copernicus (1530) and Galileo (1632) – Aquinas' synthesis of Aristotle and the Bible vs Thomas Hobbes' synthesis of mechanics (1651) and Pierre Gassendi's synthesis of Epicurean atomism and anatomy (1655) – Papal unity: the Thirty Years War (1618-48) shows endless conflict within Christiandom 3 What the Renaissance knew • Decline of – Feudalism – Chivalry – Holy Roman Empire – Papal Monarchy – City-state – Guilds – Scholastic philosophy – Collectivism (Church, guild, commune) – Gothic architecture 4 What
    [Show full text]
  • Unerring in Her Scientific Enquiry and Not Afraid of Hard Work, Marie Curie Set a Shining Example for Generations of Scientists
    Historical profile Elements of inspiration Unerring in her scientific enquiry and not afraid of hard work, Marie Curie set a shining example for generations of scientists. Bill Griffiths explores the life of a chemical heroine SCIENCE SOURCE / SCIENCE PHOTO LIBRARY LIBRARY PHOTO SCIENCE / SOURCE SCIENCE 42 | Chemistry World | January 2011 www.chemistryworld.org On 10 December 1911, Marie Curie only elements then known to or ammonia, having a water- In short was awarded the Nobel prize exhibit radioactivity. Her samples insoluble carbonate akin to BaCO3 in chemistry for ‘services to the were placed on a condenser plate It is 100 years since and a chloride slightly less soluble advancement of chemistry by the charged to 100 Volts and attached Marie Curie became the than BaCl2 which acted as a carrier discovery of the elements radium to one of Pierre’s electrometers, and first person ever to win for it. This they named radium, and polonium’. She was the first thereby she measured quantitatively two Nobel prizes publishing their results on Boxing female recipient of any Nobel prize their radioactivity. She found the Marie and her husband day 1898;2 French spectroscopist and the first person ever to be minerals pitchblende (UO2) and Pierre pioneered the Eugène-Anatole Demarçay found awarded two (she, Pierre Curie and chalcolite (Cu(UO2)2(PO4)2.12H2O) study of radiactivity a new atomic spectral line from Henri Becquerel had shared the to be more radioactive than pure and discovered two new the element, helping to confirm 1903 physics prize for their work on uranium, so reasoned that they must elements, radium and its status.
    [Show full text]
  • Physics Teaching and Research at Göttingen University 2 GREETING from the PRESIDENT 3
    Physics Teaching and Research at Göttingen University 2 GREETING FROM THE PRESIDENT 3 Greeting from the President Physics has always been of particular importance for the Current research focuses on solid state and materials phy- Georg-August-Universität Göttingen. As early as 1770, Georg sics, astrophysics and particle physics, biophysics and com- Christoph Lichtenberg became the first professor of Physics, plex systems, as well as multi-faceted theoretical physics. Mathematics and Astronomy. Since then, Göttingen has hos- Since 2003, the Physics institutes have been housed in a new ted numerous well-known scientists working and teaching physics building on the north campus in close proximity to in the fields of physics and astronomy. Some of them have chemistry, geosciences and biology as well as to the nearby greatly influenced the world view of physics. As an example, Max Planck Institute (MPI) for Biophysical Chemistry, the MPI I would like to mention the foundation of quantum mecha- for Dynamics and Self Organization and the MPI for Solar nics by Max Born and Werner Heisenberg in the 1920s. And System Research. The Faculty of Physics with its successful Georg Christoph Lichtenberg and in particular Robert Pohl research activities and intense interdisciplinary scientific have set the course in teaching as well. cooperations plays a central role within the Göttingen Cam- pus. With this booklet, the Faculty of Physics presents itself It is also worth mentioning that Göttingen physicists have as a highly productive and modern faculty embedded in an accepted social and political responsibility, for example Wil- attractive and powerful scientific environment and thus per- helm Weber, who was one of the Göttingen Seven who pro- fectly prepared for future scientific challenges.
    [Show full text]
  • Grosvenor Prints CATALOGUE for the ABA FAIR 2008
    Grosvenor Prints 19 Shelton Street Covent Garden London WC2H 9JN Tel: 020 7836 1979 Fax: 020 7379 6695 E-mail: [email protected] www.grosvenorprints.com Dealers in Antique Prints & Books CATALOGUE FOR THE ABA FAIR 2008 Arts 1 – 5 Books & Ephemera 6 – 119 Decorative 120 – 155 Dogs 156 – 161 Historical, Social & Political 162 – 166 London 167 – 209 Modern Etchings 210 – 226 Natural History 227 – 233 Naval & Military 234 – 269 Portraits 270 – 448 Satire 449 – 602 Science, Trades & Industry 603 – 640 Sports & Pastimes 641 – 660 Foreign Topography 661 – 814 UK Topography 805 - 846 Registered in England No. 1305630 Registered Office: 2, Castle Business Village, Station Road, Hampton, Middlesex. TW12 2BX. Rainbrook Ltd. Directors: N.C. Talbot. T.D.M. Rayment. C.E. Ellis. E&OE VAT No. 217 6907 49 GROSVENOR PRINTS Catalogue of new stock released in conjunction with the ABA Fair 2008. In shop from noon 3rd June, 2008 and at Olympia opening 5th June. Established by Nigel Talbot in 1976, we have built up the United Kingdom’s largest stock of prints from the 17th to early 20th centuries. Well known for our topographical views, portraits, sporting and decorative subjects, we pride ourselves on being able to cater for almost every taste, no matter how obscure. We hope you enjoy this catalogue put together for this years’ Antiquarian Book Fair. Our largest ever catalogue contains over 800 items, many rare, interesting and unique images. We have also been lucky to purchase a very large stock of theatrical prints from the Estate of Alec Clunes, a well known actor, dealer and collector from the 1950’s and 60’s.
    [Show full text]
  • Rutherford's Nuclear World: the Story of the Discovery of the Nuc
    Rutherford's Nuclear World: The Story of the Discovery of the Nuc... http://www.aip.org/history/exhibits/rutherford/sections/atop-physic... HOME SECTIONS CREDITS EXHIBIT HALL ABOUT US rutherford's explore the atom learn more more history of learn about aip's nuclear world with rutherford about this site physics exhibits history programs Atop the Physics Wave ShareShareShareShareShareMore 9 RUTHERFORD BACK IN CAMBRIDGE, 1919–1937 Sections ← Prev 1 2 3 4 5 Next → In 1962, John Cockcroft (1897–1967) reflected back on the “Miraculous Year” ( Annus mirabilis ) of 1932 in the Cavendish Laboratory: “One month it was the neutron, another month the transmutation of the light elements; in another the creation of radiation of matter in the form of pairs of positive and negative electrons was made visible to us by Professor Blackett's cloud chamber, with its tracks curled some to the left and some to the right by powerful magnetic fields.” Rutherford reigned over the Cavendish Lab from 1919 until his death in 1937. The Cavendish Lab in the 1920s and 30s is often cited as the beginning of modern “big science.” Dozens of researchers worked in teams on interrelated problems. Yet much of the work there used simple, inexpensive devices — the sort of thing Rutherford is famous for. And the lab had many competitors: in Paris, Berlin, and even in the U.S. Rutherford became Cavendish Professor and director of the Cavendish Laboratory in 1919, following the It is tempting to simplify a complicated story. Rutherford directed the Cavendish Lab footsteps of J.J. Thomson. Rutherford died in 1937, having led a first wave of discovery of the atom.
    [Show full text]
  • The Riches of Uranium Uranium Is Best Known, and Feared, for Its Involvement in Nuclear Energy
    in your element The riches of uranium Uranium is best known, and feared, for its involvement in nuclear energy. Marisa J. Monreal and Paula L. Diaconescu take a look at how its unique combination of properties is now increasingly attracting the attention of chemists. t is nearly impossible to find an uplifting, and can be arrested by the skin, making found about uranium’s superior catalytic funny, or otherwise endearing quote on depleted uranium (composed mainly of 238U) activity may not be an isolated event. The Iuranium — the following dark wisecrack1 safe to work with as long as it is not inhaled organometallic chemistry of uranium was reflects people’s sinister feelings about this or ingested. born during the ‘Manhattan project’ — code element: “For years uranium cost only a few Studying the fundamental chemistry of name of the development of the first nuclear dollars a ton until scientists discovered you uranium is an exotic endeavour, but those who weapon during the Second World War. This could kill people with it”. But, in the spirit of embrace it will reap its benefits. Haber and field truly began to attract interest in 1956 rebranding, it is interesting to note that the Bosch found that uranium was a better catalyst when Reynolds and Wilkinson reported the main source of Earth’s internal heat comes than iron for making ammonia2. The preparation of the first cyclopentadienyl from the radioactive decay of uranium, isolation of an η1-OCO complex derivatives6. The discovery of thorium and potassium-40 that keeps the of uranium3 also showed uranocene electrified the field outer core liquid, induces mantle convection that, even though it is as much as that of ferrocene and, subsequently, drives plate tectonics.
    [Show full text]
  • James Reed Collection - Ephemera Reed Collection
    Fairfield University DigitalCommons@Fairfield The Artist Collects: Highlights from the James The Artist Collects: Highlights from the James Reed Collection - Ephemera Reed Collection Spring 2019 The Artist Collects: Highlights from the James Reed Collection Wall Labels Fairfield University Art Museum Follow this and additional works at: https://digitalcommons.fairfield.edu/reed-ephemera Recommended Citation Fairfield University Art Museum, "The Artist Collects: Highlights from the James Reed Collection Wall Labels" (2019). The Artist Collects: Highlights from the James Reed Collection - Ephemera. 1. https://digitalcommons.fairfield.edu/reed-ephemera/1 This item has been accepted for inclusion in DigitalCommons@Fairfield by an authorized administrator of DigitalCommons@Fairfield. It is brought to you by DigitalCommons@Fairfield with permission from the rights- holder(s) and is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact [email protected]. William Alfred Delamotte (British, 1775-1863) Landscape with Men and Dogs Resting Under a Tree, from the portfolio Specimens of Polyautography (London, 1803), 1802 Pen and ink lithograph Promised gift from James Reed This landscape was one of the first artists’ lithographs ever published. In a clever bid to market the new process, the director of Senefelder’s London press, Philip André, sent free stones and instructions to a number of prominent English artists.
    [Show full text]
  • Third Wave of Science Studies: Studies of Expertise and Experience H.M
    Social Studies of Science http://sss.sagepub.com/ The Third Wave of Science Studies: Studies of Expertise and Experience H.M. Collins and Robert Evans Social Studies of Science 2002 32: 235 DOI: 10.1177/0306312702032002003 The online version of this article can be found at: http://sss.sagepub.com/content/32/2/235 Published by: http://www.sagepublications.com Additional services and information for Social Studies of Science can be found at: Email Alerts: http://sss.sagepub.com/cgi/alerts Subscriptions: http://sss.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav >> Version of Record - Apr 1, 2002 What is This? Downloaded from sss.sagepub.com at UNIV OF RHODE ISLAND LIBRARY on December 9, 2013 DISCUSSION PAPER ABSTRACT Science studies has shown us why science and technology cannot always solve technical problems in the public domain. In particular, the speed of political decision-making is faster than the speed of scientific consensus formation. A predominant motif over recent years has been the need to extend the domain of technical decision-making beyond the technically qualified ´elite, so as to enhance political legitimacy. We argue, however, that the ‘Problem of Legitimacy’ has been replaced by the ‘Problem of Extension’ – that is, by a tendency to dissolve the boundary between experts and the public so that there are no longer any grounds for limiting the indefinite extension of technical decision-making rights. We argue that a Third Wave of Science Studies – Studies of Expertise and Experience (SEE) – is needed to solve the Problem of Extension.
    [Show full text]
  • 1 Ethers, Religion and Politics In
    ORE Open Research Exeter TITLE Ethers, religion and politics in late-Victorian physics: beyond the Wynne thesis AUTHORS Noakes, Richard JOURNAL History of Science DEPOSITED IN ORE 16 June 2008 This version available at http://hdl.handle.net/10036/30065 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication ETHERS, RELIGION AND POLITICS IN LATE-VICTORIAN PHYSICS: BEYOND THE WYNNE THESIS RICHARD NOAKES 1. INTRODUCTION In the past thirty years historians have demonstrated that the ether of physics was one of the most flexible of all concepts in the natural sciences. Cantor and Hodge’s seminal collection of essays of 1981 showed how during the eighteenth and nineteenth centuries British and European natural philosophers invented a range of ethers to fulfil diverse functions from the chemical and physiological to the physical and theological.1 In religious discourse, for example, Cantor identified “animate” and spiritual ethers invented by neo-Platonists, mystics and some Anglicans to provide a mechanism for supporting their belief in Divine immanence in the cosmos; material, mechanistic and contact-action ethers which appealed to atheists and Low Churchmen because such media enabled activity in the universe without constant and direct Divine intervention; and semi-spiritual/semi-material ethers that appealed to dualists seeking a mechanism for understanding the interaction of mind and matter. 2 The third type proved especially attractive to Oliver Lodge and several other late-Victorian physicists who claimed that the extraordinary physical properties of the ether made it a possible mediator between matter and spirit, and a weapon in their fight against materialistic conceptions of the cosmos.
    [Show full text]
  • A Reevaluation of Aulacoseira Nygaardii (Camburn) Camburn & D.F
    Nova Hedwigia 81 1-2 257-265 Stuttgart, August 2005 A reevaluation of Aulacoseira nygaardii (Camburn) Camburn & D.F. Charles (Bacillariophyceae): based on scanning electron microscopy of type material by Peter A. Siver ·1 Botany Department, Connecticut College, New London, CT 06320, U.S.A. and Paul B. Hamilton Research Division, The Canadian Museum of Nature, Ottawa, Canada KIP 6P4 With 16 figures Siver, P.A. & P.B. Hamilton (2005): A reevaluation of Aulacoseira nygaardii (Camburn) Camburn & D.F. Charles (Bacillariophyceae): based on scanning electron microscopy of type material.- Nova Hedwigia 81: 257-265. Abstract: Aulacoseira nygaardii was originally described by Camburn (as Melosira nygaardii in Camburn & Kingston 1986) based on light microscopy. Because the fine structure of this taxon can be difficult to resolve with light microscopy, positive identifications can also be difficult. We present an emended description of this taxon based on an evaluation of type material with scanning electron microscopy (SEM). Although SEM micrographs reported as A. nygaardii were presented by Scherer (1988), our observations indicate that the specimens examined by him possess several characters that differ from those in the type material and may represent a different organism. Key words: Aulacoseira, Aulacoseira nygaardii, diatom morphology, Melosira nygaardii, Melosira fennoscandica, scanning electron microscopy, type material. Introduction Aulacoseira nygaardii (Camburn) Camburn & D.E Charles 2000 was originally described by Camburn as Melosira nygaardii in surface sediments from Sand Lake, Alger County, Michigan, U.S.A. (Camburn & Kingston 1986). This species was ·1 e-mail: [email protected] DOl: 10.1127/0029-5035/2005/0081-0257 0029-5035/05/0081-0257 $ 2.25 © 2005 J.
    [Show full text]
  • The Social and Economic Roots of the Scientific Revolution
    THE SOCIAL AND ECONOMIC ROOTS OF THE SCIENTIFIC REVOLUTION Texts by Boris Hessen and Henryk Grossmann edited by GIDEON FREUDENTHAL PETER MCLAUGHLIN 13 Editors Preface Gideon Freudenthal Peter McLaughlin Tel Aviv University University of Heidelberg The Cohn Institute for the History Philosophy Department and Philosophy of Science and Ideas Schulgasse 6 Ramat Aviv 69117 Heidelberg 69 978 Tel Aviv Germany Israel The texts of Boris Hessen and Henryk Grossmann assembled in this volume are important contributions to the historiography of the Scientific Revolution and to the methodology of the historiography of science. They are of course also historical documents, not only testifying to Marxist discourse of the time but also illustrating typical European fates in the first half of the twentieth century. Hessen was born a Jewish subject of the Russian Czar in the Ukraine, participated in the October Revolution and was executed in the Soviet Union at the beginning of the purges. Grossmann was born a Jewish subject of the Austro-Hungarian Kaiser in Poland and served as an Austrian officer in the First World War; afterwards he was forced to return to Poland and then because of his revolutionary political activities to emigrate to Germany; with the rise to power of the Nazis he had to flee to France and then America while his family, which remained in Europe, perished in Nazi concentration camps. Our own acquaintance with the work of these two authors is also indebted to historical context (under incomparably more fortunate circumstances): the revival of Marxist scholarship in Europe in the wake of the student movement and the pro- fessionalization of history of science on the Continent.
    [Show full text]