The History of the Microprocessor- Autumn 1997
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Floating-Point Package for Intel 8008 and 8080 Microprocessors
UCRL-51940 FLOATING-POINT PACKAGE FOR INTEL 8008 AND 8080 MICROPROCESSORS Michael D. Maples October 24, 1975 Prepared for U.S. Energy Research& Development Administration under contract No. W-7405-Eng-48 I_AV~=IENCE I_IVEFIMORE I.ABOFIATOFIY University ol Calilomia ~ Livermore ~ NOTICE .sponsored by tht: United $~ates G~ven~menl.Neilhe~ the United States nor the United ~tates I’:n,~rgy of their employees,IIOr lilly of their eorltl’ilctclrs~ warranty~ express t~r implied, or asstltlleS ~t]y legld liability or responsihilit y fnr the accuracy, apparatus, product or ])rc)eess disclosed, represents that its rise would IIt~l illl’r liege privlttely-owned rights." Printed in the United States of America Avai.] able from National Technical. information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151 Price: Printed Copy $ *; Microfiche $2.25 NTIS ""Pages _Sellin_.g Price 1-50 $4.00 51-150 $5.45 151-325 $7.60 326-500 $10.60 501.-1000 $13.60 DISCI.AlMBR This documeut was prepared as an account of work sponsored by an agency of the United States Gnvernment.Neither the United States Governmentnor the University of California nor any of their employees,makes any warranty, express or implied, or assumesany legal liability or responsibility for the accuracy, complete.aess, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use wouldnot infrioge privately ownedrights. Refarenceherein to any specific commercialproduct, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,or favoring by the United States Govermnentor the University of California. -
When Is a Microprocessor Not a Microprocessor? the Industrial Construction of Semiconductor Innovation I
Ross Bassett When is a Microprocessor not a Microprocessor? The Industrial Construction of Semiconductor Innovation I In the early 1990s an integrated circuit first made in 1969 and thus ante dating by two years the chip typically seen as the first microprocessor (Intel's 4004), became a microprocessor for the first time. The stimulus for this piece ofindustrial alchemy was a patent fight. A microprocessor patent had been issued to Texas Instruments, and companies faced with patent infringement lawsuits were looking for prior art with which to challenge it. 2 This old integrated circuit, but new microprocessor, was the ALl, designed by Lee Boysel and used in computers built by his start-up, Four-Phase Systems, established in 1968. In its 1990s reincarnation a demonstration system was built showing that the ALI could have oper ated according to the classic microprocessor model, with ROM (Read Only Memory), RAM (Random Access Memory), and I/O (Input/ Output) forming a basic computer. The operative words here are could have, for it was never used in that configuration during its normal life time. Instead it was used as one-third of a 24-bit CPU (Central Processing Unit) for a series ofcomputers built by Four-Phase.3 Examining the ALl through the lenses of the history of technology and business history puts Intel's microprocessor work into a different per spective. The differences between Four-Phase's and Intel's work were industrially constructed; they owed much to the different industries each saw itselfin.4 While putting a substantial part ofa central processing unit on a chip was not a discrete invention for Four-Phase or the computer industry, it was in the semiconductor industry. -
IBM Z Systems Introduction May 2017
IBM z Systems Introduction May 2017 IBM z13s and IBM z13 Frequently Asked Questions Worldwide ZSQ03076-USEN-15 Table of Contents z13s Hardware .......................................................................................................................................................................... 3 z13 Hardware ........................................................................................................................................................................... 11 Performance ............................................................................................................................................................................ 19 z13 Warranty ............................................................................................................................................................................ 23 Hardware Management Console (HMC) ..................................................................................................................... 24 Power requirements (including High Voltage DC Power option) ..................................................................... 28 Overhead Cabling and Power ..........................................................................................................................................30 z13 Water cooling option .................................................................................................................................................... 31 Secure Service Container ................................................................................................................................................. -
Chapter 1: Computer Abstractions and Technology 1.6 – 1.7: Performance and Power
Chapter 1: Computer Abstractions and Technology 1.6 – 1.7: Performance and power ITSC 3181 Introduction to Computer Architecture https://passlaB.githuB.io/ITSC3181/ Department of Computer Science Yonghong Yan [email protected] https://passlab.github.io/yanyh/ Lectures for Chapter 1 and C Basics Computer Abstractions and Technology • Lecture 01: Chapter 1 – 1.1 – 1.4: Introduction, great ideas, Moore’s law, aBstraction, computer components, and program execution • Lecture 02: C Basics; Memory and Binary Systems • Lecture 03: Number System, Compilation, Assembly, Linking and Program Execution ☛• Lecture 04: Chapter 1 – 1.6 – 1.7: Performance, power and technology trends • Lecture 05: – 1.8 - 1.9: Multiprocessing and Benchmarking 2 § 1.6 Performance 1.6 Defining Performance • Which airplane has the best performance? Boeing 777 Boeing 777 Boeing 747 Boeing 747 BAC/Sud BAC/Sud Concorde Concorde Douglas Douglas DC- DC-8-50 8-50 0 100 200 300 400 500 0 2000 4000 6000 8000 10000 Passenger Capacity Cruising Range (miles) Boeing 777 Boeing 777 Boeing 747 Boeing 747 BAC/Sud BAC/Sud Concorde Concorde Douglas Douglas DC- DC-8-50 8-50 0 500 1000 1500 0 100000 200000 300000 400000 Cruising Speed (mph) Passengers x mph 3 Response Time and Throughput • Response time çè Latency – How long it takes to do a task • Throughput çè Bandwidth – Total work done per unit time • e.g., tasks/transactions/… per hour • How are response time and throughput affected by – Replacing the processor with a faster version? – Adding more processors? • We’ll focus on response time for now… 4 Relative Performance • Define Performance = 1/Execution Time • “X is n time faster than Y”, i.e. -
Computer Organization and Architecture Designing for Performance Ninth Edition
COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America. -
Historical Perspective and Further Reading 162.E1
2.21 Historical Perspective and Further Reading 162.e1 2.21 Historical Perspective and Further Reading Th is section surveys the history of in struction set architectures over time, and we give a short history of programming languages and compilers. ISAs include accumulator architectures, general-purpose register architectures, stack architectures, and a brief history of ARMv7 and the x86. We also review the controversial subjects of high-level-language computer architectures and reduced instruction set computer architectures. Th e history of programming languages includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C+ + , and Java, and the history of compilers includes the key milestones and the pioneers who achieved them. Accumulator Architectures Hardware was precious in the earliest stored-program computers. Consequently, computer pioneers could not aff ord the number of registers found in today’s architectures. In fact, these architectures had a single register for arithmetic instructions. Since all operations would accumulate in one register, it was called the accumulator , and this style of instruction set is given the same name. For example, accumulator Archaic EDSAC in 1949 had a single accumulator. term for register. On-line Th e three-operand format of RISC-V suggests that a single register is at least two use of it as a synonym for registers shy of our needs. Having the accumulator as both a source operand and “register” is a fairly reliable indication that the user the destination of the operation fi lls part of the shortfall, but it still leaves us one has been around quite a operand short. Th at fi nal operand is found in memory. -
The Birth, Evolution and Future of Microprocessor
The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four. -
Intel® Omni-Path Architecture (Intel® OPA) for Machine Learning
Big Data ® The Intel Omni-Path Architecture (OPA) for Machine Learning Big Data Sponsored by Intel Srini Chari, Ph.D., MBA and M. R. Pamidi Ph.D. December 2017 mailto:[email protected] Executive Summary Machine Learning (ML), a major component of Artificial Intelligence (AI), is rapidly evolving and significantly improving growth, profits and operational efficiencies in virtually every industry. This is being driven – in large part – by continuing improvements in High Performance Computing (HPC) systems and related innovations in software and algorithms to harness these HPC systems. However, there are several barriers to implement Machine Learning (particularly Deep Learning – DL, a subset of ML) at scale: • It is hard for HPC systems to perform and scale to handle the massive growth of the volume, velocity and variety of data that must be processed. • Implementing DL requires deploying several technologies: applications, frameworks, libraries, development tools and reliable HPC processors, fabrics and storage. This is www.cabotpartners.com hard, laborious and very time-consuming. • Training followed by Inference are two separate ML steps. Training traditionally took days/weeks, whereas Inference was near real-time. Increasingly, to make more accurate inferences, faster re-Training on new data is required. So, Training must now be done in a few hours. This requires novel parallel computing methods and large-scale high- performance systems/fabrics. To help clients overcome these barriers and unleash AI/ML innovation, Intel provides a comprehensive ML solution stack with multiple technology options. Intel’s pioneering research in parallel ML algorithms and the Intel® Omni-Path Architecture (OPA) fabric minimize communications overhead and improve ML computational efficiency at scale. -
Intel Server Board SE7320EP2 and SE7525RP2
Intel® Server Board SE7320EP2 and SE7525RP2 Tested Hardware and Operating System List Revision 1.0 June, 2005 Enterprise Platforms and Services Marketing Revision History IntelP®P Server Board SE7320EP2 and SE7525RP2 Revision History Revision Date Number Modifications June 2005 1.0 First Release ii Revision 1.0 IntelP®P Server Board SE7320EP2 and SE7525RP2 Disclaimers Disclaimers THE INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel retains the right to make changes to its test specifications at any time, without notice. The hardware vendor remains solely responsible for the design, sale and functionality of its product, including any liability arising from product infringement or product warranty. Copyright © Intel Corporation 2005. All rights reserved. Intel, the Intel logo, and EtherExpress are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. -
Clock Rate Improves Roughly Proportional to Improvement in L • Number of Transistors Improves Proportional to L2 (Or Faster)
TheThe VonVon NeumannNeumann ComputerComputer ModelModel • Partitioning of the computing engine into components: – Central Processing Unit (CPU): Control Unit (instruction decode , sequencing of operations), Datapath (registers, arithmetic and logic unit, buses). – Memory: Instruction and operand storage. – Input/Output (I/O) sub-system: I/O bus, interfaces, devices. – The stored program concept: Instructions from an instruction set are fetched from a common memory and executed one at a time Control Input Memory - (instructions, data) Datapath registers Output ALU, buses Computer System CPU I/O Devices EECC551 - Shaaban #1 Lec # 1 Winter 2001 12-3-2001 Generic CPU Machine Instruction Execution Steps Instruction Obtain instruction from program storage Fetch Instruction Determine required actions and instruction size Decode Operand Locate and obtain operand data Fetch Execute Compute result value or status Result Deposit results in storage for later use Store Next Determine successor or next instruction Instruction EECC551 - Shaaban #2 Lec # 1 Winter 2001 12-3-2001 HardwareHardware ComponentsComponents ofof AnyAny ComputerComputer Five classic components of all computers: 1. Control Unit; 2. Datapath; 3. Memory; 4. Input; 5. Output } Processor Computer Keyboard, Mouse, etc. Processor Memory Devices (active) (passive) Control Input (where Unit programs, data Disk Datapath live when Output running) Display, Printer, etc. EECC551 - Shaaban #3 Lec # 1 Winter 2001 12-3-2001 CPUCPU OrganizationOrganization • Datapath Design: – Capabilities & performance characteristics of principal Functional Units (FUs): • (e.g., Registers, ALU, Shifters, Logic Units, ...) – Ways in which these components are interconnected (buses connections, multiplexors, etc.). – How information flows between components. • Control Unit Design: – Logic and means by which such information flow is controlled. – Control and coordination of FUs operation to realize the targeted Instruction Set Architecture to be implemented (can either be implemented using a finite state machine or a microprogram). -
THE MICROPROCESSOR Z Z the BEGINNING
z THE MICROPROCESSOR z z THE BEGINNING The construction of microprocessors was made possible thanks to LSI (Silicon Gate Technology) developed by the Italian Federico Faggin at Fairchild in 1968. From the 1980s onwards microprocessors are practically the only CPU implementation. z HOW DO MICROPROCESSOR WORK? Most microprocessor work digitally, transforming all the input information into a code of binary number (1 or 0 is called a bit, 8 bit is called byte) z THE FIRST MICROPROCESSOR Intel's first microprocessor, the 4004, was conceived by Ted Hoff and Stanley Mazor. Assisted by Masatoshi Shima, Federico Faggin used his experience in silicon- gate MOS technology (1968 Milestone) to squeeze the 2300 transistors of the 4-bit MPU into a 16-pin package in 1971. z WHAT WAS INTEL 4004 USED FOR? The Intel 4004 was the world's first microprocessor—a complete general-purpose CPU on a single chip. Released in March 1971, and using cutting-edge silicon- gate technology, the 4004 marked the beginning of Intel's rise to global dominance in the processor industry. z THE FIRST PERSONAL COMPUTER WITH MICROPROCESSOR MS-DOSIBM introduces its Personal Computer (PC)The first IBM PC, formally known as the IBM Model 5150, was based on a 4.77 MHz Intel 8088 microprocessor and used Microsoft´s MS-DOS operating system. The IBM PC revolutionized business computing by becoming the first PC to gain widespread adoption by industry. z BIOHACKER z WHO ARE BIOHACKER? Biohackers, also called hackers of life, are people and communities that do biological research in the hacker style: outside the institutions, in an open form, sharing information. -
A Developer's Guide to the POWER Architecture
http://www.ibm.com/developerworks/linux/library/l-powarch/ 7/26/2011 10:53 AM English Sign in (or register) Technical topics Evaluation software Community Events A developer's guide to the POWER architecture POWER programming by the book Brett Olsson , Processor architect, IBM Anthony Marsala , Software engineer, IBM Summary: POWER® processors are found in everything from supercomputers to game consoles and from servers to cell phones -- and they all share a common architecture. This introduction to the PowerPC application-level programming model will give you an overview of the instruction set, important registers, and other details necessary for developing reliable, high performing POWER applications and maintaining code compatibility among processors. Date: 30 Mar 2004 Level: Intermediate Also available in: Japanese Activity: 22383 views Comments: The POWER architecture and the application-level programming model are common across all branches of the POWER architecture family tree. For detailed information, see the product user's manuals available in the IBM® POWER Web site technical library (see Resources for a link). The POWER architecture is a Reduced Instruction Set Computer (RISC) architecture, with over two hundred defined instructions. POWER is RISC in that most instructions execute in a single cycle and typically perform a single operation (such as loading storage to a register, or storing a register to memory). The POWER architecture is broken up into three levels, or "books." By segmenting the architecture in this way, code compatibility can be maintained across implementations while leaving room for implementations to choose levels of complexity for price/performances trade-offs. The levels are: Book I.