IBM Z Systems Introduction May 2017

Total Page:16

File Type:pdf, Size:1020Kb

IBM Z Systems Introduction May 2017 IBM z Systems Introduction May 2017 IBM z13s and IBM z13 Frequently Asked Questions Worldwide ZSQ03076-USEN-15 Table of Contents z13s Hardware .......................................................................................................................................................................... 3 z13 Hardware ........................................................................................................................................................................... 11 Performance ............................................................................................................................................................................ 19 z13 Warranty ............................................................................................................................................................................ 23 Hardware Management Console (HMC) ..................................................................................................................... 24 Power requirements (including High Voltage DC Power option) ..................................................................... 28 Overhead Cabling and Power ..........................................................................................................................................30 z13 Water cooling option .................................................................................................................................................... 31 Secure Service Container .................................................................................................................................................. 33 z/VSE Network Appliance ................................................................................................................................................. 35 IBM Dynamic Partition Manager ..................................................................................................................................... 37 I/O .................................................................................................................................................................................................39 IBM zHyperLink for IBM Storage and IBM z Systems ........................................................................................... 43 Flash Express .......................................................................................................................................................................... 44 Networking ............................................................................................................................................................................... 49 10GbE RoCE Express and Shared Memory Communications – RDMA (SMC-R) .....................................51 Shared Memory Communications – Direct (SMC-D) ............................................................................................. 56 IBM zAware V2.0 ................................................................................................................................................................... 59 zEDC Express and Compression Acceleration....................................................................................................... 66 IBM z Systems Specialty Engine Update .................................................................................................................... 74 Parallel Sysplex...................................................................................................................................................................... 80 STP .............................................................................................................................................................................................. 84 Security ...................................................................................................................................................................................... 85 z/OS ........................................................................................................................................................................................... 90 z/VSE .......................................................................................................................................................................................... 91 z/VM ............................................................................................................................................................................................ 92 KVM .............................................................................................................................................................................................93 Linux on z Systems ............................................................................................................................................................... 94 z13s - Software Pricing .......................................................................................................................................................98 z13 Software Pricing ........................................................................................................................................................... 101 Academic Initiative and Skills ......................................................................................................................................... 105 zBX ............................................................................................................................................................................................. 107 z13s Hardware What is the machine type of the IBM z13s? The z13s machine type is 2965. What z13 models were announced? The z13s is available in two models – the N10 and N20, the model naming indicating how many total processor units are available for client purchase and characterization. The N10 can be configured with up to 10 configurable cores and up to 1 TB of memory. The N20 can be configured with up to 20 configurable cores and up to 4 TB of memory. The cores for characterization can be configured as general purpose processors (CPs), Integrated Facilities for Linux (IFLs), z System Integrated Information Processors (zIIPs), Internal Coupling Facilities (ICFs), additional System Assist Processors (SAPs), or used as additional spares. With up to 6 CPs and 156 available capacity settings offered across either model, you have the freedom to choose the right capacity setting for your needs with the flexibility to scale on demand as workload requirements increase. We also offer both IFL only and ICF only configurations where you can have up to ten or twenty IFLs or ICFs in a standalone environment. How much capacity will the z13s deliver? The z13s offers a maximum of 6 CPs with the range up to 7123 millions of instructions per second (MIPS)1 in a single footprint or 1.4x the capacity of the zBC12. For Linux® the z13s contains up to 20 IFLs for Linux specialty engines – 2.1x that of the zBC12. Where can I find the MIPS ratings for z13s? IBM z Systems provides capacity comparisons among processors based on a variety of measured workloads which are published in the Large System Performance Reference (LSPR). We don’t provide MIPS but we do provide Processor Capacity Index (PCI) values. They can be found at: https://www.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex 1 Based on preliminary internal measurements and projections. Official performance data will be available upon announce and can be obtained online at LSPR (Large Systems Performance Reference) website at: https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex?OpenDocument . Actual performance results may vary by customer based on individual workload, configuration and software levels. Did IBM increase the number of logical partitions (LPARs) available on the z13s? Yes. There are now up to 40 logical partitions (LPARs) available for use versus 30 on the IBM zEnterprise® BC12 (zBC12). This will allow clients to support more ‘isolated/separate’ workloads on a single footprint. How many HiperSockets™ will be available on the z13s? There will still be 30 HiperSockets available. Please review the new Shared Memory Communications – Direct Memory Access (SMC-D) in the I/O section of the FAQs for information about a new inter-system communications protocol and their relationship to HiperSockets. Why are there are door locks on the new z13s? Yes. The front and rear doors will arrive with the door lock installed. There have been client requests for security rules for servers, for cryptographic features and for external auditors. The decision was made to have them on all servers. The use of the door locks is up to the client choice. Each door will come with two keys. If the doors are locked, then the client is responsible for unlocking the doors for IBM to perform service. IBM support personnel will not have ‘master’ keys. How many spare processing cores are on the z13s? There are two ‘dedicated’ IBM provided spares on the model N20 only. Unused or unassigned engines on either the N10 or N20 can be used as spares. Can any of the spare processing cores on the z13s be used for other purposes? No, the minimum allotment of spare cores is exclusively reserved to provide automatic failover in the extremely unlikely event of a processor failure. The spare cores protect all processor types (CPs, SAPs,
Recommended publications
  • Ubuntu Installation Guide
    Ubuntu Installation Guide Ubuntu Installation Guide Copyright © 2004 – 2020 the Debian Installer team Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2015, 2018 Canonical Ltd. This document contains installation instructions for the Ubuntu 20.04 system (codename “‘Focal Fossa’”), for the S/390 (“s390x”) architecture. It also contains pointers to more information and information on how to make the most of your new Ubuntu system. This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General Public License. Please refer to the license in Appendix F. Table of Contents Installing Ubuntu 20.04 “Focal Fossa” For s390x...........................................................................ix 1. Welcome to Ubuntu ........................................................................................................................1 1.1. What is Ubuntu?...................................................................................................................1 1.1.1. Sponsorship by Canonical .......................................................................................1 1.2. What is Debian? ...................................................................................................................1 1.2.1. Ubuntu and Debian..................................................................................................2 1.2.1.1. Package selection........................................................................................2 1.2.1.2. Releases.......................................................................................................3
    [Show full text]
  • Ubuntu Server for IBM Z and Linuxone
    Ubuntu Server for IBM Z and LinuxONE What’s New - June 2021 Frank Heimes, Tech. Lead Z, Canonical Ltd. Ubuntu on Big Iron: ubuntu-on-big-iron.blogspot.com Ubuntu Server for IBM Z and LinuxONE (s390x) Mission and Philosophy - In a nutshell Freedom to download Ubuntu - study, use, share, (re-)distribute, contribute, improve and innovate it! Mapped to Ubuntu Server for IBM Z and LinuxONE (s390x) - the goal is: ● to expand Ubuntu’s ease of use to the s390x architecture (IBM Z and LinuxONE) ● unlock new workloads, especially in the Open Source, Cloud and container space ● to tap into new client segments ● quickly exploit new features and components - in two ways: ○ promptly supporting new hardware ○ releases built and based on the latest kernels, tool-chain and optimized libraries ● provide parity across architectures, in terms of release and feature parity and closing gaps ● provide a uniform user experience and look-and-feel ● be part of the collective world-wide Open Source power in action ● deal with upstream work and code only - no forks ● offer a radically new subscription pricing with drawer-based pricing, or alternatively provide entry-level pricing based on up to 4 IFLs Release Cadence - Ubuntu https://wiki.ubuntu.com/Releases https://wiki.ubuntu.com/LTS https://en.wikipedia.org/wiki/List_of_Ubuntu_releases 16.04 16.10 17.04 17.10 18.04 18.10 19.04 19.10 20.04 20.10 21.04 20.10 in development Ubuntu 20.04 LTS end-of-life 19.10 in service with s390x support 19.04 upgrade path 18.10 Ubuntu 18.04 LTS 5 years ESM 17.10 17.04 18 months 16.10 5 years Ubuntu 16.04 LTS 5 years ESM Ubuntu 18.04 LTS (Bionic Beaver) ● The codename for the current LTS (Long Term Support) release 18.04 is 'Bionic Beaver' or in short 'Bionic': https://launchpad.net/ubuntu/bionic ● Bionic Release Schedule: https://wiki.ubuntu.com/BionicBeaver/ReleaseSchedule Release date: April, 26th 2018 ● Updated major components: ○ Kernel 4.15 (linux-generic) + HWE kernels ○ docker.io 17.12.1 → 18.09.5 ○ Qemu-KVM 2.11.x / Libvirt (libvirt-bin) 4.0.0 ○ Open vSwitch 2.9 → 2.9.2 ○ LXD 3.0.0 (incl.
    [Show full text]
  • User's Guide and Reference for IBM Z/OS® Remote Access Programs August 2, 2021
    User's Guide and Reference for IBM z/OS® Remote Access Programs August 2, 2021 International Business Machines Corporation IBM Z Dallas ISV Center Dallas, TX USA This document is intended for the sole use of participants in an IBM Z Dallas ISV Center Remote Development or Early Test Program and is not to be distributed to non-participants or used for purposes other than intended. © Copyright International Business Machines Corporation 2019. All rights reserved. 1 Table of Contents 1 Preface .................................................................................................................................................... 4 1.1 Links ................................................................................................................................................. 4 2 Overview – Remote Access Environment ........................................................................................... 5 2.1 Hardware / Software Platform .......................................................................................................... 5 2.2 Introduction to the Virtual Machine Concept ................................................................................... 5 2.3 z/OS Remote Access Environment ................................................................................................... 5 2.4 Printers .............................................................................................................................................. 7 2.5 System Availability..........................................................................................................................
    [Show full text]
  • Linux on IBM System Z with Z/VM
    • Support for Collaborative Memory Management Assist (CMMA) • z/VM VSWITCH support for OSA-Express2 and OSA-Express3 IBM Systems and Technology Group on System z by which z/VM and Linux guests exchange link aggregation for increased throughput and provides more information to optimize their use and management of memory seamless nondisruptive failover in the event that an OSA port in • Up to 32 real processors in a single z/VM image the group becomes unavailable • Coordinated near-continuous availability and disaster recovery • Enhanced memory utilization using Virtual Machine Resource ™ Manager (VMRM) between z/VM and Linux guests for Linux guests with HyperSwap support and a Linux on IBM Geographically Dispersed Parallel Sysplex™ GDPS® solution • More extensive workloads and systems resource management features with VMRM including functions that may be called by Access to a Linux Environment client applications to allocate and manage resources for guests System z with • Enhanced I/O performance and operation of SCSI disks IBM has established a Linux environment that delivers virtual Linux including support for N-Port Identifier virtualization on System z servers so developers can port, test and develop new software servers technologies for the System z platform. For registration procedures z/VM • DVD installation to SCSI disks or 3390-format disks and terms of service for the Community Development System for • IPL of SCSI disks attached to FCP channels by z/VM for Linux Linux, go to: and other guest operating systems ibm.com/systems/z/os/linux/lcds/ Additional opportunities for Independent Software Vendors (ISVs) • Usability enhancements for the z/VM virtual switch (VSWITCH) to test drive the Linux experience are the Linux for System z Test and guest LAN environments Drive offerings.
    [Show full text]
  • Introducing Linux on IBM Z Systems IT Simplicity with an Enterprise Grade Linux Platform
    Introducing Linux on IBM z Systems IT simplicity with an enterprise grade Linux platform Wilhelm Mild IBM Executive IT Architect for Mobile, z Systems and Linux © 2016 IBM Corporation IBM Germany What is Linux? . Linux is an operating system – Operating systems are tools which enable computers to function as multi-user, multitasking, and multiprocessing servers. – Linux is typically delivered in a Distribution with many useful tools and Open Source components. Linux is hardware agnostic by design – Linux runs on multiple hardware architectures which means Linux skills are platform independent. Linux is modular and built to coexist with other operating systems – Businesses are using Linux today. More and more businesses proceed with an evolutionary solution strategy based on Linux. 2 © 2016 IBM Corporation What is IBM z Systems ? . IBM z Systems is the family name used by IBM for its mainframe computers – The z Systems families were named for their availability – z stands for zero downtime. The systems are built with spare components capable of hot failovers to ensure continuous operations. IBM z Systems paradigm – The IBM z Systems family maintains full backward compatibility. In effect, current systems are the direct, lineal descendants of System/360, built in 1964, and the System/370 from the 1970s. Many applications written for these systems can still run unmodified on the newest z Systems over five decades later. IBM z Systems variety of Operating Systems – There are different traditional Operating Systems that run on z Systems like z/OS, z/VSE or TPF. With z/VM IBM delivers a mature Hypervisor to virtualize the operating systems.
    [Show full text]
  • Practical Migration from IBM X86 to Linux on IBM System Z
    Front cover Practical Migration from x86 to Linux on IBM System z A guide to migrating popular applications and services from Linux on x86 to Linux on System z Practical guidance on planning, analysis, and TCO Comprehensive hands-on migration case study Lydia Parziale Eduardo Simoes Franco Craig Gardner Berthold Gunreben Tito Ogando Serkan Sahin ibm.com/redbooks International Technical Support Organization Practical Migration from x86 to Linux on IBM System z September 2014 SG24-8217-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (September 2014) This edition applies to z/VM Version 6.3, DB2 Version 10.5, SUSE Linux Enterprise Server Version 11, and Red Hat Enterprise Linux Version 6. Versions of other software components are incident to the versions available from the respective distributions referenced above. © Copyright International Business Machines Corporation 2014. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix Authors. ix Now you can become a published author, too! . xi Comments welcome. xii Stay connected to IBM Redbooks . xii Chapter 1. Benefits of migrating workloads to Linux on System z . 1 1.1 Benefits . 2 1.2 Reasons to select Linux on System z . 3 1.2.1 System z strengths . 3 1.3 A new type of information technology: Workload centric . 5 1.4 Workload-centric cloud . 7 1.5 Enterprise cloud computing blueprint for System z. 9 1.5.1 Empowered virtualization management: IBM Wave for z/VM.
    [Show full text]
  • Performance of a Computer (Chapter 4) Vishwani D
    ELEC 5200-001/6200-001 Computer Architecture and Design Fall 2013 Performance of a Computer (Chapter 4) Vishwani D. Agrawal & Victor P. Nelson epartment of Electrical and Computer Engineering Auburn University, Auburn, AL 36849 ELEC 5200-001/6200-001 Performance Fall 2013 . Lecture 1 What is Performance? Response time: the time between the start and completion of a task. Throughput: the total amount of work done in a given time. Some performance measures: MIPS (million instructions per second). MFLOPS (million floating point operations per second), also GFLOPS, TFLOPS (1012), etc. SPEC (System Performance Evaluation Corporation) benchmarks. LINPACK benchmarks, floating point computing, used for supercomputers. Synthetic benchmarks. ELEC 5200-001/6200-001 Performance Fall 2013 . Lecture 2 Small and Large Numbers Small Large 10-3 milli m 103 kilo k 10-6 micro μ 106 mega M 10-9 nano n 109 giga G 10-12 pico p 1012 tera T 10-15 femto f 1015 peta P 10-18 atto 1018 exa 10-21 zepto 1021 zetta 10-24 yocto 1024 yotta ELEC 5200-001/6200-001 Performance Fall 2013 . Lecture 3 Computer Memory Size Number bits bytes 210 1,024 K Kb KB 220 1,048,576 M Mb MB 230 1,073,741,824 G Gb GB 240 1,099,511,627,776 T Tb TB ELEC 5200-001/6200-001 Performance Fall 2013 . Lecture 4 Units for Measuring Performance Time in seconds (s), microseconds (μs), nanoseconds (ns), or picoseconds (ps). Clock cycle Period of the hardware clock Example: one clock cycle means 1 nanosecond for a 1GHz clock frequency (or 1GHz clock rate) CPU time = (CPU clock cycles)/(clock rate) Cycles per instruction (CPI): average number of clock cycles used to execute a computer instruction.
    [Show full text]
  • 2020 Linux on IBM Z and Linuxone Client Workshop November 9-13
    2020 Linux on IBM Z and LinuxONE Client Workshop November 9-13 Securing Workloads with Red Hat OpenShift Container Platform on IBM Z / LinuxONE — Pradeep Parameshwaran Security & Compliance Lead, Linux on IBM Z & LinuxONE [email protected] Linux on IBM Z and LinuxONE Client WS 2020 / © 2020 IBM Corporation Contents • Why OpenShift on IBM Z ? • The cloud with the Privacy and Security • Deployment architecture: OpenShift on IBM Z • Security blueprint: OpenShift on IBM Z • Summary of native and augmented security capabilities IDC estimates that 71% of organizations are in the process of implementing containers and orchestration or are already using them regularly. Containers are the next generation of software-defined compute that enterprises will leverage to accelerate their digital transformation initiatives,” says Gary Chen, Research Director at IDC. “IDC estimates that 71% of organizations are in the process of implementing containers and orchestration or are already using them regularly, and IDC forecasts that the worldwide container infrastructure software opportunity is growing at a 63.9 % 5-year CAGR and is predicted to reach over $1.5B by 2022. 3 Why Red Hat OpenShift on IBM Z? OpenShift a smart Kubernetes platform 5 Build once • Fully integrated and automated architecture • Seamless Kubernetes deployment on any cloud or on-premises environment • Fully automated installation, from cloud infrastructure to OS to application services • One click platform and application updates • Auto-scaling of cloud resources • Enterprise-grade security
    [Show full text]
  • IBM Cloud Private with Linux on Z
    IBM Cloud Solution Brief IBM Cloud Private with Linux on IBM Z Empower how you build, deploy and manage cloud-native applications Introduction Highlights Many organizations have unique data sensitivity needs, such as internal policies, government regulations or industry compliance requirements. • Offers the benefits of a public cloud on a security-rich, scalable private cloud As a result, these organizations typically require private cloud. Yet in a platform for developing and delivering world of changing business demands, they also need to run demanding cloud-native apps applications and use multiple services both on-premise and on multiple • Helps make heritage applications cloud- clouds for the sake of agility. ready • Helps protect confidential and proprietary IBM Cloud™ Private with Linux® on IBM Z® provides the advantages of a Kubernetes and Docker workloads with IBM Secure Service Containers private cloud on a server platform optimized for data and cognitive • Enables organizations to build new services, and is designed to deliver the benefits of a public cloud in a microservice-based apps for improved security-rich, scalable and reliable environment. It enables enterprises to agility and innovation accelerate innovation using modern agile processes, integrates with • Designed to more securely use data and existing systems, and provides a strategic platform for multi-cloud services from external private cloud integration while maintaining the control and compliance that sources organizations need. • Supports heavy workloads with thousands of parallel users and thousands of Linux servers–in one box Connect almost anything on premise and in cloud IBM Cloud Private gives developers and IT operations a combination of critical capabilities to transform the enterprise.
    [Show full text]
  • Architectural Decisions for Linuxone Hypervisors
    July 2019 Webcast Virtualization options for Linux on IBM Z & LinuxONE Richard Young Executive IT Specialist Virtualization and Linux IBM Systems Lab Services Wilhelm Mild IBM Executive IT Architect for Mobile, IBM Z and Linux IBM R&D Lab, Germany Agenda ➢ Benefits of virtualization • Available virtualization options • Considerations for virtualization decisions • Virtualization options for LinuxONE & Z • Firmware hypervisors • Software hypervisors • Software Containers • Firmware hypervisor decision guide • Virtualization decision guide • Summary 2 © Copyright IBM Corporation 2018 Why do we virtualize? What are the benefits of virtualization? ▪ Simplification – use of standardized images, virtualized hardware, and automated configuration of virtual infrastructure ▪ Migration – one of the first uses of virtualization, enable coexistence, phased upgrades and migrations. It can also simplify hardware upgrades by make changes transparent. ▪ Efficiency – reduced hardware footprints, better utilization of available hardware resources, and reduced time to delivery. Reuse of deprovisioned or relinquished resources. ▪ Resilience – run new versions and old versions in parallel, avoiding service downtime ▪ Cost savings – having fewer machines translates to lower costs in server hardware, networking, floor space, electricity, administration (perceived) ▪ To accommodate growth – virtualization allows the IT department to be more responsive to business growth, hopefully avoiding interruption 3 © Copyright IBM Corporation 2018 Agenda • Benefits of
    [Show full text]
  • Computer “Performance”
    Computer “Performance” Readings: 1.6-1.8 BIPS (Billion Instructions Per Second) vs. GHz (Giga Cycles Per Second) Throughput (jobs/seconds) vs. Latency (time to complete a job) Measuring “best” in a computer Hyper 3.0 GHz The PowerBook G4 outguns Pentium Pipelined III-based notebooks by up to 30 percent.* Technology * Based on Adobe Photoshop tests comparing a 500MHz PowerBook G4 to 850MHz Pentium III-based portable computers 58 Performance Example: Homebuilders Builder Time per Houses Per House Dollars Per House Month Options House Self-build 24 months 1/24 Infinite $200,000 Contractor 3 months 1 100 $400,000 Prefab 6 months 1,000 1 $250,000 Which is the “best” home builder? Homeowner on a budget? Rebuilding Haiti? Moving to wilds of Alaska? Which is the “speediest” builder? Latency: how fast is one house built? Throughput: how long will it take to build a large number of houses? 59 Computer Performance Primary goal: execution time (time from program start to program completion) 1 Performance ExecutionTime To compare machines, we say “X is n times faster than Y” Performance ExecutionTime n x y Performancey ExecutionTimex Example: Machine Orange and Grape run a program Orange takes 5 seconds, Grape takes 10 seconds Orange is _____ times faster than Grape 60 Execution Time Elapsed Time counts everything (disk and memory accesses, I/O , etc.) a useful number, but often not good for comparison purposes CPU time doesn't count I/O or time spent running other programs can be broken up into system time, and user time Example: Unix “time” command linux15.ee.washington.edu> time javac CircuitViewer.java 3.370u 0.570s 0:12.44 31.6% Our focus: user CPU time time spent executing the lines of code that are "in" our program 61 CPU Time CPU execution time CPU clock cycles =*Clock period for a program for a program CPU execution time CPU clock cycles 1 =* for a program for a program Clock rate Application example: A program takes 10 seconds on computer Orange, with a 400MHz clock.
    [Show full text]
  • IBM Z/VM – Frequently Asked Questions
    IBM Z August 2020 IBM z/VM Frequently Asked Questions for z/VM 7.2, z/VM 7.1 and z/VM 6.4 Worldwide LUQ12358-USEN-14 1 Table of Contents _Toc45360441 General Questions ........................................................................................................................................... 3 IBM z/VM Support for IBM z15 and IBM LinuxONE III ................................................................................ 10 Technical Questions - IBM z/VM 7.2, z/VM 7.1, and z/VM 6.4 .................................................................... 11 Efficiency and Scalability ............................................................................................................................... 21 System Ease of Use ....................................................................................................................................... 23 Hardware Currency ........................................................................................................................................ 25 Installation, Migration, and Serviceability .................................................................................................... 27 Statements of Direction from Announcements ............................................................................................ 28 Resources ...................................................................................................................................................... 31 2 General Questions What is IBM Z® and IBM® LinuxONE virtualization
    [Show full text]