Crithmum Maritimum L.)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tomato & Fennel Ragu
TOMATO & FENNEL RAGU From our garden: fennel, marjoram, fennel fronds, purple cauliflower NOTES TO STUDENTS and VOLUNTEERS: 1. Please focus on your chopping skills. 2. Prepare the recipe in the order as outlined below to ensure it is cooked within the allocated time. Equipment Ingredients Colander 1 fennel Chopping board ¼ purple cauliflower Large knife 1 stalk celery Vegetable peeler 1 clove of garlic Can opener 2 tablespoons olive oil Large Saucepan with lid 1 large can whole tomatoes Wooden spoon ½ cup vegetable stock Scissors Bay leaf Large mixing bowl Small bunch marjoram Small mixing bowl Fennel fronds for garnish Serving bowls Serving spoons What to do: Peel and finely chop the garlic. Wash and finely slice the fennel. Wash and cut the cauliflower into small florets. Wash the celery and slice finely. Heat the olive oil in a large heavy-based saucepan over medium heat. Add the garlic, celery and fennel. Cook, stirring, for 3 to 4 minutes or until vegetables have softened. Add the cauliflower. Cook, stirring, for 1 minute or until combined. Add the bay leaf, vegetable stock and tomatoes (and juice) to the saucepan. Cover. Cook, stirring occasionally for 20 minutes or until vegetables start to soften. Pick, wash and roughly chop the marjoram. Add to the pot and stir to combine. Pick the fennel fronds, wash and roughly chop. Divide the ragu into serving bowls and garnish with chopped fennel fronds. . -
Mineral Biofortification of Vegetables As a Tool to Improve Human Diet
foods Review Mineral Biofortification of Vegetables as a Tool to Improve Human Diet Camila Vanessa Buturi 1, Rosario Paolo Mauro 1,* , Vincenzo Fogliano 2, Cherubino Leonardi 1 and Francesco Giuffrida 1 1 Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia, 5-95123 Catania, Italy; [email protected] (C.V.B.); [email protected] (C.L.); [email protected] (F.G.) 2 Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Vegetables represent pillars of good nutrition since they provide important phytochemicals such as fiber, vitamins, antioxidants, as well as minerals. Biofortification proposes a promising strategy to increase the content of specific compounds. As minerals have important functionalities in the human metabolism, the possibility of enriching fresh consumed products, such as many vegetables, adopting specific agronomic approaches, has been considered. This review discusses the most recent findings on agronomic biofortification of vegetables, aimed at increasing in the edible portions the content of important minerals, such as calcium (Ca), magnesium (Mg), iodine (I), zinc (Zn), selenium (Se), iron (Fe), copper (Cu), and silicon (Si). The focus was on selenium and iodine biofortification thus far, while for the other mineral elements, aspects related to vegetable typology, genotypes, chemical form, and application protocols are far from being well defined. Even if agronomic fortification is considered an easy to apply technique, the approach is complex considering several interactions occurring at crop level, as well as the bioavailability of different minerals for the consumer. -
Annex 3: List of "Vegetables" According to Article 1.1 (The English Names Are Decisive)
Annex 3: List of "Vegetables" according to Article 1.1 (The English names are decisive) Family Genus species English name Malvaceae Abelmoschus caillei (A. Chev.) Stevels West African okra Malvaceae Abelmoschus esculentus (L.) Moench common okra Lamiaceae Agastache foeniculum anise Alliaceae Allium ampeloprasum L. leek, elephant garlic Alliaceae Allium cepa L. onion, shallot Alliaceae Allium chinense Maxim. rakkyo Alliaceae Allium fistulosum L. scallions, japanese bunching onion Alliaceae Allium sativum L. garlic Alliaceae Allium schoenoprasum L. chives Alliaceae Allium tuberosum Rottler ex Spreng garlic chives Amaranthaceae Amaranthus cruentus L. Amaranth, African spinach, Indian spinach Amaranthaceae Amaranthus dubius Mart. ex Thell. Amaranth, pigweed Apiaceae Anethum graveolens L. dill Apiaceae Anthriscus cerefolium (L.) Hoffm. chervil Fabaceae Apios americana Moench American ground nut Apiaceae Apium graveolens L. celery, celeriac Fabaceae Arachis hypogea L. peanut Compositae Arctium lappa burdock Brassicaceae Armoracia rusticana G . Gaertn., B. Mey & Scherb. horseradish Asteraceae Artemisia dracunculus var. sativa tarragon Asteraceae Artemisia absinthium wormwood Asparagaceae Asparagus officinalis L. asparagus Asteraceae Aster tripolium sea lavender Amaranthaceae Atriplex hortenis L. mountain spinach, orache Amaranthaceae Atriplex hortensis orache Brassicaceae Barbarea vulgaris R. Br. winter cress Basellaceae Basella alba L. Malabar spinach Cucurbitaceae Benincasa hispida Thunb. wax gourd Amaranthaceae Beta vulgaris L. chard, vegetable (red) beetroot Boraginaceae Borago officinalis borage, starflower Brassicaceae Brassica juncea (L.) Czern. mustard Brassicaceae Brassica napus var. napobrassica rutabaga Brassicaceae Brassica oleracea L. broccoli, Brussels sprouts, cabbage, cauliflower, collards, kale, kohlrabi, curly kale, romanesco, savoy cabbage Brassicaceae Brassica rapa L. turnip, Chinese broccoli, Chinese cabbage, pak choi, tatsoi, Kumutsuna, Japanese mustard spinach Brassicaceae Brassica rapa japonica mustard, mitzuna Solanaceae Capsicum annuum L. -
Seedling Establishment, Bud Movement, and Subterranean Diversity of Geophilous Systems in Apiaceae
Flora (2002) 197, 385–393 http://www.urbanfischer.de/journals/flora Seedling establishment, bud movement, and subterranean diversity of geophilous systems in Apiaceae Norbert Pütz1* & Ina Sukkau2 1 Institute of Nature Conservation and Environmental Education, University of Vechta, Driverstr. 22, D-49377 Vechta, Germany 2 Institute of Botany, RWTH Aachen, Germany * author for correspondence: e-mail: [email protected] Received: Nov 29, 2001 · Accepted: Jun 10, 2002 Summary Geophilous systems of plants are not only regarded as organs of underground storage. Such systems also undergo a large range of modifications in order to fulfill other ‚cryptical‘ functions, e.g. positioning of innovation buds, vegetative cloning, and vege- tative dispersal. Seedlings should always be the point of departure for any investigation into the structure of geophilous systems. This is because in the ability to survive of geophilous plants it is of primary importance that innovation buds can reach a safe position in the soil by the time the first period hostile to vegetation commences. Our analysis of such systems thus focused on examining the development of 34 species of the Apiaceae, beginning with their germination. Independent of life-form and life-span, all species exhibit noticeable terminal bud movement with the aid of contractile organs. Movement was found to be at least 5 mm, reaching a maximum of 45 mm. All species exhibit a noticeable contraction of the primary root. In most cases the contraction phenomenon also occurs in the hypocotyl, and some species show contraction of their lateral and / or adventitious roots. Analysis of movement shows the functional importance of pulling the inno- vation buds down into the soil. -
Use of Sea Fennel As a Natural Ingredient of Edible Films for Extending the Shelf Life of Fresh Fish Burgers
molecules Article Use of Sea Fennel as a Natural Ingredient of Edible Films for Extending the Shelf Life of Fresh Fish Burgers Daniel Rico 1,* , Irene Albertos 2, Oscar Martinez-Alvarez 3 , M. Elvira Lopez-Caballero 3 and Ana Belen Martin-Diana 1 1 Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, Ctra. Burgos km. 119, 47171 Valladolid, Spain; [email protected] 2 Santa Teresa de Jesús Catholic University of Ávila (UCAV), Calle Canteros s/n, 05005 Ávila, Spain; [email protected] 3 Institute of Food Science, Technology and Nutrition (ICTAN, CSIC), 10, Jose Antonio Novais, St., 28040 Madrid, Spain; [email protected] (O.M.-A.); [email protected] (M.E.L.-C.) * Correspondence: [email protected]; Tel.: +34-983-415307 Academic Editor: Graham T. Eyres Received: 21 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: The growing interest from consumers toward healthy and nutritious products and their benefits for health has increased the consumption of whole and processed fish. One of the main problems of fish is the short shelf life, especially when it is processed as in the case of burgers. The use of edible coating is an interesting strategy to extend the quality and safety of the product, reducing the need for artificial preservatives. This study evaluated the use of chitosan-based edible film formulated with sea fennel plant and sea fennel extracts. The analyses showed than the use of edible film extended the shelf life of fish burgers regardless of the incorporation of sea fennel mainly associated to the gas barrier properties and selective permeability of the film applied to the fish surface. -
Chemical Intra-Mediterranean Variation and Insecticidal Activity of Crithmum Maritimum
Chemical Intra-Mediterranean Variation and Insecticidal Activity of Crithmum maritimum Maria Tsoukatou3, Christina Tsitsimpikoub, Constantinos Vagias 3 and Vassilios Roussis3’* a School of Pharmacy, Department of Pharmacognosy, University of Athens, Panepistimioupolis Zografou, Athens 15771, Greece. Fax: ++3017274592. E-mail: [email protected] b Doping Control Laboratory of Athens, Olympic Athletic Centre of Athens “Spiros Louis”, Kifissias 37, 15123, Maroussi, Greece * Author of correspondence and reprint requests Z. Naturforsch. 56c, 211-215 (2001); received October 27/December 7, 2000 Crithmum maritimum, Terpenes, Dillapiole, Ant Repellency The chemical composition of the volatile metabolites of Crithmum maritimum harvested from several geographic localities along the Mediterranean coasts was studied by GC and GC-MSD. The major oil constituents were found to be dillapiole, y-terpinene, sabinene, limo- nene and ß-phellandrene. The Western populations were richer in dillapiole, whereas the Southern collections were characterized by increased amounts of thymol methyl ether and y-terpinene. The Italian chemical profiles differentiated by the significant contributions of carvacrol methyl ether and isoterpinolene. The essential oils were also investigated for their insecticidal activity and their repellency against Pheidole pallidula (Nylander) ants and found to possess significant activity. Introduction Among a large set of the initially investigated Crithmum maritimum is a halophyte and chas- plants, C. maritimum, exhibited one of the highest mophyte apiaceous plant, which grows on all the antifeedant and insecticidal activities against the world’s coastlines but is particularly abundant in Pheidole pallidula ants. Other members of the the Mediterranean countries (Coiffard et al., family Apiaceae (Umbelliferae) have been re 1993). It is also referred to as rock sapphire and cently shown to exhibit antifeedant and neuro- ac was well known to sailors since ancient years for tivity against the field slug D. -
The Gradual Loss of African Indigenous Vegetables in Tropical America: a Review
The Gradual Loss of African Indigenous Vegetables in Tropical America: A Review 1 ,2 INA VANDEBROEK AND ROBERT VOEKS* 1The New York Botanical Garden, Institute of Economic Botany, 2900 Southern Boulevard, The Bronx, NY 10458, USA 2Department of Geography & the Environment, California State University—Fullerton, 800 N. State College Blvd., Fullerton, CA 92832, USA *Corresponding author; e-mail: [email protected] Leaf vegetables and other edible greens are a crucial component of traditional diets in sub-Saharan Africa, used popularly in soups, sauces, and stews. In this review, we trace the trajectories of 12 prominent African indigenous vegetables (AIVs) in tropical America, in order to better understand the diffusion of their culinary and ethnobotanical uses by the African diaspora. The 12 AIVs were selected from African reference works and preliminary reports of their presence in the Americas. Given the importance of each of these vegetables in African diets, our working hypothesis was that the culinary traditions associated with these species would be continued in tropical America by Afro-descendant communities. However, a review of the historical and contemporary literature, and consultation with scholars, shows that the culinary uses of most of these vegetables have been gradually lost. Two noteworthy exceptions include okra (Abelmoschus esculentus) and callaloo (Amaranthus viridis), although the latter is not the species used in Africa and callaloo has only risen to prominence in Jamaica since the 1960s. Nine of the 12 AIVs found refuge in the African- derived religions Candomblé and Santería, where they remain ritually important. In speculating why these AIVs did not survive in the diets of the New World African diaspora, one has to contemplate the sociocultural, economic, and environmental forces that have shaped—and continue to shape—these foodways and cuisines since the Atlantic slave trade. -
Homegrown Chinese Vegetables for the Houston Area Emily Chen Dunbar
Homegrown Chinese Vegetables for the Houston Area Emily Chen Dunbar I love vegetables. As a child growing up in the countryside of Taiwan, I watched the rice farmers and their water buffaloes plow the fields. My brothers and I loved to chase each other up the narrow paths between the rice patties. After the farmer harvested the rice, the field became our playground. We would pick up pieces of dried clay and shape them into small square pieces to build an oven. We collected and burned dry hay to heat up the oven until the clay became red. While it heated, we would swipe some sweet potatoes from a nearby field and put them into the oven. After stomping down on the clay roof, the hot clay buried the potatoes and cooked them. After one hour we eager kids went back for the most delicious, baked sweet potatoes known to mankind. Even now, the sweet, earthy, hot flavors remain in my mind. I realized how much that I enjoyed eating and cooking on the day my husband pointed out that I scheduled my daily activities around shopping and cooking. Many Chinese people have this same trait. A typical meal for a Chinese housewife includes steamed rice with 3 dishes and a soup. One of the dishes would always be a stir-fried, green-leaf vegetable; another might be shredded meat with some kind of vegetable. Most soups also included vegetables. For Chinese people, vegetables are the major food source. I have grown Chinese vegetables in Houston for many years. I also often trade vegetables with my Chinese friends. -
Herbs, Spices and Essential Oils
Printed in Austria V.05-91153—March 2006—300 Herbs, spices and essential oils Post-harvest operations in developing countries UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Telephone: (+43-1) 26026-0, Fax: (+43-1) 26926-69 UNITED NATIONS FOOD AND AGRICULTURE E-mail: [email protected], Internet: http://www.unido.org INDUSTRIAL DEVELOPMENT ORGANIZATION OF THE ORGANIZATION UNITED NATIONS © UNIDO and FAO 2005 — First published 2005 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: - the Director, Agro-Industries and Sectoral Support Branch, UNIDO, Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria or by e-mail to [email protected] - the Chief, Publishing Management Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the United Nations Industrial Development Organization or of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
1 Encapsulation of Antioxidant Sea Fennel (Crithmum Maritimum
1 Encapsulation of antioxidant sea fennel ( Crithmum maritimum ) aqueous and ethanolic extracts 2 in freeze -dried soy phosphatidylcholine liposom es 3 4 Ailén Alemán, Daniel Marín, Diego Taladrid, Pilar Montero and M. Carmen Gómez-Guillén* 5 Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). C/ José Antonio Novais 10, 6 28040 Madrid (Spain) 7 *Author for correspondence: [email protected] 8 9 Abstract 10 Soy phosphatidylcholine liposomes encapsulating increasing concentrations of two sea fennel 11 extracts (aqu eous and ethanolic) prepared by ultra sonication were freeze -dried , using glycerol 12 as lyoprotectant . P article properties, water dispersibility , colo ur, thermal properties and 13 antioxidant capacity (radical scavenging capacity, ferric ion reducing power, Folin -reactive 14 substances) of the liposom al preparations were determined. The freeze -dr ying process caused 15 an overall increase in particle size and polydispersity index , while the zeta -potential became 16 more electronegative. Both sea fennel extracts were ri ch in chlorogenic acid (42.61 and 58.48 17 mg/g for the aqueous and ethanolic extract s, respectively ) and show ed great antioxidant 18 activity. Vitamin C was identified in the aqueous extract , whereas rutin and rosmarinic acid in 19 the ethanolic one . The entrapment efficiency, determined in the liposomes prepared at the 20 highest extract concentration , was 65.6 % and 49.1% for the aqueous extract and the ethanolic 21 extract , respectively . The liposomal antioxidant activity and total phenolic content followe d a 22 linear increasing tendency as a result of increasing the extract concentration, irrespective of 23 the type of extract. -
Menorca in Autumn
Menorca in Autumn Naturetrek Tour Report 18 - 25 October 2017 Black Redstart Copper Demoiselle Female Crimson Speckled Moth Egyptian Vulture Report compiled by Ian Nicholson and Martin Beaton Images by Ian Nicholson Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Menorca in Autumn Tour participants: Ian Nicholson and Martin Beaton (leaders), plus 16 Naturetrek Clients Summary The main focus of this tour was the migrating birds which pass through Menorca each autumn on their way south for the winter. As well as seeing birds in the varied habitats of this relatively small island, we had the opportunity to visit a bird-ringing station on the offshore islet of Isla del Aire, where we were able to see the birds at very close quarters. Within the range of habitats we explored we also found plenty of butterflies, dragonflies and plants along with other wildlife. Day 1 Wednesday 18th October The flights from all three UK airports which the group were using arrived more or less on time, so after meeting Llorenc, the hotel proprietor who always comes to the airport to greet visiting groups, we boarded the minibuses and drove the short distance to Matxani Gran, our base for the next week. The rooms were quickly allocated, and everyone met up for lunch at about 1.15. After a leisurely lunch we had a gentle walk around the fields adjacent to the hotel which produced two Hoopoes, several Stonechats and Chiffchaffs, Cetti’s and Sardinian Warblers, plus large numbers of Goldfinches and Collared Doves, both of which seem to be increasing rapidly on Menorca at present. -
Urinary Amino Acids Profile of Vegetarians and Non-Vegetarians
Ma1 J Nutr 12(1): 67-78, 2006 Urinary Amino Acids Profile of Vegetarians and Non-vegetarians Chia Yoke Yin & Ton So Ha Monash University Malaysia, No. 2 Jalan Kolej, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia ABSTRACT The objective of the study was to quantify and to profile the amino acids content in urine samples. The amino acids content in urine was determined in 162 individuals (62 young non-vegetarians aged 15-45 years, 24 elderly non-vegetarians aged 46-70 years, 40 young vegetarians and 36 elderly vegetarians) by high performance liquid chromatography (HPLC). The most common amino acids detected in the young and elderly individuals on vegetarian and non-vegetarian diets were phenylalanine, threonine, arginine and asparagine, while leucine, aspartic acid and alanine were not found in any urine samples in both groups. Isoleucine was not detected in the urine of vegetarians. The concentrations of the majority of essential amino acids were between 0.10 - 2.00 mgl24hrs except for histidine which had a range of 4.1 - 5.0 mgl24hrs. The concentrations of non-essential amino acids varied. Proline, glycine and tyrosine concentrations were between 0.10 - 1.00 mg/24hrs, while cysteine, glutamine, glutamic acid and cystine concentrations were between 11.0 - 21.0 mg124hrs. Asparagine and hydroxy-proline had a range of 0.10 - 5.00 mg/24hrs, while serine and arginine ranged between 31.0 - 50.0 mg124hrs. Isoleucine and serine were not detected in elderly vegetarians while histidine, glycine, glutamic acid and hydroxy-proline were not detected in elderly non-vegetarians.