Importance of Ag-Ab Reactions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ige – the Main Player of Food Allergy
DDMOD-431; No of Pages 8 Vol. xxx, No. xx 2016 Drug Discovery Today: Disease Models Editors-in-Chief Jan Tornell – AstraZeneca, Sweden DRUG DISCOVERY Andrew McCulloch – University of California, SanDiego, USA TODAY DISEASE MODELS IgE – the main player of food allergy 1 2,3 2 Henrike C.H. Broekman , Thomas Eiwegger , Julia Upton , 4, Katrine L. Bøgh * 1 Department of Dermatology/Allergology, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands 2 Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Paediatrics, Hospital for Sick Children, Toronto, Canada 3 Research Institute, Physiology and Experimental Medicine, The University of Toronto, Toronto, Canada 4 National Food Institute, Technical University of Denmark, Søborg, Denmark Food allergy is a growing problem worldwide, presently Section editor: affecting 2–4% of adults and 5–8% of young children. IgE Michelle Epstein – Medical University of Vienna, is a key player in food allergy. Consequently huge Department of Dermatology, DIAID, Experimental Allergy, Waehringer Guertel 18-20, Room 4P9.02, A1090, efforts have been made to develop tests to detect Vienna, Austria. either the presence of IgE molecules, their allergen binding sites or their functionality, in order to provide allergen ingestion [1], and involve one or more of the follow- information regarding the patient’s food allergy. The ing systems; the skin (pruritus, urticaria, or angioedema), the ultimate goal is to develop tools that are capable of gastro-intestinal tract (diarrhea, vomiting, contractions, in- creased bowel movement), the respiratory tract (asthma at- discriminating between asymptomatic sensitization tack, hoarseness, stridor/laryngeal angioedema) or the and a clinically relevant food allergy, and between cardiovascular system (dizziness, drop in blood pressure, loss different allergic phenotypes in an accurate and trust- of consciousness) [2,3]. -
Laboratory Techniques Used for Immunological Laboratory Methods
Laboratory techniques used for Immunological laboratory methods Dr. Tatiana Jones, MD, PhD NCC How to Make Serial Dilutions? Interpretation can be made differently depending on the nature of test. For example, if we need to figure out in what sample the concentration of the antibody or antigen is higher, we will go by TITER, which is the lowest serial dilution (let’s say that it is 1:32 in the picture on the left) that gives us positive result. This mean that even diluted 32 times sample is still capable of reacting. The other scenario when we are interpreting quantitative assays, such as ELISA. In this case we need to match results of our samples to known concentrations of STANDARD and MULTIPLY be our dilution factor. What is Antibody Titer? An antibody titer is a measurement of how much antibody an organism has produced that recognizes a particular antigen. Titer is expressed as the inverse of the greatest dilution that still gives a positive result. ELISA is a common means of determining antibody titers. How to Determine Antibody Titer? Where we can use Indirect Coombs test detects the presence of anti-Rh antibodies in blood serum. A patient might be reported to have an "indirect Antibody Titer? Coombs titer" of 16. This means that the patient's serum gives a positive indirect Coombs test at any dilution down to 1/16 (1 part serum to 15 parts diluent). At greater dilutions the indirect Coombs test is negative. If a few weeks later the same patient had an indirect Coombs titer of 32 (1/32 dilution which is 1 part serum to 31 parts diluent), this would mean that more anti-Rh antibody was made, since it took a greater dilution to eradicate the positive test. -
Radial Immunodiffusion Assay Protocol
Radial Immunodiffusion Aim: To study the immunodiffusion technique by Single Radial Immunodiffusion. Introduction: Single Radial Immunodiffusion, also known as Mancini technique, is a quantitative immunodiffusion technique used to detect the concentration of antigen by measuring the diameter of the precipitin ring formed by the interaction of the antigen and the antibody at optimal concentration. In this method the antibody is incorporated into the agarose gel whereas the antigen diffuses into it in a radial pattern. Thus, the antibody is uniformly distributed throughout the gel. Principle: Single Radial Immunodiffusion is used extensively for the quantitative estimation of antigen. Here the antigen-antibody reaction is made more sensitive by the addition of antiserum into the agarose gel and loading the antigen sample in the well. As the antigen diffuses into the agarose radially in all directions, it’s concentration continuously falls until the equivalence point is reached at which the antigen concentration is in equal proportion to that of the antibody present in the agarose gel. At this point ring of precipitation (‘precipitin ring’) is formed around the well. The diameter of the precipitin ring is proportional to the concentration of antigen. With increasing concentration of antigen, precipitin rings with larger diameter are formed. The size of the precipitin rings depends on: Antigen concentration in the sample well Antibody concentration in the agarose gel Size of the sample well Volume of the sample Thus, by having various concentrations of a standard antigen, standard curve can be obtained from which one can determine the amount of an antigen in an unknown sample. Thus, this is a quantitative test. -
Role of Serologic Testing in Rheumatic Diseases
Role of Serologic Testing in Rheumatic Diseases Debendra Pattanaik MD FACP Associate professor of Medicine UTHSC, Memphis TN Disclosure None Objectives Discuss commonly available serologic testing useful in daily clinical practice Recognize the serologic associations of rheumatic diseases Recognize their diagnostic utilities and limitations Diagnostic Accuracy for Lupus and other autoimmune diseases in the community setting 476 patients were evaluated at Autoimmunity Center of University of Florida, Gainesville for 13 months which were by from primary care physicians SLE was over diagnosed on many patients on the basis of + ANA 39 patients are taking prednisone 60 mg/day who have no autoimmune disease but only have + ANA Inappropriate diagnosis leads to inappropriate therapy, emotional and financial consequences The authors suggested continuing education in screening for autoimmune disease and identify patients who may benefit from early referral. Arch Intern Med. 2004;164:2435-2441 Antinuclear Antibody (ANA) Testing for Connective Tissue Disease British Columbia Population: 4.631 million. More than 94,000 ANA tests were performed in B.C. in fiscal year 2011/12 at a cost of $2.24 million annually. Incidence and Estimated New Cases in B.C. for Selected CTDs Connective Tissue Disease Disease incidence per million population Estimated new BC cases/year * Systemic lupus erythematosus 56 259 Scleroderma 19 88 Dermatomyositis & polymyositis < 10 < 46 Eighteen percent of first-time tested outpatients underwent unnecessary repeat testing in 2010/2011. In 57.2% of the repeat testing, both the initial and the repeat ANA tests were ordered by a GP. In 24.8% the initial test was ordered by a GP and the repeat test was ordered by a specialist, and in 10.2% both the initial and the repeat test were ordered by the same specialist. -
Principles of Immunochemical Techniques Used in Clinical Laboratories
Review Received 2.11.06 | Revisions Received 3.1.06 | Accepted 3.2.06 Principles of Immunochemical Techniques Used in Clinical Laboratories Marja E. Koivunen, Richard L. Krogsrud (Antibodies Incorporated, Davis, CA) DOI: 10.1309/MV9RM1FDLWAUWQ3F Abstract binding site. The type of antibody and its diseases. Immunoassays can measure low Immunochemistry offers simple, rapid, robust affinity and avidity for the antigen determines levels of disease biomarkers and therapeutic or yet sensitive, and easily automated methods assay sensitivity and specificity. Depending on illicit drugs in patient’s blood, serum, plasma, for routine analyses in clinical laboratories. the assay format, immunoassays can be urine, or saliva. Immunostaining is an example Immunoassays are based on highly specific qualitative or quantitative. They can be used for of an immunochemical technique, which binding between an antigen and an antibody. the detection of antibodies or antigens specific combined with fluorescent labels allows direct An epitope (immunodeterminant region) on the for bacterial, viral, and parasitic diseases as visualization of target cells and cell structures. antigen surface is recognized by the antibody’s well as for the diagnosis of autoimmune Immunochemistry offers simple, rapid, robust yet sensitive, bind to an antigen. The third domain (complement-binding Fc and in most cases, easily automated methods applicable to routine fragment) forms the base of the Y, and is important in immune analyses in clinical laboratories. Immunochemical methods do not system function and regulation. usually require extensive and destructive sample preparation or The region of an antigen that interacts with an antibody is expensive instrumentation. In fact, most methods are based on called an epitope or an immunodeterminant region. -
Igm Autoantibody Testing by Latex Agglutination Nephelometry and Elisa in Patients with Rheumatoid Arthritis
European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 08, 2020 Comparative Study Of Rheumatoid Factor - Igm Autoantibody Testing By Latex Agglutination Nephelometry And Elisa In Patients With Rheumatoid Arthritis Dr.C. Devi1, Dr.R. Ravichandran2, Dr. Logeswari Selvaraj3, Dr.S. Ramesh4, Dr.T. Aarthipriya5 1,2,3,4,5Senior Assistant professor Department of Microbiology, Government Kilpauk Medical College, Chennai mail id: [email protected] ABSTRACT Objectives: To test Rheumatoid factor (RF) IgM autoantibody in Patients with Rheumatoid Arthritis by various methods like latex agglutination, Nephelometer and ELISA. Comparative analysis of the sensitivity and specificity of the tests performed. Materials and Methods: The study was conducted for a period of six months from June 2018 to November 2018 in a tertiary care hospital in Chennai. 90 patients attending Rheumatology OPD or admitted in the ward with the diagnosis of Rheumatoid arthritis, satisfying the inclusion and exclusion criteria were taken up for the study. Inclusion criteria: Clinically diagnosed Rheumatoid Arthritis patient as per revised ACR 1987 classification criteria. Duration of symptoms (1yr- early (RA) 1 Yr. (Established RA). Exclusion Criteria: Those with systemic connective tissue diseases like SLE, Scleroderma, MCTD, Sjogren syndrome, those with chronic liver diseases, tuberculosis, subacute Bacterial endocarditis, Pregnancy, Lympho reticular malignancies are excluded for the study. Those with onset 16 years of age are also excluded. Under aseptic precautions about 3ml of blood was collected from each Patient. Rheumatoid factor (RF) IgM was tested for each patient by all three methods Latex agglutination, Nephelometry and ELISA. Results: IgM rheumatoid factor (RF) was detected in the sera of 90 patients with Rheumatoid Arthritis. -
Prospective Comparison of Laser Nephelometry with Standard Agglutination Techniques for Detection of Rheumatoid Factor
J Clin Pathol: first published as 10.1136/jcp.40.2.216 on 1 February 1987. Downloaded from J Clin Pathol 1987;40:216-220 Prospective comparison of laser nephelometry with standard agglutination techniques for detection of rheumatoid factor A G PRENTICE,* P HICKLING,t I C WISEMAN,* C J HOLWILL,* J NORTHWOODt From the Departments oftRheumatology, *Haematology, and IMicrobiology, Derriford Hospital, Plymouth, Devon SUMMARY IgM rheumatoid factor was assayed by three routine methods: latex fixation; haem- agglutination; and end point laser nephelometry in 69 patients with definite or classical rheumatoid arthritis and 58 patients with other non-rheumatoid arthropathies, selected prospectively according to the American Rheumatism Association clinical criteria. The operators of the assays were unaware of the clinical diagnoses. In the group with rheumatoid arthritis 75-4% were positive by latex fixation, 73*9% by haemagglutination, and 55 1% by nephelometry. In the group with non- rheumatoid arthropathies 10-4% were positive by latex fixation, 8-6% by haemagglutination, and 10-4% by nephelometry. Thus the simple and inexpensive latex fixation test was as good as the haemagglutination test, and both were significantly better than nephelometry in the laboratory = confirmation of the clinical diagnosis ofdefinite or classic rheumatoid arthritis (X2 5.40 and 4 56,copyright. and p < 0 025 and < 0 05, respectively). None of these tests was significantly better or worse than the others in producing positive results in the group with non-rheumatoid arthropathies. The diagnosis of rheumatoid arthritis is largely based complexes, which scatter a beam of light in propor- on clinical evidence and depends on the fulfilment of tion to the concentration of the antibody in the test the criteria for definite or classic disease, as described serum. -
MCB 407 – Immunology and Immunochemistry COURSE PARTICULARS COURSE INSTRUCTORS COURSE DESCRIPTION
D DEPARTMENT OF MICROBIOLOGY MCB 407 – Immunology and Immunochemistry COURSE PARTICULARS Course Code: MCB 407 Course Title: Immunology and Immunochemistry No. of Units: 4 Course Duration: Three hours of theory and three hours of practical per week for 15 weeks. Status: Compulsory Course Email Address: [email protected] Course Webpage: http://www.fwt.futa.edu.ng/courseschedule.php?coursecode=MCB%407 Prerequisite: BIO 201, BCH 201 COURSE INSTRUCTORS Professor (Mrs). T. T. Adebolu Microbiology Office Annex, Room 14 Dept. of Microbiology, Federal University of Technology, Akure, Nigeria. Phone: +2348053617571 Email: [email protected] and Dr. M. K. Oladunmoye Postgraduate Research Laboratory Phase 1, Dept. of Microbiology, Federal University of Technology, Akure, Nigeria. Phone: +2348035057977 Email: [email protected] COURSE DESCRIPTION Basic concept of Immunology. Antigens and antigenic determinants. Antibodies. Structures and classification of immunoglobulins/antibodies. Antigen and antibody reactions. Innate and Acquired Immunity. Immune response. Hypersensitivity reactions. Autoimmune diseases. Immunodeficiency diseases. Introduction to transplantation immunology. The practicals will include laboratory exercise in modern techniques in immunology and immunochemistry. 1 COURSE OBJECTIVES The objectives of this course are to: give the students an insight to the basic concept of immunology; expose the students to the major determinants that confer immunity in a host to infections; and acquire practical skills for immunodiagnosis -
IMMUNOCHEMICAL TECHNIQUES Antigens Antibodies
Imunochemical Techniques IMMUNOCHEMICAL TECHNIQUES (by Lenka Fialová, translated by Jan Pláteník a Martin Vejražka) Antigens Antigens are macromolecules of natural or synthetic origin; chemically they consist of various polymers – proteins, polypeptides, polysaccharides or nucleoproteins. Antigens display two essential properties: first, they are able to evoke a specific immune response , either cellular or humoral type; and, second, they specifically interact with products of this immune response , i.e. antibodies or immunocompetent cells. A complete antigen – immunogen – consists of a macromolecule that bears antigenic determinants (epitopes) on its surface (Fig. 1). The antigenic determinant (epitope) is a certain group of atoms on the antigen surface that actually interacts with the binding site on the antibody or lymphocyte receptor for the antigen. Number of epitopes on the antigen surface determines its valency. Low-molecular-weight compound that cannot as such elicit production of antibodies, but is able to react specifically with the products of immune response, is called hapten (incomplete antigen) . antigen epitopes Fig. 1. Antigen and epitopes Antibodies Antibodies are produced by plasma cells that result from differentiation of B lymphocytes following stimulation with antigen. Antibodies are heterogeneous group of animal glycoproteins with electrophoretic mobility β - γ, and are also called immunoglobulins (Ig) . Every immunoglobulin molecule contains at least two light (L) and two heavy (H) chains connected with disulphidic bridges (Fig. 2). One antibody molecule contains only one type of light as well as heavy chain. There are two types of light chains - κ and λ - that determine type of immunoglobulin molecule; while heavy chains exist in 5 isotypes - γ, µ, α, δ, ε; and determine class of immunoglobulins - IgG, IgM, IgA, IgD and IgE . -
EUROPEAN PHARMACOPOEIA Free Access to Supportive Pharmacopoeial Texts in the Field of Vaccines for Human Use During the Coronavirus Disease (COVID-19) Pandemic
EUROPEAN PHARMACOPOEIA Free access to supportive pharmacopoeial texts in the field of vaccines for human use during the coronavirus disease (COVID-19) pandemic Updated package - October 2020 Published in accordance with the Convention on the Elaboration of a European Pharmacopoeia (European Treaty Series No. 50) European Directorate Direction européenne for the Quality de la qualité of Medicines du médicament & HealthCare & soins de santé Council of Europe Strasbourg Free access to supportive pharmacopoeial texts in the field of vaccines for human use during the coronavirus disease (COVID-19) pandemic Updated package The EDQM is committed to supporting users during the coronavirus disease (COVID-19) pandemic – as well as contributing to the wider global effort to combat the virus – by openly sharing knowledge and providing access to relevant guidance/standards. To support organisations involved in the development, manufacture or testing of COVID-19 vaccines worldwide, many of which are universities and small and medium-sized enterprises, the EDQM is offeringte mporary free access to texts of the European Pharmacopoeia (Ph. Eur.) in the field of vaccines. This package includes quality standards for vaccines which developers can take into account to help build appropriate analytical control strategies for their COVID-19 candidate vaccines and ensure the quality and safety of the final product. Application of such quality requirements may ultimately help to facilitate regulatory acceptance of a subsequent marketing authorisation application. For ease of reading, a summary table listing the pharmacopoeial texts, with information regarding the vaccine types or vaccine platforms concerned (e.g. live attenuated viral vaccine, recombinant viral-vectored vaccines) is provided. -
Practical Write up B.Sc Life Sciences Sem Vi Paper: Immunology Teachers
Practical write up B.Sc Life Sciences Sem Vi Paper: Immunology Teachers: Dr. Anita Gulati, Dr. Renu Solanki Immunology Page 1 Aim: To perform a simple immune diffusion test (Ouchterlony test) Requirements: 1.5% Agar, 1% Agar, Acetocarmine, Methylene blue, Glass slides, Micropiettes, Microtips, Blotting sheets, Tissue rolls, Plastic trays Theory: The interaction between an antibody and a soluble antigen in aqueous solution forms a lattice that eventually develops into a visible precipitate. Excess of either antibody or antigen interferes with maximal precipitation, which occurs in the so called equivalence zone, when the ratio of antibody to antigen is optimal. Figure 1: A precipitation curve for a system of one antigen and its antibodies. Immunology Page 2 Immune precipitates can form not only in solution but also in agar matrix. When antigen and antibody diffuse toward one another in agar, or when antibody is incorporated into the agar and antigen diffuses into the antibody containing matrix, a visible line of precipitation will form. Two immune diffusion techniques are radial immunodiffusion (Mancini method) and double immunodiffusion (Ouchterlony method); both are carried out in a semisolid medium such as agar. 1. Radial Immunodiffusion (Mancini Method): The relative concentrations of an antigen can be determined by a simple quantitative assay in which an antigen sample is placed in a well and allowed to diffuse into agar containing a suitable dilution of antiserum. As the antigen diffuses into the agar, the region of equivalence is established and a ring of precipitation, a precipitin ring, forms around the well. The area of precipitin ring is proportional to the concentration of antigen. -
Antibodies As Diagnostic Targets and As Reagents for Diagnostics
antibodies Editorial Antibodies as Diagnostic Targets and as Reagents for Diagnostics Nicole H. Trier and Gunnar Houen * Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, 2600 Glostrup, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +45-3863-3863 Received: 19 April 2020; Accepted: 22 April 2020; Published: 18 May 2020 Antibodies (Abs) were discovered around the turn of the 19th century and characterized in the following decades as an essential part of the human adaptive immune system [1,2]. Abs are produced in response to infections with pathogenic organisms and therefore have diagnostic potential. The levels of specific Abs reflect the burden of infection and the type of Abs produced may reflect the duration of infection and the site of infection, since Abs undergo class switching and affinity maturation in the course of infections [1,2]. Initially IgM is produced, but switching to IgG, IgA or IgE occurs during infections, depending on the type of pathogen and the site of infection. The use of Abs as targets of diagnostics can roughly be divided in five areas: 1. Infections The specificity, type and concentration of Abs have diagnostic value. The specificity giving information on the type of pathogen, the type and concentration giving information on the state of infection (IgM as an indication of early infection, IgG and IgA as indications of prolonged or chronic infections (IgA further indicating mucosal/epithelial infection)) [2]. 2. Autoimmune Diseases The specificity, type and concentration of auto-Abs have diagnostic value. The specificity and the type giving information on the tissue/organ involved (IgA indicating mucosal/epithelial affection, IgM being relevant in a few conditions), the concentration giving some information on the degree of affection [3].