Laboratory Techniques Used for Immunological Laboratory Methods

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory Techniques Used for Immunological Laboratory Methods Laboratory techniques used for Immunological laboratory methods Dr. Tatiana Jones, MD, PhD NCC How to Make Serial Dilutions? Interpretation can be made differently depending on the nature of test. For example, if we need to figure out in what sample the concentration of the antibody or antigen is higher, we will go by TITER, which is the lowest serial dilution (let’s say that it is 1:32 in the picture on the left) that gives us positive result. This mean that even diluted 32 times sample is still capable of reacting. The other scenario when we are interpreting quantitative assays, such as ELISA. In this case we need to match results of our samples to known concentrations of STANDARD and MULTIPLY be our dilution factor. What is Antibody Titer? An antibody titer is a measurement of how much antibody an organism has produced that recognizes a particular antigen. Titer is expressed as the inverse of the greatest dilution that still gives a positive result. ELISA is a common means of determining antibody titers. How to Determine Antibody Titer? Where we can use Indirect Coombs test detects the presence of anti-Rh antibodies in blood serum. A patient might be reported to have an "indirect Antibody Titer? Coombs titer" of 16. This means that the patient's serum gives a positive indirect Coombs test at any dilution down to 1/16 (1 part serum to 15 parts diluent). At greater dilutions the indirect Coombs test is negative. If a few weeks later the same patient had an indirect Coombs titer of 32 (1/32 dilution which is 1 part serum to 31 parts diluent), this would mean that more anti-Rh antibody was made, since it took a greater dilution to eradicate the positive test. Many traditional serological tests such as Rheumatoid Factor, hemagglutination or complement fixation employ this principle. Such tests can typically be read visually, which makes them fast and cost-effective in a "low-tech" environment. The interpretation of serological titers is guided by reference values that are specific for the antigen or antibody in question; a titer of 1:32 may be below the cut-off for one test but above for another. How Does it Work? Examples of Interpretation Phases of Antibody Response Antigen : Antibody Ratio Ratio Ag : Ab affects agglutination reactions, both the first and second stages. In double immunodiffusion, if antigen to be detected, a known reagent antibody is placed in the center well and the unknown samples are placed in the surrounding well. If antibody is to be detected, unknown antigen is placed in the center. After each of the samples and reagents have been added to the appropriate wells, diffusion occurs and both antigen and antibody diffuse radially from wells toward each other, thereby establishing a concentration gradient. A line of precipitation forms at the zone of equivalence. https://www.youtube.com/watch?v=4rX_q6Tndx8 and https://www.youtube.com/watch?v=oYnXeAPieN0 videos. Ouchterlony Double Immunodiffusion Ouchterlony double immunodiffusion (also known as agar gel immunodiffusion or passive double immunodiffusion) is an immunological technique used in the detection, identification and quantification of antibodies and antigens, such as immunoglobulins and extractable nuclear antigens. In radial immunodiffusion, an antigen sample is placed in a well and allowed to diffuse into agar containing a suitable dilution of an antibody. The antigen diffuses in all directions from the well, and accordingly the region of equivalence is established and a ring of precipitation (precipitin ring) forms around the well. The area of the precipitation ring is proportional to the concentration of antigen. The diameter of the area of precipitation (including the well diameter) is measured to determine the concentration of antigen. Enzyme-Linked Immunosorbent Assay ELISA Activity (The ELISA Method) Antigen Detection Antibody Capture Antibody Enzyme Positive test Negative test Substrate “Sandwich” ELISA 1. Cover tray with Capture Ab (primary Ab) – 8-24 hrs. 2. Wash. 3. Block to prevent non-specific binding – 2-48 hrs. 4. Wash. 5. Place Standard and Samples – 1-2 hrs. 6. Wash. 7. Place Detection Ab (secondary Ab) – 1-2 hrs. 8. Wash. 9. Place Enzyme – 30 min – 1 hr. 10. Wash. 11. Place Substrate. 12. Read results using plate reader. Immunoelectrophoresis is a gel electrophoretic technique which uses both electrophoresis and double diffusion. The samples that contain the proteins (the antigen) are added to the wells on the gel plate. The samples could be a mixture and contain serum from healthy as well as from infected persons. The antigen mixture is first electrophoresed to separate its components by charge. This creates line of the electric field, into which a purified known antibody is added. The antibody molecules diffuse into the gel. When an antigen is encountered by an antibody, formation of a visual precipitate occurs. Precipitin arcs form at the zone of equivalence between the antigen and specific antibody. The pattern of precipitation can reveal antigenic differences between the normal serum and the serum from an affected person. Immunoelectrophoresis is used in clinical laboratories to detect the presence or absence of proteins in the serum, especially changes concerned with immunoglobulins. Change in the immunoglobulin profile can be the result of immunodeficiencies, chronic bacterial or viral infections, and https://www.youtube.com/watch?v=52opF5Cc1-k video. infections of a fetus. Rheumatoid Factor (RF). Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting primarily joints. The autoimmune antibody generated in patients with RA belongs to group of IgM class immunoglobulins that interacts with self-IgG molecules, thus patients with RA have “anti- antibodies”. Rheumatoid factor (RF) is detected in 60-80% of cases of diagnosed RA. RF is an IgM class anti-antibody, which in-vitro, is detected by its ability to agglutinate latex particles (or red blood cells) coated with human IgG. RF in patient sample, if present, will attach to the IgG coating the latex particles. Agglutination of the latex particles is a positive result indicating the presence of RF. Latex or Erythrocyte agglutination. Two-fold dilutions of samples of different influenza viruses (A – H) were prepared, mixed with chicken red blood cells, and added to the wells of a 96-well plate. After 30 minutes the wells were photographed. Sample A causes hemagglutination up to the 1:256 dilution; therefore the HA titer of this virus stock is 256. The sample in row B and C contain no detectable virus, while that in row D has an HA titer of 512, E - 1024. Antibody titration. An antibody titer is a measurement of how much antibody an organism has produced that recognizes a particular antigen, expressed as the inverse of the greatest dilution that still gives a positive result. ELISA, RF, Rh Factor are a common Make serial dilutions of a sample to be tested for antibody and then add a fixed number of red means of determining blood cells or bacteria or other particulate antibody titers. antigen and determine the maximum dilution, which gives agglutination. The maximum dilution that gives visible agglutination is called the titer..
Recommended publications
  • Comparison of Immunohistochemistry with Immunoassay (ELISA
    British Journal of Cancer (1999) 79(9/10), 1534–1541 © 1999 Cancer Research Campaign Article no. bjoc.1998.0245 Comparison of immunohistochemistry with immunoassay (ELISA) for the detection of components of the plasminogen activation system in human tumour tissue CM Ferrier1, HH de Witte2, H Straatman3, DH van Tienoven2, WL van Geloof1, FJR Rietveld1, CGJ Sweep2, DJ Ruiter1 and GNP van Muijen1 Departments of 1Pathology, 2Chemical Endocrinology and 3Epidemiology, University Hospital Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands Summary Enzyme-linked immunosorbent assay (ELISA) methods and immunohistochemistry (IHC) are techniques that provide information on protein expression in tissue samples. Both methods have been used to investigate the impact of the plasminogen activation (PA) system in cancer. In the present paper we first compared the expression levels of uPA, tPA, PAI-1 and uPAR in a compound group consisting of 33 cancer lesions of various origin (breast, lung, colon, cervix and melanoma) as quantitated by ELISA and semi-quantitated by IHC. Secondly, the same kind of comparison was performed on a group of 23 melanoma lesions and a group of 28 breast carcinoma lesions. The two techniques were applied to adjacent parts of the same frozen tissue sample, enabling the comparison of results obtained on material of almost identical composition. Spearman correlation coefficients between IHC results and ELISA results for uPA, tPA, PAI-1 and uPAR varied between 0.41 and 0.78, and were higher for the compound group and the breast cancer group than for the melanoma group. Although a higher IHC score category was always associated with an increased median ELISA value, there was an overlap of ELISA values from different scoring classes.
    [Show full text]
  • Immunoassay - Elisa
    IMMUNOASSAY - ELISA PHUBETH YA-UMPHAN National Institute of Health, Department of Medical Sciences 0bjective After this presentation, participants will be able to Explain how an ELISA test determines if a person has certain antigens or antibodies . Explain the process of conducting an ELISA test. Explain interactions that take place at the molecular level (inside the microtiter well) during an ELISA test. Outline - Principal of immunoassay - Classification of immunoassay Type of ELISA - ELISA ELISA Reagents General - Applications Principal of ELISA ELISA workflow What is immunoassay? Immunoassays are bioanalytical methods that use the specificity of an antigen-antibody reaction to detect and quantify target molecules in biological samples. Specific antigen-antibody recognition Principal of immunoassay • Immunoassays rely on the inherent ability of an antibody to bind to the specific structure of a molecule. • In addition to the binding of an antibody to its antigen, the other key feature of all immunoassays is a means to produce a measurable signal in response to the binding. Classification of Immunoassays Immunoassays can be classified in various ways. Unlabeled Labeled Competitive Homogeneous Noncompetitive Competitive Heterogeneous Noncompetitive https://www.sciencedirect.com/science/article/pii/S0075753508705618 Classification of Immunoassays • Unlabeled - Immunoprecipitation • Labeled Precipitation of large cross-linked Ag-Ab complexes can be visible to the naked eyes. - Fluoroimmnoassay (FIA) - Radioimmunoassay (RIA) - Enzyme Immunoassays (EIA) - Chemiluminescenceimmunoassay(CLIA) - Colloidal Gold Immunochromatographic Assay (ICA) https://www.creative-diagnostics.com/Immunoassay.htm Classification of Immunoassays • Homogeneous immunoassays Immunoassays that do not require separation of the bound Ag-Ab complex. (Does not require wash steps to separate reactants.) Example: Home pregnancy test. • Heterogeneous immunoassays Immunoassays that require separation of the bound Ag-Ab complex.
    [Show full text]
  • Radial Immunodiffusion Assay Protocol
    Radial Immunodiffusion Aim: To study the immunodiffusion technique by Single Radial Immunodiffusion. Introduction: Single Radial Immunodiffusion, also known as Mancini technique, is a quantitative immunodiffusion technique used to detect the concentration of antigen by measuring the diameter of the precipitin ring formed by the interaction of the antigen and the antibody at optimal concentration. In this method the antibody is incorporated into the agarose gel whereas the antigen diffuses into it in a radial pattern. Thus, the antibody is uniformly distributed throughout the gel. Principle: Single Radial Immunodiffusion is used extensively for the quantitative estimation of antigen. Here the antigen-antibody reaction is made more sensitive by the addition of antiserum into the agarose gel and loading the antigen sample in the well. As the antigen diffuses into the agarose radially in all directions, it’s concentration continuously falls until the equivalence point is reached at which the antigen concentration is in equal proportion to that of the antibody present in the agarose gel. At this point ring of precipitation (‘precipitin ring’) is formed around the well. The diameter of the precipitin ring is proportional to the concentration of antigen. With increasing concentration of antigen, precipitin rings with larger diameter are formed. The size of the precipitin rings depends on: Antigen concentration in the sample well Antibody concentration in the agarose gel Size of the sample well Volume of the sample Thus, by having various concentrations of a standard antigen, standard curve can be obtained from which one can determine the amount of an antigen in an unknown sample. Thus, this is a quantitative test.
    [Show full text]
  • An Enzyme-Linked Immunosorbent Assay (ELISA) for Pantothenate
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1981 An Enzyme-Linked Immunosorbent Assay (ELISA) for Pantothenate Allen H. Smith Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biochemistry Commons Recommended Citation Smith, Allen H., "An Enzyme-Linked Immunosorbent Assay (ELISA) for Pantothenate" (1981). All Graduate Theses and Dissertations. 5295. https://digitalcommons.usu.edu/etd/5295 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. AN ENZYME- LINKED ThltviUNOSORBE!'IT ASSAY (ELISA) FOR PANTOTHENATE by Allen H. Smith A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biochemistry UTAH STATE UNIVERSITY Logan, Utah 1981 ii ACKNOWLEDGEMENTS To Dr. R. G. Hansen, to Dr. B. W. Wyse, to Carl Wittwer, to Jack Brown, to Jan Pearson, to Nedra Christensen, to all those who have made this experience one of tremendous growth, I express my thanks. I express appreciation to the United States Department of Agriculture, under Grant #5901-0410-9-0288-0 with Utah State University, for financial support. Finally, I express thanks to my parents, who have come to realize that graduate school is also a part of life. Allen H. Smith "iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ii LIST OF TABLES . vi LIST OF FIGURES. vii · ABSTRACT .. ix INTRODUCTION 1 REVIEW OF LITERATURE 4 Pantothenate Assays .
    [Show full text]
  • Allergy Skin and Challenge Testing
    Corporate Medical Policy Allergy Skin and Challenge Testing File Name: allergy_skin_and_challenge_testing Origination: 7/1979 Last CAP Review: 11/2020 Next CAP Review: 11/2021 Last Review: 11/2020 Description of Procedure or Service Management of the allergic patient may include identifying the offending agent by means of allergy testing. Allergy testing can be broadly grouped into in vivo and in vitro methodologies: • In vivo testing - includes allergy skin testing such as the scratch, puncture or prick test (epicutaneous), intradermal test (intracutaneous) and patch test, and food and bronchial challenges. • In vitro testing - includes various techniques to test the blood for the presence of specific IgE antibodies to a particular antigen. Once the agent is identified, treatment is provided by avoidance, medication or immunotherapy (allergy shots). Allergic or hypersensitivity disorders may be manifested by generalized systemic reactions as well as by localized reactions in any organ system of the body. The reactions may be acute, subacute, or chronic, immediate or delayed, and may be caused by numerous offending agents: pollen, molds, dust mites, animal dander, stinging insect venoms, foods, drugs, etc. This policy only addresses in vivo (skin and challenge) testing; for vitro testing, see policy titled, Allergen Testing. Related Policies: Allergy Immunotherapy Desensitization Allergen Testing AHS – G2031 Maximum Units of Service Idi ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for Allergy skin and challenge testing when it is determined to be medically necessary because the medical criteria and guidelines shown below are met.
    [Show full text]
  • Guidance and Protocol for the Serological Diagnosis of Human Infection with Bordetella Pertussis
    TECHNICAL DOCUMENT Guidance and protocol for the serological diagnosis of human infection with Bordetella pertussis As part of the EUpert-Labnet surveillance network www.ecdc.europa.eu ECDC TECHNICAL DOCUMENT Guidance and protocol for the serological diagnosis of human infection with Bordetella pertussis As part of the EUpert-Labnet surveillance network This report was commissioned by the European Centre for Disease Prevention and Control (ECDC), coordinated by Adoracion Navarro Torne, and produced by the members of the European Bordetella expert group ‘EUpert-Labnet’ as part of the project contract: Coordination of activities for laboratory surveillance of whooping cough in Member States and EEA countries (OJ/26/05/2011-PROC/2011/037) Authors Marion Riffelmann, HELIOS Kinikum Krefeld, Germany; Carl Heinz Wirsing von König, HELIOS Kinikum Krefeld, Germany; Dorothy Xing, National Institute for Biological Standards and Control (NIBSC), Health Protection Agency, Potters Bar, United Kingdom; Qiushui He, National Institute for Health and Welfare (THL), Turku, Finland. This protocol is intended to serve as a starting point for laboratories aiming at introducing ELISA serology for diagnosis of human Bordetella pertussis infections. Comments, requests or questions can be addressed to the authors. Version 1.0, October 2012 Disclaimer: this technical guidance is based on the latest available published data on diagnostic test performance at the time of writing. ECDC does not endorse any particular commercial product or instrument. Suggested citation:
    [Show full text]
  • UBI® SARS-Cov-2 ELISA INSTRUCTIONS for USE
    UBI® SARS-CoV-2 ELISA INSTRUCTIONS FOR USE FOR IN VITRO DIAGNOSTIC USE ONLY FOR EMERGENCY USE AUTHORIZATION ONLY FOR PRESCRIPTION USE ONLY INTENDED USE The UBI® SARS-CoV-2 ELISA is an Enzyme-Linked Immunosorbent Assay (ELISA) intended for qualitative detection of IgG antibodies to SARS-CoV-2 in human serum and plasma (sodium heparin or dipotassium (K2) EDTA). The UBI® SARS-CoV-2 ELISA is intended for use as an aid in identifying individuals with an adaptive immune response to SARS-CoV-2, indicating recent or prior infection. At this time, it is unknown for how long antibodies persist following infection and if the presence of antibodies confers protective immunity. The UBI® SARS-CoV-2 ELISA should not be used to diagnose or exclude acute SARS-CoV-2 infection. Testing is limited to laboratories certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA), 42 U.S.C 263a, that meet requirements to perform high complexity testing. Results are for the detection of IgG SARS CoV-2 antibodies. IgG antibodies to SARS-CoV-2 are generally detectable in blood several days after initial infection, although the duration of time antibodies are present post-infection is not well characterized. Individuals may have detectable virus present for several weeks following seroconversion. Laboratories within the United States and its territories are required to report all results to the appropriate public health authorities. The sensitivity of the UBI® SARS-CoV-2 ELISA early after infection is unknown. Negative results do not preclude acute SARS-CoV-2 infection. If acute infection is suspected, direct testing for SARS-CoV-2 is necessary.
    [Show full text]
  • FOR REFERENCE USE ONLY: DO NOT USE in Place of Package Inserts Provided with Each Product
    [US] • Isotonic saline solution Coombscell-E IgG-coated Red Blood Cells for the control of the antiglobulin Coombscell-E is a single vial of group 0 red blood cells sensitized with human test monoclonal IgG antibodies (specificity anti-D). • Reagent Red Blood Cells: Biotest: Biotestcell® 1 & 2 [REF] 816014100, FOR IN-VITRO DIAGNOSTIC USE ® Biotestcell® 3 [REF] 816085100, Biotestcell -I 8 [REF] 816020100, For tube test ® Biotestcell -I 11 [REF] 816021100 Package size • Donor or patient red blood cells [REF] 816030100 [VOL] 10 mL Coombscell-E • MLB 2 (Modified LISS Biotest) [REF] 8065200100 • Anti-Human Globulin Anti-IgG [REF] 804175100 • Anti-Human Globulin Anti-IgG, -C3d Polyspecific [REF] 804115100 Intended Use Coombscell-E Red Blood Cells are used for • Glass tubes 10 x 75mm or 12 x 75mm • in-house quality control (reactivity control of Anti-Human-Globulin) • Serological centrifuge • to control the technique of antiglobulin-test with negative results • Interval Timer to verify the negative results of the IAT (Indirect Antiglobulin Test) and DAT • Markers (Direct Antiglobulin Test) • Optical aid (optional). The use of an optical aid for agglutination reading must be vaildated by the user. Summary Moreschi first described the use of Anti-Human Globulin in 19081. Coombs Test procedure rediscovered the test in 1945.2,3 By injecting rabbits with human IgG, they A. Tube test were able to produce a protein (Anti-IgG) that reacted with incomplete antibodies (IgG). Most “incomplete” antibodies (IgG) fail to agglutinate red Verification of negative result in antiglobulin test blood cells suspended in saline.4 Most clinically significant antibodies in red 1.
    [Show full text]
  • Importance of Ag-Ab Reactions
    Ag-Ab reactions Tests for Ag-Ab reactions EISA SALEHI PhD. Immunology Dept. TUMS Importance of Ag-Ab Reactions • Understand the mechanisms of defense • Abs as tools in: – Treatment – Diagnosis • As biomarkers • As tools to measure analytes Nature of Ag/Ab Reactions http://www.med.sc.edu:85/chime2/lyso-abfr.htm • Lock and Key Concept • Non-covalent Bonds – Hydrogen bonds – Electrostatic bonds – Van der Waal forces – Hydrophobic bonds • Multiple Bonds • Reversible Source: Li, Y., Li, H., Smith-Gill, S. J., Mariuzza, R. A., Biochemistry 39, 6296, 2000 Affinity • Strength of the reaction between a single antigenic determinant and a single Ab combining site High Affinity Low Affinity Ab Ab Ag Ag Affinity = ( attractive and repulsive forces Calculation of Affinity Ag + Ab ↔ Ag-Ab Applying the Law of Mass Action: [[gAg-Ab] Keq = [Ag] x [Ab] Avidity • The overall strength of binding between an Ag with many determinants and multivalent Abs 4 6 10 Keq = 10 10 10 Affinity Avidity Avidity SifiitSpecificity • The ability of an individual antibody combining site to react with only one antigenic determinant. • The ability of a population of antibody molecules to react with only one antigen. Cross Reactivity • The ability of an individual Ab combining site to react with more than one antigenic determinant. • The ability of a population of Ab molecules to react with more than one Ag Cross reactions Anti-A Anti-A Anti-A Ab Ab Ab Ag A Ag B Ag C Shared epitope Similar epitope Factors Affecting Measurement of A/AbRAg/Ab Reac tions • Affinity • Avidity Ab excess Ag excess • AAbiAg:Ab ratio •Phyygsical form of Ag Equivalence – Lattice formation Do you need to know what happens in Lab.
    [Show full text]
  • Switching from RIA to ELISA
    Switching from RIA to ELISA Being able to quantify biomarkers in a complex sample such as serum, cell culture media or even urine is of the utmost importance in biomarker research. Immunoassays that utilize highly specific the possibility of it measuring proglucagon-derived antibodies to detect biomarkers and analyze their peptides other than glucagon cannot be ruled out. concentration in such samples have been around An independent study has assessed the Mercodia since 1959 when Yalow and Berson first used sandwich ELISA and found it to be the most radiolabeled insulin to assess the concentration reliable assay for measuring glucagon3. of insulin in humans1. This radioimmunoassay (RIA) was followed by a new technique in 1971 when Engvall and Perlman developed an assay Pros and Cons where antigens immobilized on a microplate well are incubated with the sample and the Both ELISA and RIA can be used to measure concentration of the biomarker of interest glucagon, but the latter format is often based quantified using an enzyme-linked on a polyclonal antibody and may thus show anti-immunoglobulin antibody2. This method cross-reactivities to substances other than the is called enzyme-linked immunosorbent test analyte, such as hemoglobin and bilirubin. assay (ELISA). A sandwich ELISA, on the other hand, is based on two antibodies, which ensures high specificity for Since then, RIAs and ELISAs have been used the analyte. Mercodia ELISA assays are all based extensively to detect and quantify biomarkers. on monoclonal antibodies, so reproducibility There are, however, differences between the two between lots is assured. technologies that should be considered when comparing the two types and selecting an assay In addition, ELISA’s enzyme-based detection format.
    [Show full text]
  • Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay Stephanie D
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector RESEARCH TECHNIQUES MADE SIMPLE Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay Stephanie D. Gan1 and Kruti R. Patel2 Journal of Investigative Dermatology (2013) 133, e12. doi:10.1038/jid.2013.287 INTRODUCTION Enzyme immunoassay (EIA) and enzyme-linked immunosor- WHAT ENZYME-LINKED bent assay (ELISA) are both widely used as diagnostic tools in IMMUNOSORBENT ASSAY (ELISA) DOES medicine and as quality control measures in various industries; • ELISA is a biochemical assay that uses antibodies they are also used as analytical tools in biomedical research and an enzyme-mediated color change to detect for the detection and quantification of specific antigens or anti- the presence of either antigen (proteins, peptides, bodies in a given sample. These two procedures share similar hormones, etc.) or antibody in a given sample. basic principles and are derived from the radioimmunoassay (RIA). RIA was first described by Berson and Yalow (Yalow and • Both “indirect” and “sandwich” ELISAs allow Berson, 1960), for which Yalow was awarded the Nobel Prize detection of antigen or antibody at very low in 1977, to measure endogenous plasma insulin. RIA was then concentrations. developed into a novel technique to detect and measure bio- • The competitive method detects compositional logical molecules present in very small quantities, paving the differences in complex antigen mixtures with way for the analysis and detection of countless other biologi- high sensitivity, even when the specific detecting cal molecules, including hormones, peptides, and proteins. antibody is present in relatively small amounts.
    [Show full text]
  • (ELISA) for the Detection of Anti-Double-Stranded DNA Igg
    ORIGINAL ARTICLE J Bras Patol Med Lab. 2019; 55(2): 160-169. A quantitative enzyme-linked immunosorbent assay (ELISA) for the detection of anti-double-stranded DNA IgG antibodies 10.5935/1676-2444.20190018 Reação imunoenzimática (ELISA) quantitativa para detecção de anticorpos IgG anti-DNA de dupla hélice Elisângela O. Cavalcante; Lisandra A. Suzuki; Claudio Lucio Rossi Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil. ABSTRACT Introduction: The detection of anti-double-stranded (ds) deoxyribonucleic acid (DNA) antibodies is one of the classification criteria for diagnosing systemic lupus erythematosus (SLE). Objective: To describe a quantitative enzyme-linked immunosorbent assay (ELISA) for detecting anti-dsDNA immunoglobulin class G (IgG) antibodies. Methods: The performance of ELISA was evaluated using the Crithidia luciliae indirect immunofluorescence test (CLIFT) as a reference. Anti-dsDNA IgG antibodies were screened by ELISA and CLIFT in serum samples from 127 patients with SLE, 56 patients with other diseases and 37 healthy persons. The Cochran Q test was used to compare the sensitivity and specificity of the reactions, with differences among the results being considered significant when p ≤ 0.05. Results: ELISA had a sensitivity of 92.9% and a specificity of 94.6%, whereas the sensitivity and specificity of CLIFT were 85.8% and 100%, respectively. ELISA was significantly more sensitive than CLIFT (p = 0.0027), whereas CLIFT was significantly more specific than ELISA (p = 0.0253). Conclusion: ELISA showed excellent results in terms of sensitivity and specificity, with a potential use in research and routine diagnostics. Key words: systemic lupus erythematosus; antinuclear antibodies; enzyme-linked immunosorbent assay; indirect fluorescent antibody technique.
    [Show full text]