Phasmid Studies ISSN 0966-0011 Volume 9, Numbers 1 & 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs. -
Insecta: Phasmatodea) and Their Phylogeny
insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y. -
The New Stick Insect Genus Pterulina Gen. Nov., a Second Winged
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342530173 The new stick insect genus Pterulina gen. nov., a second winged Clitumninae genus from Vietnam with a new combination and a new species (Phasmida, Phasmatidae, Clitumninae, Clitumn... Article in Belgian Journal of Entomology · June 2020 CITATIONS READS 0 1,328 2 authors: Joachim Bresseel Jérôme Constant Royal Belgian Institute of Natural Sciences Royal Belgian Institute of Natural Sciences 28 PUBLICATIONS 140 CITATIONS 126 PUBLICATIONS 509 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Systematics of Philippine Auchenorrhyncha View project GLOBAL TAXONOMY INITIATIVE - Entomodiversity of VIETNAM View project All content following this page was uploaded by Jérôme Constant on 29 June 2020. The user has requested enhancement of the downloaded file. Belgian Journal of Entomology 96: 1–30 (2020) ISSN: 2295-0214 www.srbe-kbve.be urn:lsid:zoobank.org:pub:86A63507-90DC-445B-96A7-0BCA112D6C4D Belgian Journal of Entomology The new stick insect genus Pterulina gen. nov., a second winged Clitumninae genus from Vietnam with a new combination and a new species (Phasmida, Phasmatidae, Clitumninae, Clitumnini) Joachim BRESSEEL1 & Jérôme CONSTANT2 1, 2 Royal Belgian Institute of Natural Sciences, O.D. Phylogeny and Taxonomy, Entomology, Vautier street 29, B-1000 Brussels, Belgium 1 E-mail:[email protected] (corresponding author) urn:lsid:zoobank.org:author:3C4EF358-9716-46F0-8575-26BE1EDE4349 2 E-mail: [email protected] urn:lsid:zoobank.org:author:6E6072A1-9415-4C8D-8E60-2504444DB290 Published: Brussels, June 29, 2020 BRESSEEL J. -
Phasmida (Stick and Leaf Insects)
● Phasmida (Stick and leaf insects) Class Insecta Order Phasmida Number of families 8 Photo: A leaf insect (Phyllium bioculatum) in Japan. (Photo by ©Ron Austing/Photo Researchers, Inc. Reproduced by permission.) Evolution and systematics Anareolatae. The Timematodea has only one family, the The oldest fossil specimens of Phasmida date to the Tri- Timematidae (1 genus, 21 species). These small stick insects assic period—as long ago as 225 million years. Relatively few are not typical phasmids, having the ability to jump, unlike fossil species have been found, and they include doubtful almost all other species in the order. It is questionable whether records. Occasionally a puzzle to entomologists, the Phasmida they are indeed phasmids, and phylogenetic research is not (whose name derives from a Greek word meaning “appari- conclusive. Studies relating to phylogeny are scarce and lim- tion”) comprise stick and leaf insects, generally accepted as ited in scope. The eggs of each phasmid are distinctive and orthopteroid insects. Other alternatives have been proposed, are important in classification of these insects. however. There are about 3,000 species of phasmids, although in this understudied order this number probably includes about 30% as yet unidentified synonyms (repeated descrip- Physical characteristics tions). Numerous species still await formal description. Stick insects range in length from Timema cristinae at 0.46 in (11.6 mm) to Phobaeticus kirbyi at 12.9 in (328 mm), or 21.5 Extant species usually are divided into eight families, in (546 mm) with legs outstretched. Numerous phasmid “gi- though some researchers cite just two, based on a reluctance ants” easily rank as the world’s longest insects. -
Goliath Stick Insect
Husbandry Manual for Eurycnema goliath Tara Bearman Husbandry Manual for Goliath Stick Insect Eurycnema goliath (Gray, 1834) (Insecta: Phasmatidae) Compiled by: Tara Bearman Date of Preparation: 2007 Western Sydney Institute of TAFE, Richmond Course Name and Number: 1068 Certificate III –Captive Animals Lecturer: Graeme Phipps 1 Husbandry Manual for Eurycnema goliath Tara Bearman TABLE OF CONTENTS 1 INTRODUCTION .............................................................................................................................. 6 2 TAXONOMY ....................................................................................................................................... 7 2.1 NOMENCLATURE............................................................................................................................. 7 2.2 SUBSPECIES................................................................................................................................... 7 2.3 RECENT SYNONYMS ....................................................................................................................... 7 2.4 OTHER COMMON NAMES ................................................................................................................ 7 3 NATURAL HISTORY........................................................................................................................ 8 3.1 MORPHOMETRICS........................................................................................................................... 9 3.1.1 Mass and -
Entertainment-Education in Science Education Available on Mobile Devices Interactive Tasks Allow You to Quickly Verify the Acquired Knowledge
Entertainment-education in science education the monograph edited by Grzegorz Karwasz & Małgorzata Nodzyńska 1 2 Entertainment-education in science education the monograph edited by Grzegorz Karwasz & Małgorzata Nodzyńska TORUŃ 2017 3 The monograph edited by: Grzegorz Karwasz & Małgorzata Nodzyńska Rewievers: Cover: Ewelina Kobylańska ISBN .......... 4 Introduction Jan Amos Komensky in „Great Didactics” (Amsterdam, 1657) defined didactics not as a mere process of teaching, but as teaching efficient, lasting and pleasant. He wrote (p. 131) “The school itself should be a pleasant place, and attractive to the eye both within and without. […] If this is done, boys will, in all probability, go to school with as much pleasure as to fairs, where they always hope to see and hear something new.” Further (p. 167) Komensky added: “The desire to know and to learn should be excited in boys in every possible manner.” The idea of linking the fun with didactics finds many followers, expressed also in tittles of activities like “Science is Fun” or “Physics is Fun”. In (Karwasz, Kruk, 2012) we defined three complementary aspects of any bit of information (an exhibition object, a film, a lecture): entertainment (“ludico” in Italian), didactics, and science. The first aspect gives an impression to a student/ visitor/ listener: “how funny it is!”. The didactical aspect induces: “How simple it is!” And the aspect of scientific curiosity induces in best students a question: “How complex it is!” These three functions add-up like three basic colors to give a full spectrum of enlightenment. The entertainment function can be performed in different forms – school, extra-school, complementary to school. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Stuttgarter Beiträge Zur Naturkunde Serie a (Biologie)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2003 Band/Volume: 651_A Autor(en)/Author(s): Hennemann Frank H., Conle Oskar V. Artikel/Article: Catalogue of type specimens of Phasmatodea (Insecta) deposited in the Staatliche Museum für Naturkunde in Stuttgart 1-8 A651 03.06.2003 8:28 Uhr Seite 1 Stuttgarter Beiträge zur Naturkunde Serie A (Biologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. A Nr. 651 8 S. Stuttgart, 23. VI. 2003 Catalogue of type specimens of Phasmatodea (Insecta) deposited in the Staatliche Museum für Naturkunde in Stuttgart FRANK H. HENNEMANN & OSKAR V. C ONLE Abstract A catalogue of all Phasmatodea type material lodged in the Staatliche Museum für Naturkunde in Stuttgart (SMNS) is provided (28 species: 10 described by BRUNNER V. WAT- TENWYL (1907), 2 by HENNEMANN, CONLE & BRÜCKNER (1996a, 1996b), 1 by HENNEMANN, GEHLER & CONLE (1995a), 1 by KEVAN (1955) and 14 by REDTENBACHER (1906, 1908)). The taxa are listed alphabetically by species for each author along with the number of specimens, sex, locality and additional information if necessary. A few of the specimens, marked as types, are very doubtful to represent type material; their status is clarified. Some background infor- mation on the collection of the SMNS, important collectors and the type material is provided. The type material of four taxa described by BRUNNER V. WATTENWYL (1907) and four taxa described by REDTENBACHER (1908) from the SMNS could not be traced; it is listed separate- ly. -
Wildlife (General) Regulations 2010
Wildlife (General) Regulations 2010 I, the Governor in and over the State of Tasmania and its Dependencies in the Commonwealth of Australia, acting with the advice of the Executive Council, make the following regulations under the Nature Conservation Act 2002. 22 November 2010 PETER G. UNDERWOOD Governor By His Excellency's Command, D. J. O'BYRNE Minister for Environment, Parks and Heritage PART 1 - Preliminary 1. Short title These regulations may be cited as the Wildlife (General) Regulations 2010. 2. Commencement These regulations take effect on 1 January 2011. 3. Interpretation (1) In these regulations, unless the contrary intention appears – Act means the Nature Conservation Act 2002; adult male deer means a male deer with branching antlers; antlerless deer means a deer that is – (a) without antlers; and (b) partly protected wildlife; approved means approved by the Secretary; Bass Strait islands means the islands in Bass Strait that are within the jurisdiction of the State; brow tine means the tine closest to a deer's brow; buy includes acquire for any consideration; cage includes any pen, aviary, enclosure or structure in which, or by means of which, wildlife is confined; certified forest practices plan means a certified forest practices plan within the meaning of the Forest Practices Act 1985; device, in relation to a seal deterrent permit, means a device that – (a) is designed to, or has the capability to, deter seals from entering or remaining in a particular area of water; and (b) involves the use of explosives, the discharge -
Ecological Epigenetics in Timema Cristinae Stick Insects: on the Patterns, Mechanisms and Ecological Consequences of DNA Methylation in the Wild
Ecological epigenetics in Timema cristinae stick insects: On the patterns, mechanisms and ecological consequences of DNA methylation in the wild Clarissa Ferreira de Carvalho A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of Science Department of Animal and Plant Sciences Submission Date April 2019 I II Abstract Epigenetic factors can contribute to phenotypic diversity and to ecological processes. For instance, DNA methylation can influence gene regulation, and thus phenotypic plasticity. However, little is yet known about how and why methylation varies in the wild. In this dissertation, I build on this knowledge by combining ecological, genetic and DNA methylation data from natural and experimental populations of the stick insect Timema cristinae. This species is an important system to ecological genetics studies, which provides good starting point for the investigation of the patterns, drivers, and the possible ecological consequences of natural methylation variation. I obtained methylation data using whole- genome bisulfite sequencing (BS-seq) and genetic data from restriction site associated DNA sequencing (RAD-seq). From a population survey, I found natural methylation variation in T. cristinae (1) is characteristic of “Hemimetabola” insects; (2) is structured in geographical space; and (3) is strongly correlated to genetic variation. In addition, an experiment simulating a host shift was carried out to test for the direct effects of host plant species on T. cristinae methylation levels. In both the population survey and in the experiment, binomial mixed models were used to perform a methylome scan in search of candidate single methylation polymorphisms (SMPs) associated with host plant use. -
Great Lakes Entomologist the Grea T Lakes E N Omo L O G Is T Published by the Michigan Entomological Society Vol
The Great Lakes Entomologist THE GREA Published by the Michigan Entomological Society Vol. 45, Nos. 3 & 4 Fall/Winter 2012 Volume 45 Nos. 3 & 4 ISSN 0090-0222 T LAKES Table of Contents THE Scholar, Teacher, and Mentor: A Tribute to Dr. J. E. McPherson ..............................................i E N GREAT LAKES Dr. J. E. McPherson, Educator and Researcher Extraordinaire: Biographical Sketch and T List of Publications OMO Thomas J. Henry ..................................................................................................111 J.E. McPherson – A Career of Exemplary Service and Contributions to the Entomological ENTOMOLOGIST Society of America L O George G. Kennedy .............................................................................................124 G Mcphersonarcys, a New Genus for Pentatoma aequalis Say (Heteroptera: Pentatomidae) IS Donald B. Thomas ................................................................................................127 T The Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Missouri Robert W. Sites, Kristin B. Simpson, and Diane L. Wood ............................................134 Tymbal Morphology and Co-occurrence of Spartina Sap-feeding Insects (Hemiptera: Auchenorrhyncha) Stephen W. Wilson ...............................................................................................164 Pentatomoidea (Hemiptera: Pentatomidae, Scutelleridae) Associated with the Dioecious Shrub Florida Rosemary, Ceratiola ericoides (Ericaceae) A. G. Wheeler, Jr. .................................................................................................183 -
Phasmid Studies ISSN 09660011 Volume 3, Numbers 1 & 2
Phasmid Studies ISSN 09660011 volume 3, numbers 1 & 2. Contents A redefinition of the orientation ter minology of phasmid eggs J.T .C . Sellick . T he evolution and subsequent classification of the Phasmatodea Robert Lind . .. 3 PSG 149, Achrioptera sp. Frank Hennemann . .. 6 Reviews and Abstracts Book Reviews 12 Journal Review . .. 14 Phasmid Abstracts . 15 PSG 146, Centema hadrillus (Westwood) P.E . Bragg 23 A Check List of Type Species of Phasmid Genera P.E. Bragg 28 The Distribution of Asceles margaritatus in Borneo P.E. Bragg 39 The Phasmid Database: version 1.5 P.E. Bragg 4 1 Reviews and Abstracts Phasmid Abstracts . .. 43 Cover illustration : Echinoclonia exotica (Brunne r), by P. E. Bragg. A redefinition of the orientation terminology of phasmid eggs. J.T.C. Sellick, 31 Regem Street, Kdterin~. Nnrthanl~. U.K. Key words Phasmida, Egg Tanninology, Onemation. The article on Dinophasma gwrigera (Westwood) (Bragg 1993) raised the question of how one determines dorsal and ventral surfaces on eggs in which the micropylar plate circles the egg. In the case of this species (by comparison with other Aschiphasmatinae eggs) it would appear that the dorsal surface has been correetly identified as that bearing the micropyle, since it is typical in eggs of this group that the operculum should be lilted ventrally and the micropylar plate should bear a ventral central stripe. The orientation would be confirmed by examination of the internal plate as indicated below. a a d (0) p p 1 d (c) (d) (e) Figure 1. The egg of Ortttomcrio supcrba (Redtenbacher}, a) dorsal view, b) lateral view, c) internal micropylar plate tlattened out.