Ecological Epigenetics in Timema Cristinae Stick Insects: on the Patterns, Mechanisms and Ecological Consequences of DNA Methylation in the Wild

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Epigenetics in Timema Cristinae Stick Insects: on the Patterns, Mechanisms and Ecological Consequences of DNA Methylation in the Wild Ecological epigenetics in Timema cristinae stick insects: On the patterns, mechanisms and ecological consequences of DNA methylation in the wild Clarissa Ferreira de Carvalho A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of Science Department of Animal and Plant Sciences Submission Date April 2019 I II Abstract Epigenetic factors can contribute to phenotypic diversity and to ecological processes. For instance, DNA methylation can influence gene regulation, and thus phenotypic plasticity. However, little is yet known about how and why methylation varies in the wild. In this dissertation, I build on this knowledge by combining ecological, genetic and DNA methylation data from natural and experimental populations of the stick insect Timema cristinae. This species is an important system to ecological genetics studies, which provides good starting point for the investigation of the patterns, drivers, and the possible ecological consequences of natural methylation variation. I obtained methylation data using whole- genome bisulfite sequencing (BS-seq) and genetic data from restriction site associated DNA sequencing (RAD-seq). From a population survey, I found natural methylation variation in T. cristinae (1) is characteristic of “Hemimetabola” insects; (2) is structured in geographical space; and (3) is strongly correlated to genetic variation. In addition, an experiment simulating a host shift was carried out to test for the direct effects of host plant species on T. cristinae methylation levels. In both the population survey and in the experiment, binomial mixed models were used to perform a methylome scan in search of candidate single methylation polymorphisms (SMPs) associated with host plant use. This analysis is analogous to genome-wide analysis studies, but applied to methylation levels. They use genetic data to estimate random effects arising from relatedness. The results suggest (4) an association between methylation levels and host plant in specific regions and that (5) some of them could be responsive to host shift treatment. Finally, the model suggested (6) significant mean heritability of methylation status, estimated based on the genetic relatedness. My results collectively indicate methylation variation could be ecologically relevant to T. cristinae, and adds to the general understanding of the importance of epigenetic variation. III Acknowledgements First and foremost, I am enormously grateful to my supervisor Patrik Nosil for having trusted in me to do this work and for all the valuable lessons throughout all of it. I have appreciated every single piece of advice he has given me during my PhD. I am also very thankful to my other supervisor Jon Slate, for all his guidance and for always encouraging me. To Royal Society for having granted me this opportunity, and to Mike Siva-Jothy, for having assisted me throughout all my PhD. I am very grateful to my colleagues and friends who have always helped me and gave me strength to keep going. My special thanks to Víctor, who has been a mentor to me and has always given me great support. To Romain, for his partnership and kindred spirit to help me throughout my PhD challenges. To my amazing colleagues, Anamaria, Emma, Gavin, James, Jill, Juan, Kay, Luke, Marisol, Matheus B., Mel, Nicola, Óscar, Pascal-Antoine, Rachel, Roger, Sean, Toni, not only for all the support and fruitful discussions, but for the friendship that we developed with it. My huge gratitude to my friends, for all their love and support. To Anaclara, Céline, Cláudio, Harriet, Mariana, Martha, Matheus A., Richard, Rowan, Yichen, for making my life in Sheffield a real pleasure. To my beautiful friends overseas, Drielle, Felipe, Heloísa, Mário, Rafaela, Rillen, Rodrigo, Vinícius, for always being with me. To Frane, whose passion and enthusiasm has inspired me to give my best. To Angela and Zuzanna, for the lovely friendship that reenergized me every time we met. Finally, I would not have reached this far without the support of my family. I am extremely thankful to my mother and to my father, for all their support and for sparking my curiosity and passion for the natural world, and to my siblings, Carolina and Henrique, my everlasting companions. I could not have done any of that without you. IV Table of contents Abstract III Acknowledgements IV Table of contents V Chapter 1: General introduction 1 1.1. DNA methylation: the most investigated epigenetic mechanism 2 1.2. Ecological epigenetics 5 1.3. Study system: Timema cristinae stick insects 8 1.4. An ecological epigenetics study in T. cristinae 12 1.5. Outline of thesis chapters 16 1.6. A note on contributions made to this thesis 19 1.7. Note on contribution to appendix D 19 Chapter 2: Function and evolution of DNA methylation in Timema cristinae stick insects 23 2.1. Summary 23 2.2. Introduction 24 2.3. Material and Methods 27 2.3.1. DNA methyltransferases (DNMTs) 27 2.3.2. Sampling 29 2.3.3. Generating DNA methylation data 30 2.3.4. Annotation 38 2.3.5. Methylation enrichment on genomic features 39 2.3.6. Gene Ontology (GO) enrichments 40 2.3.7. Transposable elements (TEs) 40 2.4. Results 41 2.4.1. Identification of T. cristinae DNA methyltransferases 41 2.4.2. General patterns 43 2.4.3. Distribution of DNA methylation across genome 44 2.4.4. GO terms enriched in methylated and in non-methylated genes 49 2.4.5. Transposable elements 49 2.5. Discussion 51 2.5.1. Two copies of DNMT1 and absence of DNMT3 in T. cristinae 51 V 2.5.2. Majority of methylated cytosines is in CpG context 52 2.5.3. DNA methylation levels are high in T. cristinae genome and differentially distributed 53 2.5.4. Enriched GO terms are generally similar to those in other insects 55 2.5.5. TEs are normally depleted in methylation 56 2.6. Conclusion 57 Appendix A: Supplementary Tables and Figures – Chapter 2 58 Chapter 3: Patterns and drivers of DNA methylation variation in natural populations of Timema cristinae stick insects 75 3.1. Summary 75 3.2. Introduction 76 3.3. Materials and Methods 82 3.3.1. Study system 82 3.3.2. Sampling design 84 3.3.3. Sampling 90 3.3.4. DNA methylation variation 90 3.3.5. Genetic variation 91 3.3.6. General patterns of geographical structure 94 3.3.7. Binomial Mixed Models 98 3.4. Results 101 3.4.1. General patterns of methylation in natural populations 101 3.4.2. Heritability of methylation variation 104 3.5. Discussion 106 3.5.1. DNA methylation is structured in geographical space 106 3.5.2. DNA methylation is strongly associated with genetic background 107 3.5.3. Genome-wide methylation variation is not strongly associated with climate or host plant 109 3.5.4. There is some heritability of DNA methylation patterns 110 3.6. Conclusion 111 Appendix B: Supplementary Tables and Figures – Chapter 3 112 Chapter 4: Differential DNA methylation patterns and host plant use in Timema cristinae stick insects 121 4.1. Summary 121 4.2. Introduction 122 4.3. Material and Methods 127 VI 4.3.1. Study system 127 4.3.2. Sampling 127 4.3.3. Rearing experiment 128 4.3.4. DNA methylation variation 129 4.3.5. Genetic variation 130 4.3.6. Clustering analyses 131 4.3.7. Methylome scan: binomial mixed models 131 4.3.8. Annotation 133 4.3.9. Transcriptome 134 4.4. Results 134 4.4.1. Clustering analyses 134 4.4.2. Methylome scans 135 4.5. Discussion 140 4.5.1. Association between methylation variation and host plant 141 4.5.2. Insect allergen gene and ecological context 143 4.5.3. Evolution of insect major allergen genes 146 4.6. Conclusion 148 Appendix C: Supplementary Tables and Figures – Chapter 4 150 Chapter 5: Conclusions and future directions 159 5.1. General discussion 159 5.2. Future perspectives in ecological studies in DNA methylation 170 Appendix D: Ecology helps explain whether genes for cryptic coloration form a supergene or recombine (unpublished manuscript) 175 References 231 VII VIII Chapter 1 General introduction In his seminal book, The Origin of Species, Darwin described the perfect fit between organisms and their environment (Darwin, 1859). When the theory of natural selection and the struggle for life was developed, he did not have an idea of how variation is inherited. With the advent of genetics and the rediscovery of Mendelian laws, biologists identified the genes as a heritable basis of phenotype (Morgan, 1915). Following this, geneticists and statisticians built the foundation for much of the research in evolutionary biology today (i.e. the Modern Synthesis), establishing rigorous quantitative methods to understand adaptation and evolutionary processes as changes in gene frequencies in populations over time (Fisher, 1930; Dobzhansky, 1937; Waddington, 1939). Since then, the majority of evolutionary biology studies has used a quantitative genetics approach to understand phenotypic variation, partitioning it into genetic, environmental and genotype- environment variance. More recently, molecular and developmental sciences started to depict the mechanisms behind the relationship between genotype and environment, revealing the mechanisms of epigenetic effects (Richards et al., 2010). The term “epigenetics” was coined by Conrad Waddington to describe “the branch of biology which studies the causal interactions between genes and their products, which bring the phenotype into being” (Waddington, 1942). Although Waddington’s definition is very broad, encompassing all gene activity during the development that causes the phenotype to emerge, it was the first effort to describe events that could not be explained by existing genetic principles (Waddington, 1953; Goldberg et al., 2007). Epigenetics can be better defined as the study of molecular processes that can affect gene expression and its function without a change in the underlying DNA sequence (Richards, 2006; Bird, 2007).
Recommended publications
  • Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • De Novo Characterization of the Timema Cristinae Transcriptome Facilitates Marker Discovery and Inference of Genetic Divergence
    Molecular Ecology Resources (2012) doi: 10.1111/j.1755-0998.2012.03121.x De novo characterization of the Timema cristinae transcriptome facilitates marker discovery and inference of genetic divergence AARON A. COMEAULT,* MATHEW SOMMERS,* TANJA SCHWANDER,† C. ALEX BUERKLE,‡ TIMOTHY E. FARKAS,* PATRIK NOSIL* and THOMAS L. PARCHMAN‡ *Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80303, USA, †Center for Ecology and Evolutionary Studies, University of Groningen, 9700CC Groningen, The Netherlands, ‡Department of Botany, University of Wyoming, Laramie, WY 82071, USA Abstract Adaptation to different ecological environments can promote speciation. Although numerous examples of such ‘ecological speciation’ now exist, the genomic basis of the process, and the role of gene flow in it, remains less understood. This is, at least in part, because systems that are well characterized in terms of their ecology often lack genomic resources. In this study, we characterize the transcriptome of Timema cristinae stick insects, a system that has been researched intensively in terms of ecological speciation, but for which genomic resources have not been previously developed. Specifically, we obtained >1 million 454 sequencing readsthatassembledinto84937contigsrepresenting approximately 18 282 unique genes and tens of thousands of potential molecular markers. Second, as an illustration of their utility, we used these geno- mic resources to assess multilocus genetic divergence within both an ecotype pair and a species pair of Timema stick insects. The results suggest variable levels of genetic divergence and gene flow among taxon pairs and genes and illustrate afirststeptowardsfuturegenomicworkinTimema. Keywords: gene flow, isolation with migration, next-generation sequencing, speciation, transcriptome Received 3 November 2011; revision received 6 January 2012; accepted 13 January 2012 Introduction resources (some notable exceptions aside, such as three- spine stickleback; Peichel et al.
    [Show full text]
  • Phasmida (Stick and Leaf Insects)
    ● Phasmida (Stick and leaf insects) Class Insecta Order Phasmida Number of families 8 Photo: A leaf insect (Phyllium bioculatum) in Japan. (Photo by ©Ron Austing/Photo Researchers, Inc. Reproduced by permission.) Evolution and systematics Anareolatae. The Timematodea has only one family, the The oldest fossil specimens of Phasmida date to the Tri- Timematidae (1 genus, 21 species). These small stick insects assic period—as long ago as 225 million years. Relatively few are not typical phasmids, having the ability to jump, unlike fossil species have been found, and they include doubtful almost all other species in the order. It is questionable whether records. Occasionally a puzzle to entomologists, the Phasmida they are indeed phasmids, and phylogenetic research is not (whose name derives from a Greek word meaning “appari- conclusive. Studies relating to phylogeny are scarce and lim- tion”) comprise stick and leaf insects, generally accepted as ited in scope. The eggs of each phasmid are distinctive and orthopteroid insects. Other alternatives have been proposed, are important in classification of these insects. however. There are about 3,000 species of phasmids, although in this understudied order this number probably includes about 30% as yet unidentified synonyms (repeated descrip- Physical characteristics tions). Numerous species still await formal description. Stick insects range in length from Timema cristinae at 0.46 in (11.6 mm) to Phobaeticus kirbyi at 12.9 in (328 mm), or 21.5 Extant species usually are divided into eight families, in (546 mm) with legs outstretched. Numerous phasmid “gi- though some researchers cite just two, based on a reluctance ants” easily rank as the world’s longest insects.
    [Show full text]
  • Epigenetics Mechanisms in Insects: a Review
    Int.J.Curr.Microbiol.App.Sci (2020) 9(5): 2961-2971 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 5 (2020) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2020.905.339 Epigenetics Mechanisms in Insects: A Review U. Pirithiraj1, R. P. Soundararajan2* and C. Gailce Leo Justin1 1Anbil Dharmalingam Agricultural College and Research Institute, Tiruchirappalli-620 027, India 2Horticultural College and Research Institute (Women), Tiruchirappalli-620 027, India *Corresponding author ABSTRACT Epigenetics is the study of heritable changes in gene expression that do not involve changes in the underlying DNA sequence (or) a change in phenotype without a change in genotype. Phenotype is K e yw or ds the observable or measurable characteristics of an organism i.e., height, behaviour, colour, shape, and size. Insects are being examined for their epigenetic phenomena and the underlying mechanism Epigenetics, Insects, behind it. Epigenetics is well studied in fruit fly, Drosophila melanogaster. Gene is segments of the DNA methylation, DNA sequence that store the information to synthesize proteins or RNAs that carry out specific Histone functions. Epigenetics is important in cellular differentiation which is responsible for the phenotypic modification and plasticity. Epigenetics is been investigated in plants and animals. On comparing other organisms RNAi insects possess a high degree of phenotypic variation. This variation is due to switch on and off mechanism of gene. Gene expression and repression in insects is regulated through epigenetic Article Info mechanisms i.e. DNA Methylation, Histone modification and Noncoding RNAs which influence the Accepted: phenotypic modification.
    [Show full text]
  • Entertainment-Education in Science Education Available on Mobile Devices Interactive Tasks Allow You to Quickly Verify the Acquired Knowledge
    Entertainment-education in science education the monograph edited by Grzegorz Karwasz & Małgorzata Nodzyńska 1 2 Entertainment-education in science education the monograph edited by Grzegorz Karwasz & Małgorzata Nodzyńska TORUŃ 2017 3 The monograph edited by: Grzegorz Karwasz & Małgorzata Nodzyńska Rewievers: Cover: Ewelina Kobylańska ISBN .......... 4 Introduction Jan Amos Komensky in „Great Didactics” (Amsterdam, 1657) defined didactics not as a mere process of teaching, but as teaching efficient, lasting and pleasant. He wrote (p. 131) “The school itself should be a pleasant place, and attractive to the eye both within and without. […] If this is done, boys will, in all probability, go to school with as much pleasure as to fairs, where they always hope to see and hear something new.” Further (p. 167) Komensky added: “The desire to know and to learn should be excited in boys in every possible manner.” The idea of linking the fun with didactics finds many followers, expressed also in tittles of activities like “Science is Fun” or “Physics is Fun”. In (Karwasz, Kruk, 2012) we defined three complementary aspects of any bit of information (an exhibition object, a film, a lecture): entertainment (“ludico” in Italian), didactics, and science. The first aspect gives an impression to a student/ visitor/ listener: “how funny it is!”. The didactical aspect induces: “How simple it is!” And the aspect of scientific curiosity induces in best students a question: “How complex it is!” These three functions add-up like three basic colors to give a full spectrum of enlightenment. The entertainment function can be performed in different forms – school, extra-school, complementary to school.
    [Show full text]
  • Phasmid Studies ISSN 0966-0011 Volume 9, Numbers 1 & 2
    Phasmid Studies ISSN 0966-0011 volume 9, numbers 1 & 2. Contents Species Report PSG. 122, Anisomorpha monstrosa Hebard Paul A. Hoskisson . 1 Cigarrophasma, a new genus of stick-insect (Phasmatidae) from Australia Paul D. Brock & Jack Hasenpusch . 0 •••••• 0 ••• 0 ••••••• 4 A review of the genus Medaura Stal, 1875 (Phasmatidae: Phasmatinae), including the description of a new species from Bangladesh Paul Do Brock & Nicolas Cliquennois 11 First records and discovery of two new species of Anisomorpha Gray (Phasmida: Pseudophasmatidae) in Haiti and Dominican Republic Daniel E. Perez-Gelabert 0 .. .. 0 • • • • • • 0 • • • • 0 • • 0 • 0 • • 0 0 • • • 27 Species report on Pharnacia biceps Redtenbacher, PSG 203 Wim Potvin 0 ••• 28 How Anisomorpha got its stripes? Paul Hoskisson . 33 Reviews and Abstracts Book Reviews . 35 Phasmid Abstracts 38 Cover illustr ation : Orthonecroscia pulcherrima Kirby, drawing by PoE. Bragg. Species Report PSG. 122, Anisomorpha monstrosa Hebard Paul A. Hoskisson, School of Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, 13 3AF, UK. With illustrations by P.E. Bragg. Abstract This report summarises the care and breeding of Anisomorpha monstrosa Hebard, the largest species in the genus. Behaviour and defence mechanism are also discussed along with descriptions of the eggs, nymphs, and adults. Key words Phasmida, Anisomorpha monstrosa, Pseudophasmatinae, Rearing, Distribution, Defence. Taxonomy Anisomorpha monstrosa belongs to the sub-family Pseudophasmatinae. It was described in 1932 by Hebard (1932: 214) and is the largest species in the genus. The type specimen is a female collected from Merida, in Yucatan, Mexico. Culture History The original culture of this species was collected in Belize, approximately 150km north of Belize City by Jan Meerman in 1993 or 1994 (D'Hulster, personal communication).
    [Show full text]
  • DNA Methylation Suppresses Chitin Degradation and Promotes the Wing
    Xu et al. Epigenetics & Chromatin (2020) 13:34 https://doi.org/10.1186/s13072-020-00356-6 Epigenetics & Chromatin RESEARCH Open Access DNA methylation suppresses chitin degradation and promotes the wing development by inhibiting Bmara-mediated chitinase expression in the silkworm, Bombyx mori Guanfeng Xu1,2†, Yangqin Yi1,2†, Hao Lyu1,2, Chengcheng Gong1,2, Qili Feng1,2, Qisheng Song3, Xuezhen Peng1,2, Lin Liu1,2 and Sichun Zheng1,2* Abstract Background: DNA methylation, as an essential epigenetic modifcation found in mammals and plants, has been implicated to play an important role in insect reproduction. However, the functional role and the regulatory mecha- nism of DNA methylation during insect organ or tissue development are far from being clear. Results: Here, we found that DNA methylation inhibitor (5-aza-dC) treatment in newly molted pupae decreased the chitin content of pupal wing discs and adult wings and resulted in wing deformity of Bombyx mori. Transcriptome analysis revealed that the up-regulation of chitinase 10 (BmCHT10) gene might be related to the decrease of chitin content induced by 5-aza-dC treatment. Further, the luciferase activity assays demonstrated that DNA methylation suppressed the promoter activity of BmCHT10 by down-regulating the transcription factor, homeobox protein arau- can (Bmara). Electrophoretic mobility shift assay, DNA pull-down and chromatin immunoprecipitation demonstrated that Bmara directly bound to the BmCHT10 promoter. Therefore, DNA methylation is involved in keeping the structural integrity of the silkworm wings from unwanted chitin degradation, as a consequence, it promotes the wing develop- ment of B. mori. Conclusions: This study reveals that DNA methylation plays an important role in the wing development of B.
    [Show full text]
  • Could Medauroidea Extradentata (Brunner Von Wattenwyl 1907) Survive in Provence (France)? Gabriel Olive, Gilles Olive
    Could Medauroidea extradentata (Brunner von Wattenwyl 1907) survive in Provence (France)? Gabriel Olive, Gilles Olive To cite this version: Gabriel Olive, Gilles Olive. Could Medauroidea extradentata (Brunner von Wattenwyl 1907) survive in Provence (France)?. Phasmid Studies, Phasmid Studies Group, 2019, 20, pp.4-14. hal-01995824 HAL Id: hal-01995824 https://hal.archives-ouvertes.fr/hal-01995824 Submitted on 27 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phasmid Studies 20 Could Medauroidea extradentata (Brunner von Wattenwyl 1907) survive in Provence (France)? Gabriel Olive and Gilles Olive École Industrielle et Commerciale de la Ville de Namur, Laboratoire C2A, 2B, Rue Pépin, B-5000 Namur, Belgium. [email protected] Abstract Several cases of accidental introduction of insects far away from their biotope have already been re- ported. Could Medauroidea extradentata, a stick insect originally from the district of Annam, Viet- nam, survive in Provence (France)? To answer this question, two sets of experiments were performed. In the first one, specimens were put together with five plants growing only in the Mediterranean areas (bear’s breeches (Acanthus mollis), almond tree (Prunus dulcis), fig blanche d’Argenteuil variety (Ficus carica), fig violette de Solliès variety (Ficus carica), olive (Olea europaea), Aleppo pine (Pinus halepensis)) to investigate their adaptability to these diets.
    [Show full text]
  • Analysis of the Stick Insect (Clitarchus Hookeri) Genome Reveals a High Repeat Content and Sex- Biased Genes Associated with Reproduction Chen Wu1,2,3* , Victoria G
    Wu et al. BMC Genomics (2017) 18:884 DOI 10.1186/s12864-017-4245-x RESEARCH ARTICLE Open Access Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex- biased genes associated with reproduction Chen Wu1,2,3* , Victoria G. Twort1,2,4, Ross N. Crowhurst3, Richard D. Newcomb1,3 and Thomas R. Buckley1,2 Abstract Background: Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only thegenomeofTimema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. Results: The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria,the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly.
    [Show full text]
  • 10 Walking Sticks: Natural Selection for Cryptic Coloration on Different Host Plants
    Case Studies in Ecology and Evolution DRAFT 10 Walking sticks: natural selection for cryptic coloration on different host plants While she was a graduate student at the University of California, Christina Sandoval discovered a new species of insect. Timema christinae is an inconspicuous stick insect that lives in the chaparral of Southern California. It is only about 2 cm long and it feeds mostly at night. During the day it remains still and hides by mimicking the branches and leaves of its host plant. Because they are such good mimics of the host plants they feed on they are called “stick insects” or “walking sticks”. Eggs hatch on ground and young climb into a nearby host plant. Sometimes they never leave that single plant. Despite their inactivity, Sandoval noticed some very interesting differences between the insects. There were two color types. Some of the walking sticks were plain green while the others had a long white stripe on their http://paradisereserve.ucnrs.org/Timem a.html back. Moreover, those two color morphs were associated with two different species of host plant, with one type found on one host plant and the other on the second host. One of the first possibilities she considered was that the two forms were different species. Sandoval brought them back to the lab and found that the two types could interbreed freely, which showed that they were simply color variants of a single species of walking stick. Why, then, were there two colors types? Why were they segregated on different host plant species? She suspected that this was an example of natural selection at work.
    [Show full text]
  • Classification: Phamatodea
    NOMINA INSECTA NEARCTICA 637 CLASSIFICATION The primary data comes from unpublished database files of the author. The classification is based on: Bradley, J.D., and B.S. Galil. 1977. The taxonomic arrangement of the Phasmatodea with keys to the subfamilies and tribes. Proceedings of the Entomological Society of Washington, 79:176-208. HETERONEMIIDAE Heteronemiinae: Diapheromera, Manomera, Megaphasma, Pseudosermyle, Sermyle. Pachymorphinae: Parabacillus. PHASMATIDAE Cladomorphinae: Aplopus. TIMEMATIDAE Timema. PSEUDOPHASMATIDAE Pseudophasmatinae: Anisomorpha. Family # Names # Valid Heteronemiidae 29 20 Phasmatidae 1 1 Pseudophasmatidae 5 2 Timematidae 10 10 Total 45 33 PHASMATODEA 638 NOMINA INSECTA NEARCTICA HETERONEMIIDAE Anisomorpha Gray 1835 Anisomorpha buprestoides Stoll 1813 (Phasma) Diapheromera Gray 1835 Phasma vermicularis Stoll 1813 Syn. Spectrum bivittatum Say 1828 Syn. Diapheromera arizonensis Caudell 1903 (Diapheromera) Phasma calamus Burmeister 1838 Syn. Diapheromera carolina Scudder 1901 (Diapheromera) Anisomorpha ferruginea Beauvois 1805 (Phasma) Diapheromera covilleae Rehn and Hebard 1909 (Diapheromera) Diapheromera femoratum Say 1824 (Spectrum) Diapheromera sayi Gray 1835 Syn. Bacunculus laevissimus Brunner 1907 Syn. Diapheromera persimilis Caudell 1904 (Diapheromera) TIMEMATIDAE Bacunculus texanus Brunner 1907 Syn. Diapheromera dolichocephala Brunner 1907 Syn. Diapheromera tamaulipensis Rehn 1909 (Diapheromera) Diapheromera torquata Hebard 1934 (Diapheromera) Timema Scudder 1895 Diapheromera velii Walsh 1864 (Diapheromera)
    [Show full text]