LEIJA-DISSERTATION-2016.Pdf (6.118Mb)

Total Page:16

File Type:pdf, Size:1020Kb

LEIJA-DISSERTATION-2016.Pdf (6.118Mb) IDENTIFICATION AND CHARACTERIZATION OF DRUG TARGETS IN THE PYRIMIDINE AND PURINE PATHWAYS OF TRYPANOSOMA BRUCEI APPROVED BY SUPERVISORY COMMITTEE Margaret Phillips, Ph.D. Richard Bruick, Ph.D. Benjamin Tu, Ph.D. Jennifer Kohler, Ph.D. Michael Reese, Ph.D. DEDICATION To my parents Guillermo and Lonnie, and grandparents Luis and Juana, for a lifetime of encouragement and support. My wife Alli, for all the love and support throughout this endeavor. IDENTIFICATION AND CHARACTERIZATION OF DRUG TARGETS IN THE PYRIMIDINE AND PURINE PATHWAYS OF TRYPANOSOMA BRUCEI by CHRISTOPHER LUIS LEIJA DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas December, 2016 Copyright by Christopher Luis Leija 2016 All Rights Reserved IDENTIFICATION AND CHARACTERIZATION OF DRUG TARGETS IN THE PYRIMIDINE AND PURINE PATHWAYS OF TRYPANOSOMA BRUCEI Christopher Luis Leija, Ph.D. The University of Texas Southwestern Medical Center at Dallas, 2016 Supervising Professor: Margaret A. Phillips, Ph.D. The single-celled extracellular parasite Trypanosoma brucei causes Human African Trypanosomiasis (HAT), which is fatal if untreated. Current therapies result in severe side effects and require complex treatment regimens. In an effort to spur the development of effective, safe, and simple to administer drugs, my work sought to identify and characterize novel drug targets in the parasite pyrimidine and purine pathways. The pyrimidine de novo biosynthetic pathway has been well characterized, however little work had been done to evaluate the importance of pyrimidine salvage enzymes. Specifically, my research validates the essentiality two seemingly redundant enzymes: thymidine kinase (TK) and cytidine v deaminase (CDA). Using a combination of genetic and analytical techniques, a novel pathway linking cytosine and thymine nucleotides was discovered. This pathway is composed of the salvage enzymes TK and CDA in addition to a newly discovered 5’- nucleotidase. I demonstrate that the function of this pathway is to convert de novo synthesized cytosine deoxynucleotides into the deoxycytidine, which is ultimately converted to thymine deoxynucleotides. The vital role for TK in bridging pyrimidine nucleotide pools may represent a shared vulnerability unique to kinetoplastids, providing an opportunity to target multiple human pathogens. In contrast to the pyrimidine pathway, the parasite lacks the ability to generate purine nucleotides de novo. As a consequence, they are dependent on the salvage of purine nucleosides/bases from the host through a redundant and interconnected network of purine salvage and interconversion enzymes. In theory, any single precursor is capable of sustaining the formation of all purine nucleotides. We demonstrate that strategic inhibition of key metabolic routes circumvents the redundant nature of this pathway. The enzyme guanosine- 5’-monophosphate synthase (GMPS) catalyzes the formation of GMP from xanthosine-5’- monophosphate. The generation of a GMPS null cell line restricts the parasite to the salvage of guanine to maintain GMP nucleotide pools, which is only viable in supraphysiological concentrations of guanine. Using a similar approach, we also genetically validated the essentiality of adenylosuccinate lyase (ADSL), which catalyzes the formation of AMP and fumarate from adenylosuccinate. In this case, depletion of this enzyme is lethal in all conditions. These two novel drug targets offer a solution to bypassing the redundancy in the purine pathway for the development of anti-trypanosomal therapies. TABLE OF CONTENTS TITLE-FLY ............................................................................................................................. i DEDICATION ....................................................................................................................... ii TITLE PAGE ........................................................................................................................ iii COPYRIGHT ......................................................................................................................... iv ABSTRACT ........................................................................................................................... v TABLE OF CONTENTS ....................................................................................................... vii PRIOR PUBLICATIONS ....................................................................................................... ix LIST OF FIGURES AND TABLES....................................................................................... x LIST OF ABBREVIATIONS ............................................................................................... xiv CHAPTER 1 INTRODUCTION ................................................................................................................ 1 HUMAN AFRICAN TRYPANOSOMIASIS ................................................................. 2 CURRENT TREATMENTS ........................................................................................... 3 PYRIMIDINE PATHWAY ............................................................................................. 4 PURINE PATHWAY ...................................................................................................... 6 RESEARCH GOALS ...................................................................................................... 9 CHAPTER 2 PYRIMIDINE SALVAGE ENZYMES ARE ESSENTIAL FOR DE NOVO BIOSYNTHESIS OF DEOXYPYRIMIDINE NUCLEOTIDES ................................... 13 INTRODUCTION ......................................................................................................... 14 MATERIALS AND METHODS ................................................................................... 15 RESULTS ...................................................................................................................... 28 CONCLUSIONS ............................................................................................................ 40 CHAPTER 3 GMP SYNTHASE IS ESSENTIAL FOR VIABILITY AND INFECTIVITY OF T. BRUCEI DESPITE A REDUNDANT PURINE SALVAGE PATHWAY ................ 74 INTRODUCTION ......................................................................................................... 75 MATERIALS AND METHODS ................................................................................... 76 RESULTS ...................................................................................................................... 87 CONCLUSIONS ............................................................................................................ 95 CHAPTER 4 GENETIC VALIDATION OF ADENYLOSUCCINATE LYASE ESSENTIALITY AND KINETIC CHARACTERIZATION ..................................................................... 113 INTRODUCTION ....................................................................................................... 114 MATERIALS AND METHODS ................................................................................. 115 RESULTS .................................................................................................................... 119 CONCLUSIONS ........................................................................................................... 122 CHAPTER 5 PERSPECTIVES .............................................................................................................. 133 REFERENCES .................................................................................................................. 140 PRIOR PUBLICATIONS Leija C, Rijo-Ferreira F, Kinch LN, Grishin NV, Nischan N, et al. (2016) Pyrimidine Salvage Enzymes Are Essential for De Novo Biosynthesis of Deoxypyrimidine Nucleotides in Trypanosoma brucei. PLoS Pathog 12(11): e1006010. doi: 10.1371/journal.ppat.1006010 Li, Q.*, Leija, C.*, Rijo-Ferreira, F., Chen, J., Cestari, I., Stuart, K., Tu, B. P. and Phillips, M. A. (2015), GMP synthase is essential for viability and infectivity of Trypanosoma brucei despite a redundant purine salvage pathway. Molecular Microbiology, 97: 1006–1020. *Equal contribution Nguyen, S., Leija, C., Kinch, L., Regmi, S., Li, Q., Grishin, N.V., Phillips, M.A. (2015), Deoxyhypusine Modification of Eukaryotic Translation Initiation Factor 5A (eIF5A) Is Essential for Trypanosoma brucei Growth and for Expression of Polyprolyl-containing Proteins. Journal of Biological Chemistry, 290(32):199987-98 ix LIST OF FIGURES FIGURE 1.1 T. brucei pyrimidine pathway ......................................................................... 10 FIGURE 1.2 T. brucei purine pathway ............................................................................... 11 FIGURE 2.1 PCR analysis confirms replacement of tk alleles with selectable markers..... 46 FIGURE 2.2 TK is essential for in vitro growth and infectivity in mice ............................. 48 FIGURE 2.3 Infection of mice with TK c-null cells and wild-type SM cells...................... 48 FIGURE 2.4 Catalytically active TK is required to rescue the TK RNAi growth phenotype .. 49 FIGURE 2.5 Growth analysis of TK RNAi cells (±Tet) expressing Tet regulated HsvTK grown in parallel with the TK RNAi control (±Tet). ............................................................. 50 FIGURE
Recommended publications
  • Wo 2010/075007 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075007 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) G06F 19/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/12 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/067757 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 11 December 2009 ( 11.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/3 16,877 16 December 2008 (16.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): DODDS, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, W., Jean [US/US]; 938 Stanford Street, Santa Monica, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, CA 90403 (US).
    [Show full text]
  • Table 1. Identified Proteins with Expression Significantly Altered in the Hippocampus of Rats of Exposed Group (Pb) Vs
    Table 1. Identified proteins with expression significantly altered in the hippocampus of rats of exposed group (Pb) vs. Control. Fold Change Accession Id a Protein Description Score Pb P35213 14-3-3 protein beta/alpha 85420 −0.835 P62260 14-3-3 protein epsilon 96570 −0.878 P68511 14-3-3 protein eta 85420 −0.844 P68255 14-3-3 protein theta 85420 −0.835 P63102 14-3-3 protein zeta/delta 105051 −0.803 P13233 2',3'-cyclic-nucleotide 3'-phosphodiesterase 151400 1.405 P68035 Actin, alpha cardiac muscle 1 442584 −0.942 P68136 Actin, alpha skeletal muscle 441060 −0.970 P62738 Actin, aortic smooth muscle 438270 −0.970 P60711 Actin, cytoplasmic 1 630104 −0.942 P63259 Actin, cytoplasmic 2 630104 −0.942 P63269 Actin, gamma-enteric smooth muscle 438270 −0.951 Q05962 ADP/ATP translocase 1 60100 −0.554 Q09073 ADP/ATP translocase 2 49102 −0.482 P84079 ADP-ribosylation factor 1 34675 −0.644 P84082 ADP-ribosylation factor 2 22412 −0.644 P61206 ADP-ribosylation factor 3 34675 −0.619 P61751 ADP-ribosylation factor 4 22412 −0.670 P84083 ADP-ribosylation factor 5 22412 −0.625 P04764 Alpha-enolase 46219 −0.951 P23565 Alpha-internexin 9478 1.062 P37377 Alpha-synuclein 89619 −0.771 P13221 Aspartate aminotransferase, cytoplasmic 23661 1.083 P00507 Aspartate aminotransferase, mitochondrial 46049 1.116 P10719 ATP synthase subunit beta, mitochondrial 232442 −0.835 P85969 Beta-soluble NSF attachment protein 9638 1.419 Q63754 Beta-synuclein 66842 −0.779 P11275 Calcium/calmodulin-dependent protein kinase type II subunit alpha 181954 1.105 P08413 Calcium/calmodulin-dependent protein kinase type II subunit beta 80840 1.127 P15791 Calcium/calmodulin-dependent protein kinase type II subunit delta 62682 1.105 Int.
    [Show full text]
  • Contig Protein Description Symbol Anterior Posterior Ratio
    Table S2. List of proteins detected in anterior and posterior intestine pooled samples. Data on protein expression are mean ± SEM of 4 pools fed the experimental diets. The number of the contig in the Sea Bream Database (http://nutrigroup-iats.org/seabreamdb) is indicated. Contig Protein Description Symbol Anterior Posterior Ratio Ant/Pos C2_6629 1,4-alpha-glucan-branching enzyme GBE1 0.88±0.1 0.91±0.03 0.98 C2_4764 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 0.74±0.09 0.71±0.05 1.03 C2_299 14-3-3 protein beta/alpha-1 YWHAB 1.45±0.23 2.18±0.09 0.67 C2_268 14-3-3 protein epsilon YWHAE 1.28±0.2 2.01±0.13 0.63 C2_2474 14-3-3 protein gamma-1 YWHAG 1.8±0.41 2.72±0.09 0.66 C2_1017 14-3-3 protein zeta YWHAZ 1.33±0.14 4.41±0.38 0.30 C2_34474 14-3-3-like protein 2 YWHAQ 1.3±0.11 1.85±0.13 0.70 C2_4902 17-beta-hydroxysteroid dehydrogenase 14 HSD17B14 0.93±0.05 2.33±0.09 0.40 C2_3100 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 ABHD5 0.85±0.07 0.78±0.13 1.10 C2_15440 1-phosphatidylinositol phosphodiesterase PLCD1 0.65±0.12 0.4±0.06 1.65 C2_12986 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 PLCD1 0.76±0.08 1.15±0.16 0.66 C2_4412 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 PLCG2 1.13±0.08 2.08±0.27 0.54 C2_3170 2,4-dienoyl-CoA reductase, mitochondrial DECR1 1.16±0.1 0.83±0.03 1.39 C2_1520 26S protease regulatory subunit 10B PSMC6 1.37±0.21 1.43±0.04 0.96 C2_4264 26S protease regulatory subunit 4 PSMC1 1.2±0.2 1.78±0.08 0.68 C2_1666 26S protease regulatory subunit 6A PSMC3 1.44±0.24 1.61±0.08
    [Show full text]
  • Serum Albumin OS=Homo Sapiens
    Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0088532 A1 Alitalo Et Al
    US 20060O88532A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0088532 A1 Alitalo et al. (43) Pub. Date: Apr. 27, 2006 (54) LYMPHATIC AND BLOOD ENDOTHELIAL Related U.S. Application Data CELL GENES (60) Provisional application No. 60/363,019, filed on Mar. (76) Inventors: Kari Alitalo, Helsinki (FI); Taija 7, 2002. Makinen, Helsinki (FI); Tatiana Petrova, Helsinki (FI); Pipsa Publication Classification Saharinen, Helsinki (FI); Juha Saharinen, Helsinki (FI) (51) Int. Cl. A6IR 48/00 (2006.01) Correspondence Address: A 6LX 39/395 (2006.01) MARSHALL, GERSTEIN & BORUN LLP A6II 38/18 (2006.01) 233 S. WACKER DRIVE, SUITE 6300 (52) U.S. Cl. .............................. 424/145.1: 514/2: 514/44 SEARS TOWER (57) ABSTRACT CHICAGO, IL 60606 (US) The invention provides polynucleotides and genes that are (21) Appl. No.: 10/505,928 differentially expressed in lymphatic versus blood vascular endothelial cells. These genes are useful for treating diseases (22) PCT Filed: Mar. 7, 2003 involving lymphatic vessels, such as lymphedema, various inflammatory diseases, and cancer metastasis via the lym (86). PCT No.: PCT/USO3FO6900 phatic system. Patent Application Publication Apr. 27, 2006 Sheet 1 of 2 US 2006/0088532 A1 integrin O9 integrin O1 KIAAO711 KAAO644 ApoD Fig. 1 Patent Application Publication Apr. 27, 2006 Sheet 2 of 2 US 2006/0088532 A1 CN g uueleo-gº US 2006/0O88532 A1 Apr. 27, 2006 LYMPHATIC AND BLOOD ENDOTHELLAL CELL lymphatic vessels, such as lymphangiomas or lymphang GENES iectasis. Witte, et al., Regulation of Angiogenesis (eds. Goldber, I. D. & Rosen, E. M.) 65-112 (Birkauser, Basel, BACKGROUND OF THE INVENTION Switzerland, 1997).
    [Show full text]
  • Antiviral Defense Via Nucleotide Depletion in Bacteria
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441389; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Antiviral defense via nucleotide depletion in bacteria Nitzan Tal1, Adi Millman1, Avigail Stokar-Avihail1, Taya Fedorenko1, Azita Leavitt1, Sarah Melamed1, Erez Yirmiya1, Carmel Avraham1, Gil Amitai1, Rotem Sorek1,# 1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel # Corresponding author: [email protected] Abstract DNA viruses and retroviruses need to consume large quantities of deoxynucleotides (dNTPs) when replicating within infected cells. The human antiviral factor SAMHD1 takes advantage of this vulnerability in the viral life cycle, and inhibits viral replication by degrading dNTPs into their constituent deoxynucleosides and inorganic phosphate. In this study we report that bacteria employ a similar strategy to defend against phage infection. We found a family of defensive dCTP deaminase proteins that, in response to phage infection, convert dCTP into deoxy-uracil nucleotides. A second family of phage resistance genes encode dGTPase enzymes, which degrade dGTP into phosphate-free deoxy- guanosine (dG) and are distant homologs of the human SAMHD1. Our results show that the defensive proteins completely eliminate the specific deoxynucleotide (either dCTP or dGTP) from the nucleotide pool during phage infection, thus starving the phage of an essential DNA building block and halting its replication. Both defensive genes are found in a diverse set of bacterial species and are specifically enriched in Vibrio genomes. Our study demonstrates that manipulation of the deoxynucleotide pool is a potent antiviral strategy shared by both prokaryotes and eukaryotes.
    [Show full text]
  • 1/05661 1 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... - 12 May 2011 (12.05.2011) W 2 11/05661 1 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/00 (2006.0 1) C12Q 1/48 (2006.0 1) kind of national protection available): AE, AG, AL, AM, C12Q 1/42 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 10/054171 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 26 October 2010 (26.10.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/255,068 26 October 2009 (26.10.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, MYREXIS, INC.
    [Show full text]
  • Rabbit Anti-Human TK1 Polyclonal Antibody (CABT-L2019) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Rabbit Anti-Human TK1 Polyclonal Antibody (CABT-L2019) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Polyclonal Antibody to Thymidine Kinase 1, Soluble (Knockout Validated) Specificity The antibody is a rabbit polyclonal antibody raised against TK1. It has been selected for its ability to recognize TK1 in immunohistochemical staining and western blotting. Target TK1 Immunogen Recombinant fragment corresponding to human TK1 (Ser2~Asn234) Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Antigen-specific affinity chromatography followed by Protein A affinity chromatography Conjugate Unconjugated Applications WB Format Liquid Concentration Lot specific Size 200 μg Buffer Supplied as solution form in 0.01M PBS with 50% glycerol, pH7.4. Preservative 0.05% Proclin-300 Storage Avoid repeated freeze/thaw cycles. Store at 4°C for frequent use. Aliquot and store at -20°C for 12 months. Ship 4°C with ice bags Warnings For research use only. BACKGROUND 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Introduction TK1 Belongs to the thymidine kinase family. Keywords TK2;Thymidine kinase, cytosolic GENE INFORMATION Gene Name TK1 thymidine kinase 1, soluble [ Homo sapiens (human) ] Official Symbol TK1 Synonyms TK1; thymidine kinase 1, soluble; TK2; thymidine kinase, cytosolic; thymidine kinase-1; thymidine kinase 1 soluble isoform; Entrez Gene ID 7083
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • Role of the HPRG Component of Striated Muscle AMP Deaminase in the Stability and Cellular Behaviour of the Enzyme
    biomolecules Review Role of the HPRG Component of Striated Muscle AMP Deaminase in the Stability and Cellular Behaviour of the Enzyme Francesca Ronca * and Antonio Raggi Laboratory of Biochemistry, Department of Pathology, University of Pisa, via Roma 55, 56126 Pisa, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-050-2218-273; Fax: +39-050-2218-660 Received: 19 July 2018; Accepted: 20 August 2018; Published: 23 August 2018 Abstract: Multiple muscle-specific isoforms of the Zn2+ metalloenzyme AMP deaminase (AMPD) have been identified based on their biochemical and genetic differences. Our previous observations suggested that the metal binding protein histidine-proline-rich glycoprotein (HPRG) participates in the assembly and maintenance of skeletal muscle AMP deaminase (AMPD1) by acting as a zinc chaperone. The evidence of a role of millimolar-strength phosphate in stabilizing the AMPD-HPRG complex of both AMPD1 and cardiac AMP deaminase (AMPD3) is suggestive of a physiological mutual dependence between the two subunit components with regard to the stability of the two isoforms of striated muscle AMPD. The observed influence of the HPRG content on the catalytic behavior of the two enzymes further strengthens this hypothesis. Based on the preferential localization of HPRG at the sarcomeric I-band and on the presence of a Zn2+ binding motif in the N-terminal regions of fast TnT and of the AMPD1 catalytic subunit, we advance the hypothesis that the Zn binding properties of HPRG could promote the association of AMPD1 to the thin filament. Keywords: AMP deaminase (AMPD); histidine-proline-rich glycoprotein (HPRG); striated muscle; Troponin T (TnT) 1.
    [Show full text]
  • The Metabolic Building Blocks of a Minimal Cell Supplementary
    The metabolic building blocks of a minimal cell Mariana Reyes-Prieto, Rosario Gil, Mercè Llabrés, Pere Palmer and Andrés Moya Supplementary material. Table S1. List of enzymes and reactions modified from Gabaldon et. al. (2007). n.i.: non identified. E.C. Name Reaction Gil et. al. 2004 Glass et. al. 2006 number 2.7.1.69 phosphotransferase system glc + pep → g6p + pyr PTS MG041, 069, 429 5.3.1.9 glucose-6-phosphate isomerase g6p ↔ f6p PGI MG111 2.7.1.11 6-phosphofructokinase f6p + atp → fbp + adp PFK MG215 4.1.2.13 fructose-1,6-bisphosphate aldolase fbp ↔ gdp + dhp FBA MG023 5.3.1.1 triose-phosphate isomerase gdp ↔ dhp TPI MG431 glyceraldehyde-3-phosphate gdp + nad + p ↔ bpg + 1.2.1.12 GAP MG301 dehydrogenase nadh 2.7.2.3 phosphoglycerate kinase bpg + adp ↔ 3pg + atp PGK MG300 5.4.2.1 phosphoglycerate mutase 3pg ↔ 2pg GPM MG430 4.2.1.11 enolase 2pg ↔ pep ENO MG407 2.7.1.40 pyruvate kinase pep + adp → pyr + atp PYK MG216 1.1.1.27 lactate dehydrogenase pyr + nadh ↔ lac + nad LDH MG460 1.1.1.94 sn-glycerol-3-phosphate dehydrogenase dhp + nadh → g3p + nad GPS n.i. 2.3.1.15 sn-glycerol-3-phosphate acyltransferase g3p + pal → mag PLSb n.i. 2.3.1.51 1-acyl-sn-glycerol-3-phosphate mag + pal → dag PLSc MG212 acyltransferase 2.7.7.41 phosphatidate cytidyltransferase dag + ctp → cdp-dag + pp CDS MG437 cdp-dag + ser → pser + 2.7.8.8 phosphatidylserine synthase PSS n.i. cmp 4.1.1.65 phosphatidylserine decarboxylase pser → peta PSD n.i.
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]