Fire Regimes in Eastern Coastal Fynbos

Total Page:16

File Type:pdf, Size:1020Kb

Fire Regimes in Eastern Coastal Fynbos Fire regimes in eastern coastal fynbos: drivers, ecology and management by Tineke Kraaij Submitted in fulfilment/partial fulfilment of the requirements for the degree of Doctorate in Philosophy in the Faculty of Science at the Nelson Mandela Metropolitan University August 2012 Promotor: Prof. R.M. Cowling Co-promotor: Dr B.W. van Wilgen Declaration I, Tineke Kraaij, student number 211211583, hereby declare that the thesis for Doctorate of Philosophy is my own work and that it has not previously been submitted for assessment or completion of any postgraduate qualification to another University or for another qualification. I am now presenting the thesis for examination for the degree of Doctorate of Philosophy. Tineke Kraaij Table of Contents Abstract ..................................................................................................................................... 5 Acknowledgements .................................................................................................................... 7 List of Tables .............................................................................................................................. 9 List of Figures ........................................................................................................................... 10 Introduction ............................................................................................................................. 11 References ................................................................................................................................................... 13 CHAPTER 1 – Past approaches and future challenges to the management of fire and invasive alien plants in the new Garden Route National Park ................................................................. 15 Abstract ....................................................................................................................................................... 15 Introduction ................................................................................................................................................. 16 The Garden Route mountain catchments ................................................................................................... 17 Management challenges ............................................................................................................................. 29 Way forward ................................................................................................................................................ 31 Conclusion ................................................................................................................................................... 34 Acknowledgements ..................................................................................................................................... 35 References ................................................................................................................................................... 35 CHAPTER 2 – Historical fire regimes in a poorly-understood, fire-prone ecosystem: eastern coastal fynbos .......................................................................................................................... 42 Abstract ....................................................................................................................................................... 42 Introduction ................................................................................................................................................. 42 Methods ...................................................................................................................................................... 44 Results ......................................................................................................................................................... 49 Discussion .................................................................................................................................................... 54 Acknowledgements ..................................................................................................................................... 59 References ................................................................................................................................................... 59 CHAPTER 3 – Lightning and fire weather in eastern coastal fynbos shrublands: seasonality and long-term trends ...................................................................................................................... 65 Abstract ....................................................................................................................................................... 65 Introduction ................................................................................................................................................. 65 Methods ...................................................................................................................................................... 67 Results and Discussion ................................................................................................................................. 69 Acknowledgements ..................................................................................................................................... 76 References ................................................................................................................................................... 76 CHAPTER 4 – Proteaceae juvenile periods and post-fire recruitment as indicators of minimum fire return interval in eastern coastal fynbos ............................................................................ 80 Abstract ....................................................................................................................................................... 80 Introduction ................................................................................................................................................. 81 Methods ...................................................................................................................................................... 82 Results ......................................................................................................................................................... 85 Discussion .................................................................................................................................................... 89 Acknowledgements ..................................................................................................................................... 94 References ................................................................................................................................................... 94 CHAPTER 5 – Vegetation responses to season of fire in an aseasonal, fire-prone environment and implications for management ................................................................................................. 101 Abstract ..................................................................................................................................................... 101 Introduction ............................................................................................................................................... 102 Materials and methods ............................................................................................................................. 103 Results ....................................................................................................................................................... 107 Discussion .................................................................................................................................................. 112 Acknowledgements ................................................................................................................................... 117 References ................................................................................................................................................. 118 CHAPTER 6 – Fire regimes in eastern coastal fynbos: imperatives and thresholds in managing for diversity ................................................................................................................................. 123 Abstract ..................................................................................................................................................... 123 Introduction ............................................................................................................................................... 123 Study area .................................................................................................................................................. 125 Fire regimes in eastern coastal fynbos ...................................................................................................... 125 East-west comparisons at study area- and Cape Floral Kingdom-scales................................................... 126 Managing fire for biodiversity conservation: ecological thresholds ......................................................... 127 Fire management approach: operational considerations ......................................................................... 133 Future research
Recommended publications
  • Herpetofaunal Survey of the Ongeluksnek (Malekgalonyane) Nature Reserve in the Foothills of the Drakensberg, Eastern Cape Province, South Africa
    Herpetology Notes, volume 13: 717-730 (2020) (published online on 25 August 2020) Herpetofaunal survey of the Ongeluksnek (Malekgalonyane) Nature Reserve in the foothills of the Drakensberg, Eastern Cape Province, South Africa Werner Conradie1,2,* Brian Reeves3, Sandile Mdoko3, Lwandiso Pamla3, and Oyama Gxabhu3 Abstract. The results of a herpetofaunal survey of Ongeluksnek Nature Reserve, Eastern Cape Province, South Africa are presented here. Combination of visual encounter survey methods and standard Y-shape trap arrays were used to conduct the survey. A total of 26 species (eight amphibians and 18 reptiles) were recorded, representing 29 quarter-degree grid cell records, of which 62% represented the first records for these units. Furthermore, we document the presence of three species of snakes (Crotaphopeltis hotamboeia, Hemachatus haemachatus and Homoroselaps lacteus) for the first time for the whole degree square of 3028 (approx. 100 km2). This study highlights the need to survey poorly known regions to enable us to understand and document the full distributional extent of species. We also discuss the impact of uncontrolled fires on the absence of grassland specialised species during our survey. Keywords. Amphibia, Reptilia, karroid, conservation, biodiversity, fire Introduction has been done in the southern and western regions (e.g. Branch and Braack, 1987), while the northern and The herpetofaunal richness of South Africa is central areas associated with the former homelands of considered to be amongst the highest in the world the Ciskei and Transkei remained poorly surveyed. In (Branch, 1998; Bates et al., 2014; Du Preez and recent years a series of rapid biodiversity studies has Carruthers, 2017; Tolley et al., 2019).
    [Show full text]
  • Download Document
    African countries and neighbouring islands covered by the Synopsis. S T R E L I T Z I A 23 Synopsis of the Lycopodiophyta and Pteridophyta of Africa, Madagascar and neighbouring islands by J.P. Roux Pretoria 2009 S T R E L I T Z I A This series has replaced Memoirs of the Botanical Survey of South Africa and Annals of the Kirstenbosch Botanic Gardens which SANBI inherited from its predecessor organisations. The plant genus Strelitzia occurs naturally in the eastern parts of southern Africa. It comprises three arborescent species, known as wild bananas, and two acaulescent species, known as crane flowers or bird-of-paradise flowers. The logo of the South African National Biodiversity Institute is based on the striking inflorescence of Strelitzia reginae, a native of the Eastern Cape and KwaZulu-Natal that has become a garden favourite worldwide. It sym- bolises the commitment of the Institute to champion the exploration, conservation, sustain- able use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. J.P. Roux South African National Biodiversity Institute, Compton Herbarium, Cape Town SCIENTIFIC EDITOR: Gerrit Germishuizen TECHNICAL EDITOR: Emsie du Plessis DESIGN & LAYOUT: Elizma Fouché COVER DESIGN: Elizma Fouché, incorporating Blechnum palmiforme on Gough Island PHOTOGRAPHS J.P. Roux Citing this publication ROUX, J.P. 2009. Synopsis of the Lycopodiophyta and Pteridophyta of Africa, Madagascar and neighbouring islands. Strelitzia 23. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-48-8 © Published by: South African National Biodiversity Institute. Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa.
    [Show full text]
  • 3.2. Regulatory Hierarchy for Energy Generation Projects
    PROPOSED TSITSIKAMMA COMMUNITY WIND ENERGY FACILITY, EASTERN CAPE PROVINCE Draft Environmental Impact Assessment Report September 2011 3.2. Regulatory Hierarchy for Energy Generation Projects The South African energy industry is evolving rapidly, with regular changes to legislation and industry role-players. The regulatory hierarchy for an energy generation project of this nature consists of three tiers of authority who exercise control through both statutory and non-statutory instruments (i.e. National, Provincial, and Local). The main regulatory agencies at a national level include: » Department of Energy (DoE) - the DoE is the controlling authority in terms of the Electricity Act (Act No. 41 of 1987), and is responsible for policy relating to energy including renewable energy. Wind energy is considered under the White Paper for Renewable Energy and the DoE undertakes research in this regard. » National Energy Regulator of South Africa (NERSA) - this body is responsible for regulating all aspects of the electricity sector, and will ultimately issue generation licenses for renewable energy developments. » Department of Environmental Affairs (DEA) - this department is responsible for environmental policy and is the controlling authority in terms of NEMA and the EIA Regulations. DEA has been made the competent authority responsible for granting the relevant environmental authorisations for all renewable energy projects which are regarded of national importance. » The South African Heritage Resources Agency (SAHRA) - the National Heritage Resources Act (Act No. 25 of 1999) and the associated provincial regulations provides legislative protection for listed or proclaimed sites, such as urban conservation areas, nature reserves and proclaimed scenic routes. » South African National Roads Agency Limited (SANRAL): this department is responsible for all national road routes.
    [Show full text]
  • In the Little Karoo, South Africa
    ASPECTS OF THE ECOLOGY OF LEOPARDS (PANTHERA PARDUS) IN THE LITTLE KAROO, SOUTH AFRICA A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS OF DOCTOR OF PHILOSOPHY OF RHODES UNIVERSITY DEPARTMENT OF ZOOLOGY AND ENTOMOLOGY BY GARETH MANN FEBRUARY 2014 i ABSTRACT ABSTRACT Leopards (Panthera pardus) are the most common large predators, free roaming outside of protected areas across most of South Africa. Leopard persistence is attributed to their tolerance of rugged terrain that is subject to less development pressure, as well as their cryptic behaviour. Nevertheless, existing leopard populations are threatened indirectly by ongoing transformation of natural habitat and directly through hunting and conflict with livestock farmers. Together these threats may further isolate leopards to fragmented areas of core natural habitat. I studied leopard habitat preferences, population density, diet and the attitudes of landowners towards leopards in the Little Karoo, Western Cape, South Africa, an area of mixed land-use that contains elements of three overlapping global biodiversity hotspots. Data were gathered between 2010 and 2012 using camera traps set up at 141 sites over an area of ~3100km2, GPS tracking collars fitted to three male leopards, scat samples (n=76), interviews with landowners (n=53) analysed in combination with geographical information system (GIS) layers. My results reveal that leopards preferred rugged, mountainous terrain of intermediate elevation, avoiding low-lying, open areas where human disturbance was generally greater. Despite relatively un-fragmented habitat within my study area, the leopard population density (0.75 leopards/100km2) was one of the lowest yet recorded in South Africa. This may reflect low prey densities in mountain refuges in addition to historical human persecution in the area.
    [Show full text]
  • Epigaeic Invertebrate Community Structure in Two Subtropical Nature Reserves, Eastern Cape, South Africa: Implications for Conservation Management
    © Arachnologische Gesellschaft e.V. Frankfurt/Main; http://arages.de/ Arachnologische Mitteilungen / Arachnology Letters 52: 7-15 Karlsruhe, September 2016 Epigaeic invertebrate community structure in two subtropical nature reserves, Eastern Cape, South Africa: Implications for conservation management Augustine S. Niba & Inam Yekwayo doi: 10.5431/aramit5203 Abstract. Epigaeic invertebrates were sampled at non-invaded (‘Indigenous Forest’ and ‘Indigenous Grassland’) and alien-invaded (‘Eu- calyptus’ and ‘Mixed alien’) sub-sites in the Nduli and Luchaba Nature Reserves using pitfall traps. A total of 2054 specimens belonging to three phyla (Arthropoda, Mollusca and Annelida) was caught and sorted into seven orders, 18 families, one tribe, 45 genera (22 identified to species level) and 20 morphospecies. Higher species richness occurred in ‘Indigenous Forest’ and ‘Mixed Alien’ sub-sites while higher specimen counts were made in invaded (‘Mixed Alien’ and ‘Eucalyptus’) sub-sites during summer months, peaking in January. Canonical Correspondence Analysis results show that some measured site variables, e.g. litter depth, grazing intensity, percentage of alien vege- tation cover, and soil chemical properties accounted for invertebrate taxa composition and distribution trends at sub-sites. Although habitat-patch level characteristics (including abiotic factors) were important for determining species distributions, increased levels of infestation by invasive alien vegetation across sub-sites did not necessarily impact on epigaeic invertebrates
    [Show full text]
  • Misgund Orchards
    MISGUND ORCHARDS ENVIRONMENTAL AUDIT 2014 Grey Rhebok Pelea capreolus Prepared for Mr Wayne Baldie By Language of the Wilderness Foundation Trust In March 2002 a baseline environmental audit was completed by Conservation Management Services. This foundational document has served its purpose. The two (2) recommendations have been addressed namely; a ‘black wattle control plan’ in conjunction with Working for Water Alien Eradication Programme and a survey of the fish within the rivers was also addressed. Furthermore updated species lists have resulted (based on observations and studies undertaken within the region). The results of these efforts have highlighted the significance of the farm Misgund Orchards and the surrounds, within the context of very special and important biodiversity. Misgund Orchards prides itself with a long history of fruit farming excellence, and has strived to ensure a healthy balance between agricultural priorities and our environment. Misgund Orchards recognises the need for a more holistic and co-operative regional approach towards our environment and needs to adapt and design a more sustainable approach. The context of Misgund Orchards is significant, straddling the protected areas Formosa Forest Reserve (Niekerksberg) and the Baviaanskloof Mega Reserve. A formidable mountain wilderness with World Heritage Status and a Global Biodiversity Hotspot (See Map 1 overleaf). Rhombic egg eater Dasypeltis scabra MISGUND ORCHARDS Langkloof Catchment MAP 1 The regional context of Misgund Orchards becomes very apparent, where the obvious strategic opportunity exists towards creating a bridge of corridors linking the two mountain ranges Tsitsikamma and Kouga (south to north). The environmental significance of this cannot be overstated – essentially creating a protected area from the ocean into the desert of the Klein-karoo, a traverse of 8 biomes, a veritable ‘garden of Eden’.
    [Show full text]
  • Annual Report Annual
    EASTERN CAPE PARKS AND TOURISM ANNUAL REPORT 2018/19 REPORT ANNUAL AND TOURISM EASTERN CAPE PARKS 17-25 Oxford Street | East London | 5213 East London | PO Box 11235 | Southernwood | East London | 5213 Eastern Cape | South Africa +27 (0) 43 492 0881 [email protected] www.visiteasterncape.co.za RP290/2019 ISBN: 978-0-621-47767-2 ANNUAL REPORT Long-beaked common dolphin COVER Photo credit: Mark M Gottlieb – www.MarksAdventures.com Hole in the Wall Photo credit: Marius Labuschagne Pounding waves have helped shape South Africa’s coastline for 160 million years - since continental rifting tore Africa from the ancestral landmass Gondwana, leaving her edges exposed to a unique blend of currents and seas. National Geographic Gondwana was an ancient supercontinent that broke up about 180 million years ago. The continent eventually split into landmasses we recognize today: Africa, South America, Australia, Antarctica, the Indian subcontinent and the Arabian Peninsula. CONTENTS PG 5 GENERAL INFORMATION 1 PUBLIC.................................................................................................. ENTITY’S GENERAL INFORMATION 7 2 BO..................................................................................................ARD MEMBERS 8 3 LI...............................................................................................ST OF ABBREVIATIONS/ACRONYMS 10 1 AUDITOR’S REPORT: PREDETERMINED OBJECTIVES 4 FO................................................................................................REWORD BY THE CHAIRPERSON
    [Show full text]
  • The Garden Route a Journey of Lush Forests, Rugged Sea Cliffs and Modern Safaris
    Destination Showcase: The Garden Route A journey of lush forests, rugged sea cliffs and modern safaris Telephone +27 11 219 5600 Facsimile +27 11 268 2010/1 P O Box 987 Northlands 2116 Johannesburg South Africa www.dragonfly.co.za Southern Africa’s Leading Travel Group The Garden Route Map of the Garden Route Tsitsikamma National Park N2 E G R E B A G U O K Natures Valley PLETTENBERG BAY N2 THE GARDEN ROUTE Cape Town Knysna Jeerys Bay Plettenberg Bay KNYSNA George H3 The Heads S N G I R A E T B N E I U S O S A M N A A U M Q I M N A E K T U O WILDERNESS GEORGE H2 Gondwana Game Reserve The Airport H1 H2 Fancourt H3 Pezula MOSSEL BAY H1 N2 The Garden Route The Garden Route extends over South Africa’s two southernmost provinces, the Eastern and the Western Cape. Officially the Route starts at Heidelberg in the Western Cape and ends at the Storms River on the extreme western reach of the neighbouring Eastern Cape Province. The whale capital, Hermanus, and the safari region of the Eastern Cape, located on either side and just beyond the borders of the Garden Route have also been included in this document. The Garden Route was so named, due to its lush and ecologically diverse vegetation and the numerous lagoons and lakes dotted along the scenic coastline. The region includes quaint coastal towns such as Mossel Bay, Knysna, Plettenberg Bay, Nature’s Valley and George.
    [Show full text]
  • Mediterranean Biomes: Evolution of Their Vegetation, Floras, and Climate Philip W
    ES47CH17-Rundel ARI 7 October 2016 10:20 Mediterranean Biomes: ANNUAL REVIEWS Further Evolution of Their Vegetation, Click here to view this article's online features: • Download figures as PPT slides Floras, and Climate • Navigate linked references • Download citations • Explore related articles • Search keywords Philip W. Rundel,1 Mary T.K. Arroyo,2 Richard M. Cowling,3 Jon E. Keeley,4 Byron B. Lamont,5 and Pablo Vargas6 1 Department of Ecology and Evolutionary Biology and Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095; email: [email protected] 2 Institute of Ecology and Biodiversity, Department of Ecological Sciences, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; email: [email protected] 3 Centre for Coastal Palaeosciences, Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa; email: [email protected] 4 Sequoia Field Station, Western Ecological Research Center, U.S. Geological Survey, Three Rivers, California 93271; email: [email protected] 5 Department of Environment and Agriculture, Curtin U niversity, Perth, Western Australia 6845, Australia; email: [email protected] 6 Department of Biodiversity and Conservation, Royal Botanical Garden of Madrid, CSIC, 28014 Madrid, Spain; email: [email protected] Annu. Rev. Ecol. Evol. Syst. 2016. 47:383–407 Keywords First published online as a Review in Advance on mediterranean-type ecosystems, mediterranean climate, fire, evolutionary September 2, 2016 history, southwestern Australia, Cape Region, Mediterranean Basin, The Annual Review of Ecology, Evolution, and California, Chile Systematics is online at ecolsys.annualreviews.org This article’s doi: Abstract 10.1146/annurev-ecolsys-121415-032330 Mediterranean-type ecosystems (MTEs) are located today in southwest- Copyright c 2016 by Annual Reviews.
    [Show full text]
  • Determining the Type Locality and Collector of Nylander's South
    Bothalia - African Biodiversity & Conservation ISSN: (Online) 2311-9284, (Print) 0006-8241 Page 1 of 5 Short Communication Determining the type locality and collector of Nylander’s South African lichens Authors: Background: In 1868, Nylander described 15 new lichen taxa from collections made near 1 Ian D. Medeiros Durban, South Africa. The locality was not specified and the collector was identified only as Affiliations: ‘Miss Armstrong’. 1Department of Biology, Duke Objectives: To identify the collector and type locality of Nylander’s species. University, United States Method: Scientific literature, maps, letters, notebooks and genealogical sources were consulted Corresponding author: Ian Medeiros, to reconstruct the provenance of the specimens. [email protected] Results: ‘Miss Armstrong’ was likely Olivia Armstrong; she collected in the Karkloof area of Dates: the KwaZulu-Natal Midlands. Received: 26 June 2018 Accepted: 06 Sept. 2018 Conclusion: This investigation facilitates future work to determine whether the species Published: 26 Feb. 2019 described and reported by Nylander are still extant in the same locality. How to cite this article: Medeiros, I.D., 2019, ‘Determining the type locality Introduction and collector of Nylander’s In 1868, Finnish taxonomist William Nylander published a short article on lichens collected from South African lichens’, Bothalia 49(1), a2384. ‘Port-Natal’ (Nylander 1868). This paper identified 84 species and infraspecific taxa, many of https://doi.org/10.4102/abc. which had not previously been reported from southern Africa and 15 of which were new to v49i1.2384 science. Most of these new species have neither been recorded since their original description nor given a modern taxonomic assessment (Table 1).
    [Show full text]
  • Distribution, Habitat Structure and Troop Size in Eastern Cape
    Distribution, habitat structure and troop size in Eastern Cape samango monkeys Cercopithecus albogularis labiatus (Primates: Cercopithecoidea) A dissertation submitted to the Department of Zoology and Entomology in fulfilment of the requirements for the degree of Master of Science in Zoology the University of Fort Hare by Vusumzi Martins Supervisors: Dr Fabien Génin and Prof. Judith Masters GENERAL ABSTRACT The samango monkey subspecies Cercopithecus albogularis labiatus is endemic to South Africa, and known to occur in Afromontane forests. There has been a major decline in this subspecies, exceeding 30% in some populations over the past 30 years, primarily as a result of the loss of suitable habitat. A second samango subspecies, C. a. erythrarchus, occurs near the northern border of South Africa, mainly in coastal lowland forest, and the distributions of the two subspecies do not overlap. C. a. labiatus was thought to be confined to Afromontane forests, but the study described here focused on C. a. labiatus populations that were recently identified in the Indian Ocean Belt forests near East London. I undertook to assess the distribution of C. a. labiatus in the Eastern Cape, to evaluate the habitat structures of the Afromontane and Indian Ocean coastal belt forests, and to understand the effect these habitats have on essential aspects of the socio-ecology of the C. a. labiatus populations. Distribution surveys were conducted in protected areas throughout the Eastern Cape, and samango monkeys were found to be present within forest patches in the Amatola Mountains, Eastern Cape dune forests and the Transkei coastal scarp forests. The sizes and composition of two troops were assessed: one troop in the Amatole forests and one in the Eastern Cape dune forests.
    [Show full text]
  • Cape Parrot Big Birding Day Report
    17th Annual Parrot Count- Report on the 2014 Cape Parrot Big Birding Day. Colleen T. Downs* School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, 3209, South Africa. Email: [email protected] *Cape Parrot Working Group Chairperson. Background The Cape Parrot (Poicephalus robustus) is the only parrot species endemic to South Africa and is currently one of South Africa’s Endangered birds. Skead (1971) highlighted that the numbers of Cape Parrots had declined since the early 1900s, particularly in the 1950’s. In 1989 Boshoff estimated less than a 1000 in the wild. So this raised questions: were these declines real and how many Cape parrots were there in the wild? Standard bird counting techniques are unsuitable for Cape Parrots as they are nomadic feeders with unpredictable movements. Parrots’ cryptic colouration combined with dense forest habitats often make them difficult to locate once perched but their loud harsh calls whilst in-flight make their presence known. They are most active during the first few hours after dawn and before sunset, (although during misty conditions these periods can be extended), when they leave and return to their roosts in forest patches. These characteristics allow for a ‘total count’ of the parrots. Consequently the Cape Parrot Big Birding Day (CPBBD) was initiated in 1998, and has been held annually since as part of the conservation effort of the Cape Parrot Working Group. The aim is to determine their occurrence and obtain an accurate population estimate of the Cape Parrot. Over the recent years less than 1600 have been counted in the wild (Downs et al.
    [Show full text]