Nauthorized Uses of Copyrighted Materials Are Prohibited by Law
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
These De Doctorat De L'universite Paris-Saclay
NNT : 2016SACLS250 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de doctorat (Biologie) Par Mlle Nour Abdel Samad Titre de la thèse (CARACTERISATION GENETIQUE DU GENRE IRIS EVOLUANT DANS LA MEDITERRANEE ORIENTALE) Thèse présentée et soutenue à « Beyrouth », le « 21/09/2016 » : Composition du Jury : M., Tohmé, Georges CNRS (Liban) Président Mme, Garnatje, Teresa Institut Botànic de Barcelona (Espagne) Rapporteur M., Bacchetta, Gianluigi Università degli Studi di Cagliari (Italie) Rapporteur Mme, Nadot, Sophie Université Paris-Sud (France) Examinateur Mlle, El Chamy, Laure Université Saint-Joseph (Liban) Examinateur Mme, Siljak-Yakovlev, Sonja Université Paris-Sud (France) Directeur de thèse Mme, Bou Dagher-Kharrat, Magda Université Saint-Joseph (Liban) Co-directeur de thèse UNIVERSITE SAINT-JOSEPH FACULTE DES SCIENCES THESE DE DOCTORAT DISCIPLINE : Sciences de la vie SPÉCIALITÉ : Biologie de la conservation Sujet de la thèse : Caractérisation génétique du genre Iris évoluant dans la Méditerranée Orientale. Présentée par : Nour ABDEL SAMAD Pour obtenir le grade de DOCTEUR ÈS SCIENCES Soutenue le 21/09/2016 Devant le jury composé de : Dr. Georges TOHME Président Dr. Teresa GARNATJE Rapporteur Dr. Gianluigi BACCHETTA Rapporteur Dr. Sophie NADOT Examinateur Dr. Laure EL CHAMY Examinateur Dr. Sonja SILJAK-YAKOVLEV Directeur de thèse Dr. Magda BOU DAGHER KHARRAT Directeur de thèse Titre : Caractérisation Génétique du Genre Iris évoluant dans la Méditerranée Orientale. Mots clés : Iris, Oncocyclus, région Est-Méditerranéenne, relations phylogénétiques, status taxonomique. Résumé : Le genre Iris appartient à la famille des L’approche scientifique est basée sur de nombreux Iridacées, il comprend plus de 280 espèces distribuées outils moléculaires et génétiques tels que : l’analyse de à travers l’hémisphère Nord. -
ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M. -
Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments. -
Draft Programmatic EIS for Fuels Reduction and Rangeland
NATIONAL SYSTEM OF PUBLIC LANDS U.S. DEPARTMENT OF THE INTERIOR U.S. Department of the Interior March 2020 BUREAU OF LAND MANAGEMENT BUREAU OF LAND MANAGEMENT Draft Programmatic EIS for Fuels Reduction and Rangeland Restoration in the Great Basin Volume 3: Appendices B through N Estimated Lead Agency Total Costs Associated with Developing and Producing this EIS $2,000,000 The Bureau of Land Management’s multiple-use mission is to sustain the health and productivity of the public lands for the use and enjoyment of present and future generations. The Bureau accomplishes this by managing such activities as outdoor recreation, livestock grazing, mineral development, and energy production, and by conserving natural, historical, cultural, and other resources on public lands. Appendix B. Acronyms, Literature Cited, Glossary B.1 ACRONYMS ACRONYMS AND ABBREVIATIONS Full Phrase ACHP Advisory Council on Historic Preservation AML appropriate management level ARMPA Approved Resource Management Plan Amendment BCR bird conservation region BLM Bureau of Land Management BSU biologically significant unit CEQ Council on Environmental Quality EIS environmental impact statement EPA US Environmental Protection Agency ESA Endangered Species Act ESR emergency stabilization and rehabilitation FIAT Fire and Invasives Assessment Tool FLPMA Federal Land Policy and Management Act FY fiscal year GHMA general habitat management area HMA herd management area IBA important bird area IHMA important habitat management area MBTA Migratory Bird Treaty Act MOU memorandum of understanding MtCO2e metric tons of carbon dioxide equivalent NEPA National Environmental Policy Act NHPA National Historic Preservation Act NIFC National Interagency Fire Center NRCS National Resources Conservation Service NRHP National Register of Historic Places NWCG National Wildfire Coordination Group OHMA other habitat management area OHV off-highway vehicle Programmatic EIS for Fuels Reduction and Rangeland Restoration in the Great Basin B-1 B. -
Iliamna Longisepala As an Aid to Developing a Conserva Tion Strategy for This Rare Endemic Forb of Northcentral Washington
RESEARCH ARTICLE ABSTRACT: We examined the seed ecology of Iliamna longisepala as an aid to developing a conserva tion strategy for this rare endemic forb of northcentral Washington. We conducted field, greenhouse, and laboratory studies to quantify: (1) densities of buried viable seed among sites with different histories of burning, (2) post-fire spatial distributions of germinants relative to reproductive plants and burn se verity, (3) seed production and its annual variation, and (4) germination requirements. Density of seed in the soil was not significantly related to history of burning, but sites that experienced fire 10 years • before sampling averaged 10 times as many seeds as sites that burned recently and four times as many seeds as sites that had not burned within 50 years. Density of viable seeds in the soil did not correlate The Seed Ecology of with density of reproductive plants. In a field experiment, germinants appeared after fall burning, but not after spring burning. Germinants were most abundant within 10 m of reproductive plants and were concentrated in areas of high burn severity. Seed production per plant was significantly correlated to Iliamna longisepala crown diameter, but production varied dramatically from year to year. Experimental germination trials were largely unsuccessful due to low (8%) viability of seeds collected from mature plants. However, (Torr.) Wiggins, field studies illustrate that fire is sufficient to break the dormancy of seeds that have accumulated in the soil. Long-term exclusion of fire may lead to local extinction of populations as the longevity of reproductive plants and seeds are exceeded. However, burning more frequently than every 10 years an East Cascade could deplete local seed reserves. -
Chapter 14. Wildlife and Forest Communities 341
chapteR 14. Wildlife and Forest Communities 341 Chapter 14. Wildlife and Forest communities Margaret Trani Griep and Beverly Collins1 key FindingS • Hotspot areas for plants of concern are Big Bend National Park; the Apalachicola area of the Southern Gulf Coast; • The South has 1,076 native terrestrial vertebrates: 179 Lake Wales Ridge and the area south of Lake Okeechobee amphibians, 525 birds, 176 mammals, and 196 reptiles. in Peninsular Florida; and coastal counties of North Species richness is highest in the Mid-South (856) and Carolina in the Atlantic Coastal Plain. The Appalachian- Coastal Plain (733), reflecting both the large area of these Cumberland highlands also contain plants identified by subregions and the diversity of habitats within them. States as species of concern. • The geography of species richness varies by taxa. • Species, including those of conservation concern, are Amphibians flourish in portions of the Piedmont and imperiled by habitat alteration, isolation, introduction of Appalachian-Cumberland highlands and across the Coastal invasive species, environmental pollutants, commercial Plain. Bird richness is highest along the coastal wetlands of development, human disturbance, and exploitation. the Atlantic Ocean and Gulf of Mexico, mammal richness Conditions predicted by the forecasts will magnify these is highest in the Mid-South and Appalachian-Cumberland stressors. Each species varies in its vulnerability to highlands, and reptile richness is highest across the forecasted threats, and these threats vary by subregion. Key southern portion of the region. areas of concern arise where hotspots of vulnerable species • The South has 142 terrestrial vertebrate species coincide with forecasted stressors. considered to be of conservation concern (e.g., global • There are 614 species that are presumed extirpated from conservation status rank of critically imperiled, imperiled, selected States in the South; 64 are terrestrial vertebrates or vulnerable), 77 of which are listed as threatened or and 550 are vascular plants. -
Overcoming Dormancy and Enhancing Germination of Sphaeralcea Munroana Seeds
HORTSCIENCE 46(12):1672–1676. 2011. after submergence in sulfuric acid, a substan- tial improvement compared with the control (0%). Similarly, submergence of Sphaeralcea Overcoming Dormancy and seedsin18Msulfuricacidfor10minim- proved germination of S. coccinea and two Enhancing Germination of accessions of S. grossulariifolia (77%, 69%, and 62%) relative to the controls (5%, 14%, Sphaeralcea munroana Seeds and 32%), but failed to do so for S. munroana (8%) compared with the control (2%) (Roth Olga A. Kildisheva et al., 1987). Organic solvents have also been Center for Forest Nursery and Seedling Research, College of Natural used to promote germination of physically Resources, University of Idaho, P.O. Box 441133, Moscow, ID 83843 dormant seeds. Page et al. (1966) reported 67% germination of treated S. grossulariifolia R. Kasten Dumroese seeds after a 4-h submergence in diethyl USDA Forest Service Rocky Mountain Research Station, 1221 South Main dioxide vs. 0% germination of untreated seeds. Roth et al. (1987) found a 3-h sub- Street, Moscow, ID 83843 mergence of S. coccinea, S. munroana,and Anthony S. Davis1 two accessions of S. grossulariifolia in diethyl dioxide to significantly enhance ger- Center for Forest Nursery and Seedling Research, College of Natural mination (36%, 53%, 89%, and 68%) com- Resources, University of Idaho, P.O. Box 441133, Moscow, ID 83843 pared with the control (5%, 2%, 14%, and Additional index words. Munro’s globemallow, Malvaceae, germination, imbibition, water 32%). Despite the effectiveness of chemical scarification, chemicals can be hazardous, gap, gibberellic acid difficult to obtain, and present serious health Abstract. The results of a series of experiments involving a variety of dormancy-breaking risks (Mallinckrodt Baker, 2008a, 2008b). -
Eastern Washington Plant List
The NatureMapping Program Revised: 9/15/2011 Eastern Washington Plant List - Scientific Name 1- Non- native, 2- ID Scientific Name Common Name Plant Family Invasive √ 1141 Abies amabilis Pacific silver fir Pinaceae 1 Abies grandis Grand fir Pinaceae 1142 Abies lasiocarpa Sub-alpine fir Pinaceae 762 Abronia mellifera White sand verbena Nyctaginaceae 1143 Abronia umbellata Pink sandverbena Nyctaginaceae 763 Acer glabrum Douglas maple Aceraceae 3 Acer macrophyllum Big-leaf maple Aceraceae 470 Acer platinoides* Norway maple Aceraceae 1 5 Achillea millifolium Yarrow Asteraceae 1144 Aconitum columbianum Monkshood Ranunculaceae 8 Actaea rubra Baneberry Ranunculaceae 9 Adenocaulon bicolor Pathfinder Asteraceae 10 Adiantum pedatum Maidenhair fern Polypodiaceae 764 Agastache urticifolia Nettle-leaf horse-mint Lamiaceae 1145 Agoseris aurantiaca Orange agoseris Asteraceae 1146 Agoseris elata Tall agoseris Asteraceae 705 Agoseris glauca Mountain agoseris Asteraceae 608 Agoseris grandiflora Large-flowered agoseris Asteraceae 716 Agoseris heterophylla Annual agoseris Asteraceae 11 Agropyron caninum Bearded wheatgrass Poaceae 560 Agropyron cristatum* Crested wheatgrass Poaceae 1 1147 Agropyron dasytachyum Thickspike wheatgrass Poaceae 739 Agropyron intermedium* Intermediate ryegrass Poaceae 1 12 Agropyron repens* Quack grass Poaceae 1 744 Agropyron smithii Bluestem Poaceae 523 Agropyron spicatum Blue-bunch wheatgrass Poaceae 687 Agropyron trachycaulum Slender wheatgrass Poaceae 13 Agrostis alba* Red top Poaceae 1 799 Agrostis exarata* Spike bentgrass -
Natural Heritage Resources of Virginia: Rare Vascular Plants
NATURAL HERITAGE RESOURCES OF VIRGINIA: RARE PLANTS APRIL 2009 VIRGINIA DEPARTMENT OF CONSERVATION AND RECREATION DIVISION OF NATURAL HERITAGE 217 GOVERNOR STREET, THIRD FLOOR RICHMOND, VIRGINIA 23219 (804) 786-7951 List Compiled by: John F. Townsend Staff Botanist Cover illustrations (l. to r.) of Swamp Pink (Helonias bullata), dwarf burhead (Echinodorus tenellus), and small whorled pogonia (Isotria medeoloides) by Megan Rollins This report should be cited as: Townsend, John F. 2009. Natural Heritage Resources of Virginia: Rare Plants. Natural Heritage Technical Report 09-07. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond, Virginia. Unpublished report. April 2009. 62 pages plus appendices. INTRODUCTION The Virginia Department of Conservation and Recreation's Division of Natural Heritage (DCR-DNH) was established to protect Virginia's Natural Heritage Resources. These Resources are defined in the Virginia Natural Area Preserves Act of 1989 (Section 10.1-209 through 217, Code of Virginia), as the habitat of rare, threatened, and endangered plant and animal species; exemplary natural communities, habitats, and ecosystems; and other natural features of the Commonwealth. DCR-DNH is the state's only comprehensive program for conservation of our natural heritage and includes an intensive statewide biological inventory, field surveys, electronic and manual database management, environmental review capabilities, and natural area protection and stewardship. Through such a comprehensive operation, the Division identifies Natural Heritage Resources which are in need of conservation attention while creating an efficient means of evaluating the impacts of economic growth. To achieve this protection, DCR-DNH maintains lists of the most significant elements of our natural diversity. -
Boiling Water Scarification Plus Stratification Improves Germination of Iliamna Rivularis (Malvaceae) Seeds
REFEREED RESEARCH Boiling water scarification plus stratification improves germination of Iliamna rivularis (Malvaceae) seeds Katri Himanen, Markku Nygren, and R Kasten Dumroese ABSTRACT Scarification with boiling water plus stratification was most effective in improving ger- mination of Iliamna rivularis (Douglas ex Hook.) Greene (Malvaceae) in an experiment that compared 3 treatments. Seeds from 15 sites representing 5 western US states were used in the experiment. Initial response of the seedlots to the treatments was similar, apart from one seedlot. The control treatment (intact seeds) yielded poor ger- mination (1.8%). Mechanical scarification (part of the seedcoat removed) improved germination (average germination 49%), but not as much as the combination of boil- ing the seeds for 120 s plus stratifying them 28 d at 4 °C (average germination 70%). Germinants from the boiling plus stratification treatment appeared to be more vig- orous. Impermeability of the seedcoat is the main factor preventing germination, but the response of embryos to stratification may suggest some physiological dormancy. These treatments can be adapted to nursery production of this species, which has or- namental potential and ecological importance. Himanen K, Nygren M, Dumroese RK. 2012. Boiling water scarification plus stratification im- proves germination of Iliamna rivularis (Malvaceae) seeds. Native Plants Journal 13(3):244–254. K E Y W O R D S streambank wild hollyhock, fire adapted, physical dormancy, seedbank NOMENCLATURE USDA NRCS (2012) CONVERSIONS 1 m = 3.3 ft 1 cm = 0.4 in Iliamna rivularis dominating a site in 1 mm = 0.04 in northwestern Montana 2 y after the 2006 1 ml = 0.034 oz Red Eagle Fire in Glacier National Park. -
National Park Service U.S
National Park Service U.S. Department of the Interior Natural Resource Program Center Vascular Plant Inventory of North Cascades National Park Service Complex Natural Resource Technical Report NPS/NCCN/NRTR—2010/369 ON THE COVER Volunteers collect specimens near Easy Pass, North Cascades National Park, August 2003. Photograph courtesy of North Cascades National Park Service Complex. Vascular Plant Inventory of North Cascades National Park Service Complex Natural Resource Technical Report NPS/NCCN/NRTR—2010/369 Mignonne M. Bivin North Cascades National Park Service Complex 7280 Ranger Station Road Marblemount, WA 98267 Regina M. Rochefort North Cascades National Park Service Complex 810 State Route 20 Sedro Woolley, WA 98284 September 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Evaluating Approaches to the Conservation of Rare and Endangered Plants'
Ecology. 75(3), 1994, pp. 584-606 «;) 1994 by the Ecological Society of America EVALUATING APPROACHES TO THE CONSERVATION OF RARE AND ENDANGERED PLANTS' DOUGLAS W. SCHEMSKE, BRIAN C. HUSBAND, MARY H. RUCKELSHAUS, CAROL GOODWILLIE, INGRID M. PARKER, AND JOHN G. BISHOP Department of Botany, University of Washington, Seattle, Washington 98195 USA Take your time, hurry up, the choice is yours, don't of genetic variation in rare plant species is a key con be late sideration in conservation strategies," while Holsinger -Nirvana and Gottlieb ( 1991) note that "populations large enough to mitigate ecological threats to population viability INTRODUCTION will mitigate genetic ones as well" ( 1991 :205) and that Nearly 25% of the estimated 250 000 species of vas "active management of the genetic structure of an en cular plants in the world may become extinct within dangered plant species will require an enormous in the next 50 yr (Raven 1987), and 22% of vascular plant vestment of time, money, and expertise. Only a few of species in the United States are currently of conser the most important species will warrant such heroic vation concern (Falk 1992). Plant conservation efforts efforts" ( 1991:206). With limited funds and such con received a critical boost with the passage of the En trary points of view, the conservation biologist charged dangered Species Act of 1973 (16 U.S.C. §§ 1531- with species recovery faces an unenviable challenge. 1544: USFWS 1988a). The Act established a legal The successful recovery of an endangered species mandate of unprecedented proportions to promote the requires the best scientific information available, yet collection, analysis, and exchange of biological infor the present level of understanding and communication mation.