51 Pcec 2018

Total Page:16

File Type:pdf, Size:1020Kb

51 Pcec 2018 PCEC Updates for 2018 2018 NASA Cost & Schedule Symposium August 15, 2018 Brian Alford Mark Jacobs Booz Allen Hamilton TGS Consultants Shawn Hayes Richard Webb TGS Consultants KAR Enterprises NASA MSFC Victory MIPSSSolutions Team SB Diversity Overview • PCEC Overview • Robotic Spacecraft Updates • Crewed & Space Transportation System Update • Summary Victory Solutions MIPSS Team 2 What is PCEC? • The Project Cost Estimating Capability (PCEC) is the primary NASA-sponsored parametric cost tool for spacecraft estimates – Developed and maintained by NASA at MSFC beginning in late 2013 – Excel Add-in that provides capabilities and cost estimating artifacts used to build a spacecraft cost estimate in Excel – Based on more than 70 missions/system elements, but with separate approaches for modeling different types of systems • Robotic Spacecraft (Robotic SC) • Crewed & Space Transportation Systems (CASTS) – Completely transparent tool: no code passwords, protected sheets, etc. – Available to the general public via ONCE and the NASA Software Catalog (https://software.nasa.gov/) Victory Solutions MIPSS Team 3 Current State of PCEC • PCEC v2.2.1 was released in May 2018 – Fixes minor bugs in some templates and a minor code revision – No updates to the Library other than latest New Start Inflation indices – Update provided via Excel updater file; includes routines for making corrections to user-installed Interface and existing v2.2 estimates • Current user counts as of late July 2018 – 490+ Users / Requestors – 45+ Countries represented – ~60 users added since last year’s Symposium Victory Solutions MIPSS Team 4 PCEC User Distribution Estimated based on user-provided data Victory Solutions MIPSS Team 5 PCEC ROBOTIC SPACECRAFT UPDATES 6 PCEC Robotic Spacecraft Topics 1. New Missions 2. Entry System CERs 3. Milestone-Specific Data Analyses Victory Solutions MIPSS Team 7 Current Robotic SC Missions & New Candidates • Missions 1-42 are used for PCEC v2.2.1 CERs • Additional Candidates 1-6 have been tested with PCEC v2.2.1; Overall results are generally good • Data normalization is complete for Additional Candidates 1-4 and nearly complete for 5-6 • Additional Candidates 7-11 should have launch CADRe data available soon (before the end of FY19) • PCEC CERs could be updated in FY19 incorporating at least the first 6 additional candidates Victory Solutions MIPSS Team 8 PCEC v2.2.1 Results for New Candidates Actual $)/Actual $ $)/Actual Actual – (Estimate • Results compare the PCEC estimate to unadjusted Launch CADRe cost data • PCEC Phase BCD estimates are within 20% for 4 missions (average error is -19%) • Several of these missions experienced ‘External Impacts’ that will be normalized out of the data used for the PCEC CERs • External Impacts are the primary driver for the bias towards low estimates for 3 of these missions (GPM, MMS, and GOES-R) Victory Solutions MIPSS Team 9 PCEC Entry System CERs NASA WBS Elements Included GOAL: Derive CERs to capture the cost of various atmospheric entry hardware systems for robotic spacecraft missions (Phases B-D) • The PCEC Entry System elements are included in the spacecraft (SC) portion of the WBS, but separate from the more typical subsystems. – Thermal Protections System (TPS) is WBS 6.5.1.8 – Parachute System is WBS 6.5.1.9 – AirbaG System is WBS 6.5.1.10 Victory Solutions MIPSS Team 10 Entry System CERs Approach & Mission Set • Costs for Thermal Protection Systems (TPS), Parachutes, and Air Bag Entry System elements are not included in PCEC v2.2.1 • Costs for these items have Been derived using data from 9 missions • PCA was used to help identify technical characteristics driving costs • CERs have Been developed for Non-recurring, Recurring, and Phase BCD Total costs Victory Solutions MIPSS Team 11 Entry System CERs Thermal Protection Systems (TPS), 1 of 2 • Definition: Covers design, fabrication, and I&T for all TPS material; Includes TPS on Heat Shield, Backshell, and Parachute; Does not include structure, adhesive, or other supporting elements TPS Non-Recurring Cost (NRC) TPS Recurring Cost (RC) • Input Parameters: • Input Parameters: – PD - Peak Deceleration (g) – PD - Peak Deceleration (g) – MPS - Mean Pressure at the Surface (kPa) – HD – Heatshield Diameter (m) • Cost Estimating Relationship (CER): – HPU – Heatshield Production Units 1236 × (!")0.3761 × (#!$)−0.1847 • Cost Estimating Relationship (CER): • Adjusted R^2: 0.52 1437 × (%!&) × (!")0.2625 × (%")0.6958 • Range of Error: -51 to 73% • Adjusted R^2: 0.70 Victory Solutions MIPSS Team • Range of Error: -32 to 77% 12 Entry System CERs Thermal Protection Systems (TPS), 2 of 2 • Definition: Covers design, fabrication, and I&T for TPS material; Does not include structure, adhesive, or other supporting elements TPS – Alternate CER (NRC+RC) • Input Parameters: – PD - Peak Deceleration (g) – SEM - System Entry Mass (kg) • Cost Estimating Relationship (CER): 230 × (!")0.4459 × (#$%)0.4045 • Adjusted R^2: 0.93 • Range of Error: -26 to 26% Victory Solutions MIPSS Team 13 Entry System CERs Parachutes, 1 of 2 • Definition: Covers design, Fabrication, and I&T For the Parachute System; Includes all Flight parachutes, lines, and mortar; Does not include support structure Parachutes Non-Recurring Cost (NRC) Parachutes Recurring Cost (RC) • Input Parameters: • Input Parameters: – MPD: Main Parachute Diameter (m) – PSM - Parachute System Mass (Chutes, • Cost Estimating Relationship (CER): Mortar) (kg) 8.5 × (!"#)1.9541 – MPS - Mean Pressure at the SurFace (kPa) – PPU – Parachute Production Units • Adjusted R^2: 0.50 • Cost Estimating Relationship (CER): • Range of Error: -51 to 119% 564 × (""$) × ("%!)0.4983 × (!"%)−0.0880 • Adjusted R^2: 0.83 Victory Solutions MIPSS Team 14 • Range of Error: -36 to 32% Entry System CERs Parachutes, 2 of 2 • Definition: Covers design, fabrication, and I&T for the Parachute System; Includes all flight parachutes, lines, and mortar; Does not include support structure Parachutes – Alternate CER (NRC+RC) • Input Parameters: – MPD: Main Parachute Diameter (m) – PPU – Parachute Production Units • Cost Estimating Relationship (CER): 37 × (!"#)1.7903 × (""$)0.91 • Adjusted R^2: 0.87 • Range of Error: -42 to 44% Victory Solutions MIPSS Team 15 Entry System CERs Air Bag Deceleration Systems • Definition: Covers design, fabrication, and I&T for an Air Bag Deceleration System; Includes all air bags, and inflation system; Does not include support structure Air Bag Deceleration – CER (NRC+RC) Development Cost vs Air Bag System Mass • Input Parameters: – ASM: Airbag System Mass (kg) – APU – Airbag Production Units • Cost Estimating Relationship (CER): 6338 + (72.459 × !"# × !$%) • AdjusteD R^2: 1 • Range of Error: -15 to 3% Victory Solutions MIPSS Team 16 Milestone-Specific Analyses Background • Question: Can we correlate cost model inputs known at the start of Phase B to Actual costs (at launch)? • Cost models are typically developed by correlating technical/programmatic inputs at launch to actual costs • If CERs were developed using Phase B inputs and Actual costs, would they perform better than typical cost models at the start of Phase B? GOAL: Improve understanding of how inputs known at the start of Phase B correlate to actual costs at launch; Approach utilizes the same cost data normalization process applied to PCEC Robotic Missions and explores correlations (new CERs) and relationships between changes in cost model inputs and costs (Project & PCEC estimates) Victory Solutions MIPSS Team 17 Milestone-Specific Analyses Phase B Cost Data Normalization • Cost data representing the start of Phase B has been normalized for 24 projects (same process as used for PCEC v2.2) • Most of these projects are AO missions (and CSR data was used) • Difficult to clearly identify/collect Phase B start data for many projects Victory Solutions MIPSS Team 18 Milestone-Specific Analyses CER Results Overview Case 1 CER Results: • Use the exact same CER inputs by subsystem as the v2.2.1 CERs • Error range at the Flight System Level – CBE: -72% to 66% CBE + Contingency: -73% to 67% • CERs are oversubscribed since the number of data points used to develop the new CERs are significantly less than the PCEC v2.2 CERs (~20 vs ~40 data points) Case 2 CER Results: • Use the same CER discovery process employed during the development of the PCEC v2.2.1 CERs; different inputs allowed • Error range at the Flight System Level – CBE: -59% to 36% CBE + Contingency: -59% to 39% • Some of the inputs are counter-intuitive; These CERs should be refined before considering release Victory Solutions MIPSS Team 19 Milestone-Specific Analyses Results Summary Based on Development (BCD) $ w/o Reserves, LV, Instruments, GDS, or Science Team • Results using the ‘New Phase B CERs’ appear a little better than using PCEC v2.2 for the 24 missions used in this analysis • ‘Robustness’ of the New Phase B CERs may be questionable based on results using missions outside this 24-mission data set Victory Solutions MIPSS Team 20 Milestone-Specific Analyses Interesting CER Variable Observations • Mass remains important across all CER cases • Heritage/Parts Rating variables become more important and schedule variables become less important when comparing Case 2 CERs to the original PCEC v2.2 CERs Victory Solutions MIPSS Team 21 Milestone-Specific Analyses Cost Growth Correlations to Input Changes Schedule Growth Mass Growth Change in Heritage • Correlations between cost growth from Phase B and changes in technical and programmatic inputs were explored; however, good correlations between changes
Recommended publications
  • Rocket Propulsion Fundamentals 2
    https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force.
    [Show full text]
  • Space Almanac 2005
    SpaceAl2005 manac Stratosphere begins 10 miles Limit for turbojet engines 20 miles Limit for ramjet engines 28 miles Astronaut wings awarded 50 miles Low Earth orbit begins 60 miles 0.95G 100 miles Medium Earth orbit begins 300 miles 44 44 AIR FORCEAIR FORCE Magazine Magazine / August / August 2005 2005 SpaceAl manacThe US military space operation in facts and figures. Compiled by Tamar A. Mehuron, Associate Editor, and the staff of Air Force Magazine Hard vacuum 1,000 miles Geosynchronous Earth orbit 22,300 miles 0.05G 60,000 miles NASA photo/staff illustration by Zaur Eylanbekov Illustration not to scale AIR FORCE Magazine / August 2005 AIR FORCE Magazine / /August August 2005 2005 4545 US Military Missions in Space Space Force Support Space Force Enhancement Space Control Space Force Application Launch of satellites and other Provide satellite communica- Assure US access to and freedom Pursue research and devel- high-value payloads into space tions, navigation, weather, mis- of operation in space and deny opment of capabilities for the and operation of those satellites sile warning, and intelligence to enemies the use of space. probable application of combat through a worldwide network of the warfighter. operations in, through, and from ground stations. space to influence the course and outcome of conflict. US Space Funding Millions of constant FY06 dollars $50,000 DOD 45,000 NASA 40,000 Other Total 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0 59 62 66 70 74 78 82 86 90 94 98 02 04 Fiscal Year FY NASA DOD Other Total FY NASA DOD Other
    [Show full text]
  • Methodology for Identifying Key Parameters Affecting Reusability for Liquid Rocket Engines
    Methodology for Identifying Key Parameters Affecting Reusability for Liquid Rocket Engines Presented by: Bruce Askins Rhonda Childress-Thompson Marshall Space Flight Center & Dr. Dale Thomas The University of Alabama in Huntsville Outline • Objective • Reusability Defined • Benefits of Reusability • Previous Research • Approach • Challenges • Available Data • Approach • Results • Next Steps • Summary Objective • To use statistical techniques to identify which parameters are tightly correlated with increasing the reusability of liquid rocket engine hardware. Reusability/Reusable Defined Ideally • “The ability to use a system for multiple missions without the need for replacement of systems or subsystems. Ideally, only replenishment of consumable commodities (propellant and gas products, for instance)occurs between missions.” (Jefferies, et al., 2015) For purposes of this research • Any space flight hardware that is not only designed to perform multiple flights, but actually accomplishes multiple flights. Benefits of Reusability • Forces inspections of returning hardware • Offers insight into how a part actually performs • Allows the development of databases for future development • Validates ground tests and analyses • Allows the expensive hardware to be used multiple times Previous Research – Identification of Features Conducive for Reuse Implementation 1. Reusability Requirement Implemented at the Conceptual Stage 2. Continuous Test Program 3. Minimize Post-Flight Inspections & Servicing to Enhance Turnaround Time 4. Easy Access 5. Longer Service Life 6. Minimize Impact of Recovery 7. Evolutionary vs. Revolutionary Changes MSFC Legacy of Propulsion Excellence (Evolutionary Changes) Saturn V J-2S 1970 1980 1990 2000 2010 2015 Challenges • Engine data difficult to locate • Limited data for reusable engines (i.e. Space Shuttle, Space Shuttle Main Engine (SSME) and Solid Rocket Booster (SRB) • Benefits of reusability have not been validated • Industry standards do not exist Engine Data Available Engine Time from No.
    [Show full text]
  • A Methodology for Preliminary Sizing of a Thermal and Energy Management System for a Hypersonic Vehicle
    A methodology for preliminary sizing of a Thermal and Energy Management System for a hypersonic vehicle. Roberta Fusaro1, Davide Ferretto 1, Valeria Vercella1, Nicole Viola1, Victor Fernandez Villace2 and Johan Steelant2 Abstract This paper addresses a methodology to parametrically size thermal control subsystems for high-speed transportation systems. This methodology should be sufficiently general to be exploited for the derivation of Estimation Relationships (ERs) for geometrically sizing characteristics as well as mass, volume and power budgets both for active (turbopumps, turbines and compressors) and passive components (heat exchangers, tanks and pipes). Following this approach, ad-hoc semi-empirical models relating the geometrical sizing, mass, volume and power features of each component to operating conditions have been derived. As a specific case, a semi-empirical parametric model for turbopumps sizing is derived. In addition, the Thermal and Energy Management Subsystem (TEMS) for the LAPCAT MR2 vehicle is used as an example of a highly integrated multifunctional subsystem. The TEMS is based on the exploitation of liquid hydrogen boil-off in the cryogenic tanks generated by the heat load penetrating the aeroshell, all along the point-to-point hypersonic mission. Eventually, specific comments about the results will be provided together with suggestions for future improvements. Keywords: Thermal and Energy Management System, sizing models, turbopumps, LAPCAT MR2 1. Introduction The high operating temperature characterizing the hypersonic flight regime is a long-term issue. Vehicles able to reach hypersonic speed are currently considered for both aeronautical (e.g. high speed antipodal transportation systems) and space transportation purposes (e.g. reusable launcher stages and re-entry systems).
    [Show full text]
  • Advanced Tube-Bundle Rocket Thrust Chamber
    https://ntrs.nasa.gov/search.jsp?R=19900015869 2020-03-19T22:32:33+00:00Z NASA Technical Memorandum 103139 AIAA-90-2726 Advanced Tube-Bundle Rocket Thrust Chamber John M. Kazaroff National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio and Albert J. Pavli Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio Prepared for the 26th Joint Propulsion Conference cosponsored by the AIAA, SAE, ASME, and ASEE Orlando, Florida, July 16-18, 1990 NASA ADVANCED TUBE-BUNDLE ROCKET THRUST CHAMBER John M. Kazaroff National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 and Albert J. Pavli Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio 44142 o SUMMARY a- w An advanced rocket thrust chamber for future space application is described along with an improved method of fabrication. Potential benefits of the concept are improved cyclic life, reusability, reliability, and perform- ance. Performance improvements are anticipated because of the enhanced heat transfer into the coolant which will enable higher chamber pressure in expander cycle engines. Cyclic life, reusability and reliability improvements are anti- cipated because of the enhanced structural compliance inherent in the construc- tion. The method of construction involves the forming of the combustion chamber with a tube-bundle of high conductivity copper or copper alloy tubes, and the bonding of these tubes by an electroforming operation. Further, the method of fabrication reduces chamber complexity by incorporating manifolds, jackets, and structural stiffeners while having the potential for thrust cham- ber cost and weight reduction. BACKGROUND Through the years many forms of rocket combustion chamber construction have been successfully employed.
    [Show full text]
  • Acquisition Story 54 Introduction 2 Who We Were 4 194Os 8 195Os 12
    table of contents Introduction 2 Who We Were 4 194Os 8 195Os 12 196Os 18 197Os 26 198Os 30 199Os 34 2OOOs 38 2O1Os 42 Historical Timeline 46 Acquisition Story 54 Who We Are Now 58 Where We Are Going 64 Vision For The Future 68 1 For nearly a century, innovation and reliability have been the hallmarks of two giant U.S. aerospace icons – Aerojet and Rocketdyne. The companies’ propulsion systems have helped to strengthen national defense, launch astronauts into space, and propel unmanned spacecraft to explore the universe. ➢ Aerojet’s diverse rocket propulsion systems have powered military vehicles for decades – from rocket-assisted takeoff for propeller airplanes during World War II – through today’s powerful intercontinental ballistic missiles (ICBMs). The systems helped land men on the moon, and maneuvered spacecraft beyond our solar system. ➢ For years, Rocketdyne engines have played a major role in national defense, beginning with powering the United States’ first ICBM to sending modern military communication satellites into orbit. Rocketdyne’s technology also helped launch manned moon missions, propelled space shuttles, and provided the main power system for the International Space Station (ISS). ➢ In 2013, these two rocket propulsion manufacturers became Aerojet Rocketydne, blending expertise and vision to increase efficiency, lower costs, and better compete in the market. Now, as an industry titan, Aerojet Rocketdyne’s talented, passionate employees collaborate to create even greater innovations that protect America and launch its celestial future. 2011 A Standard Missile-3 (SM-3) interceptor is being developed as part of the U.S. Missile Defense Agency’s sea-based Aegis Ballistic Missile Defense System.
    [Show full text]
  • Design of an Airborne Launch Vehicle and an Air Launched Space Booster S
    AIAA 93-3955 Design of an Airborne Launch Vehicle and an Air Launched Space Booster S. M. Poth, M. A. Fisher, D. W. Levy and J. G. Eisley University of Michigan Ann Arbor, MI AlAA Aircraft Design, Systems and Operations Meeting Auaust 11-1 3, 1993 / Monterey, CA For permlssbn to copy or republish, contact the Amerkan Institute of Aemnautlcs and AatronautlCS 370 L'Enfant Promenade, S.W., Washlngton, D.C. 20024 DESIGN OF AN AIRBORNE LAUNCH VEHICLE AND AN AIR LAUNCHED SPACE BOOSTER v Stefan M. Poth, Jr.' Michael A. Fisher** David W. Levy? Joe G. Eisleyt University of Michigan Department of Aerospace Engineering Ann Arbor, Michigan Abstract In the future, there may be a market for an air launched space booster an order of magnitude larger. A space A conceptual design is presented for an air launched booster of this size would be capable of placing a heavy space booster and an associated carrier vehicle. This payload into low earth orbit (LEO), say, for space station system is capable of placing 17,000 lbs in low earth orbit resupply or one or more satellites into geosynchronous (LEO)and 7,900 lbs in geosynchronous transfer orbit transfer orbit (GTO). Such a large booster would require a (GTO). The airplane features a twin fuselage new airplane to be purposely built for its launch since no configuration for improved payload and landing gear current airplane could carry a space booster of this sue to integration, a high aspect ratio wing for high lift and any significant altitude. maneuverability at altitude, and is powered by six engines.
    [Show full text]
  • Project Gemini F L I G H T M a N U a L Project Gemini Flight Manual
    PROJECT GEMINI F L I G H T M A N U A L PROJECT GEMINI FLIGHT MANUAL REENTRY AN ORBITAL SIMULATOR PROJECT GEMINI FLIGHT MANUAL DRAFT UPDATED: 15/07/2020 1 | Page PROJECT GEMINI FLIGHT MANUAL TABLE OF CONTENTS I. INTRODUCTION .................................................................................................................................................... 6 1. ABOUT ................................................................................................................................................................. 7 2. A BRIEF HISTORY............................................................................................................................................. 8 3. CONTROLS ..................................................................................................................................................... 10 4. KEYBOARD CONTROLS.............................................................................................................................. 11 II. MAJOR COMPONENTS .................................................................................................................................. 14 1. THE SPACECRAFT ......................................................................................................................................... 15 2. ATTITUDE CONTROL .................................................................................................................................. 19 3. CABIN ..............................................................................................................................................................
    [Show full text]
  • N94-25022 Unclas G3/15 0204256
    https://ntrs.nasa.gov/search.jsp?R=19940020540 2020-06-16T16:27:43+00:00Z N94-25022 Unclas G3/15 0204256 _-_ The University of Michigan PRESENTS l '--'_"_.....: : .......;: Air Launched Space Booster -.j'.......'" .... June, 1993 NASA/USRA Preface - Table of Contents Table of Contents Pr"_ce Foreword iV Class Organization Structure Class Photograph \:i Technical Team Specialties Symbol List ix References xiii Chapter 1: Introduction 1.1 History of the Air Launched Space Booster 1.2 Design Process 1.3 Overview of the Gryphon Chapter 2: Spacecraft Integration ii i i 111111 iii 2.1 Introduction 14 2.2 The Bottom Line: Cost 14 2.3 Vehicle Configuration 17 2.4 Saftey Precautions 27 2.5 Conclusion 27 C h,apter 3: _ Analysis 3.1 Introduction 29 3.2 Mission Definition 29 3.3 Ascent Trajectory 30 3.4 Geosynchronous Missions 40 3.5 Spin Rates 45 3.6 Vehicle Aerodynamics 45 3.7 Mission Timeline 53 3.8 Future Work 54 Chapter 4: Propulsion 4.1 Introduction 57 4.2 Engines 57 4.3 Staging 65 4.4 Propellants 73 4.5 Propellant Tanks and Insulation 79 4.6 Future Work 89 4.7 Conclusion 91 Chapter 5: Payloads 5.1 Introduction 93 5.2 Payload Goals 93 5.3 Payload Market 94 5.4 Determination of Payload Bay Dimensions 97 5.5 Payload Limitations 99 5.6 Structural Considerations 100 5.7 Space Station Freedom Options 102 ii The University of Michigan Project Gryphon 5.8 Conclusions 104 Chapter 6:: Mission Control 6.1 Introduction 6.2 Guidance, Navigation, and Control 1_7 6.3 On-Board Computer System 113 6.4 Communications Systems llS 6.5 Conclusion 121 Chapter 7:
    [Show full text]
  • National Air & Space Museum Technical Reference Files: Propulsion
    National Air & Space Museum Technical Reference Files: Propulsion NASM Staff 2017 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Scope and Contents........................................................................................................ 1 Accessories...................................................................................................................... 1 Engines............................................................................................................................ 1 Propellers ........................................................................................................................ 2 Space Propulsion ............................................................................................................ 2 Container Listing ............................................................................................................. 3 Series B3: Propulsion: Accessories, by Manufacturer............................................. 3 Series B4: Propulsion: Accessories, General........................................................ 47 Series B: Propulsion: Engines, by Manufacturer.................................................... 71 Series B2: Propulsion: Engines, General............................................................
    [Show full text]
  • 액체로켓 연소기 노즐확장부 제작 및 재료 기술 동향 a Technical Trend Of
    한국추진공학회지 제16권 제3호, pp.97-103, 2012년 6월 97 技術論文 DOI: http://dx.doi.org/10.6108/KSPE.2012.16.3.097 액체로켓 연소기 노즐확장부 제작 및 재료 기술 동향 이금오*†․ 유철성** ․ 최환석* A Technical Trend of Manufacturing and Materials of Nozzle Extension for Thrust Chamber of Liquid Rocket Keum-Oh Lee*†․ Chul-Sung Ryu** ․ Hwan-Seok Choi* ABSTRACT The combustion chamber and nozzle of a liquid rocket engine should be protected from the high temperature combustion gas generated by the chamber. An upper-stage nozzle extension has a large expansion ratio, therefore, The light-weight refractory materials have been used since the weight impact on the launcher performance is crucial. Gas film cooling method was used before, but was not applicable nowadays. Ablative cooling method and radiative cooling method with niobium alloy, Ni-based superalloy and ceramic based composite have been used to this day. 초 록 액체 로켓 엔진의 연소기는 높은 온도의 연소가스를 발생시키므로 연소실과 노즐은 열적으로 보호되 어야 한다. 상단용 엔진의 노즐확장부는 큰 노즐 팽창비를 갖기 때문에 무게가 발사체 성능에 미치는 영향이 크므로 경량 내열 소재가 개발되어 사용되어 왔다. 가스 냉각 방식은 이전에는 널리 사용되었 으나 지금은 잘 사용되지 않으며, 니오븀 합금이나 니켈 기반 초합금, 세라믹 복합재를 사용하는 복사 냉각 방식과 흡열 냉각 방식은 지금까지도 발사체 상단에 많이 사용되고 있다. Key Words: Combustion Chamber(연소기), Nozzle Extension(노즐확장부), Composite Materials(복 합재료), Niobium Alloy(니오븀 합금), Superalloy(초합금) 1. 서 론 액체 로켓 연소기는 고압의 연료와 산화제가 분사기(injector)를 통하여 연소실에 분사된 후 연소되어 추력을 발생시킨다. 연소시 연소실에서 의 가스 온도는 3,600 K에 이르며, 이후 노즐을 접수일 2011.
    [Show full text]
  • Space Launch Vehicle Design
    Space Launch Vehicle Design Conceptual design of rocket powered, vertical takeoff, fully expendable and first stage boostback space launch vehicles David Woodward Department of Mechanical and Aerospace Engineering University of Texas at Arlington This dissertation is submitted for the degree of Masters of Science of Aerospace Engineering College of Engineering December 2017 i Declaration I hereby declare that except where specific reference is made to the work of others, this thesis is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. Of specific note is the MAE 4350/4351 Senior Design class that ran from January 2017 through August 2017 which was tasked with a similar project. The work presented in my thesis did not borrow from their work except for adapting their method for the estimating of the zero-lift drag coefficient of grid fins, which is referenced appropriately in the text. The methodology used to size first stage boostback launch vehicles and simulate a return-to-launch-site trajectory is of my own design and work. This thesis contains fewer than 51,000 words including appendices, bibliography, footnotes, tables and equations and has fewer than 90 figures. David Woodward January 2018 ii Acknowledgements To Dr. Chudoba, for first meeting with me back in my sophomore year and being a continual presence in my education ever since. The knowledge and skills I have developed from taking all of your classes and working in the AVD are indispensable, and I will be a far better engineer because of it.
    [Show full text]