Must Be a Real Engine Which Does Not Fire on Launchpad During Nominal Launch Sequence. No Launch System Engi

Total Page:16

File Type:pdf, Size:1020Kb

Must Be a Real Engine Which Does Not Fire on Launchpad During Nominal Launch Sequence. No Launch System Engi Inclusion criteria: must be a real engine which does not fire on launchpad during nominal launch sequence. No ion engines, manuvering thrusters or ullage motors - must be able to circularise a suborbital trajectory (in principle). Must be a real engine which flew at least once (flight is allowed to be a failure). Isp and Mass must be known. Launch system Engine Nationality Isp Thrust/kN Mass/kg Kosmos-3M 11D49 Russia 303 157.5 185 Buran 17D11 Russia 362 86.3 230 Buran 17D12 Russia 362 86.3 230 Delta AJ10-118F USA 306 41.4 95 AJ10-138 USA 311 35.6 110 Delta K AJ10-118K USA 321 43.4 98 AJ10-118D USA 278 33.7 90 AJ10-118 USA 271 33.8 90 One AJ-10 variantAJ10-104 was used inUSA Apollo service module 278 35.1 90 AJ10-118E USA 278 90 Astris Germany 310 23.3 68 ATE USA 347 20 58 Bell 8048 USA 276 68.9 127 Bell 8081 USA 285 71.2 130 Bell 8096 USA 293 71.2 132 Black Arrow-3UK 278 29.4 87 Castor 4B USA 281 430 1400 Castor 4BXL USA 267 429 1513 DFH-2 AKM China 288 43.46 70 EPKM China 292 190 541 FSW RetromotorChina 280 40.66 53 FW-4D USA 287 25 25 FW-4S TEM640USA 280 27.4 25 Gamma 2 UK 265 68.2 173 GCRC USA 230 11.6 31 GF-02 China 254 181 246 HM-10 France 443 61.8 145 HM7-A France 443 61.7 149 HM7-B France 447 70 155 Iris Italy 291 29.4 256 Saturn V J-2 USA 420 1033 1788.1 J-2S USA 436 1138 1400 Kestrel SpaceX 317 30.7 52 KRD-61 Russia 313 18.8 42 Soyuz TM, ProgressKTDU-425A Russia 315 18.9 70 KTDU-80 Russia 326 6.19 310 KTDU-417 Russia 314 18.92 81 Ariane 5 KTDU-5A Russia 287 45.5 48 L7 Germany 320 27.4 110 H-2 LE-5 Japan 450 103 245 LE-5A Japan 452 121.5 242 LE-5B Japan 447 137 269 LR91-11 USA 316 467 589 LR-91-3 USA 308 355.9 590 LR-91-5 USA 315 444.8 500 M-23-Mu Japan 285 542 2800 M-3B-Mu Japan 294 132.1 490 M-3B-J Japan 294 132.1 300 M-V-4 Japan 298 52 118 M24 Japan 288 1245.3 3410 M34 Japan 301 294 1000 M56A-1 Japan 297 228.5 466 Mage 1 France 295 14.9 34 Mage 2 France 293 45.5 40 MB-35 Japan 467 156 345 MB-60 Japan 467 266.7 591 MIHT-2 Russia 280 490.3 1500 MIHT-3 Russia 280 245.2 1000 MIHT-4 Russia 295 9.8 300 Nihka Canada 285 50.5 70 P4 France 273 176.5 1000 P6 France 211 29.4 120 Pegasus-3 USA 287 34.6 104 Pegasus XL-2USA 290 153.5 416 Pegasus-2 USA 290 118.2 345 Perigee Orbit ChinaTransfer Motor 280 222.84 496 Proton (Stage 3) PSLV-3 India 291 328.7 1100 Proton (Stage 2) RD-0213 Russia 328.6 19.62 95 RD-0211 Russia 326 582.1 566 RD-0105 Russia 316 49.4 125 RD-0107 Russia 326 297.9 410 RD-0109 Russia 324 54.52 121 RD-0110 Russia 326 297.9 408 RD-0205 Russia 322 606.4 552 RD-161P Russia 319 24.5 105 RD-113 Russia 360 1138 1100 RD-119 Russia 352 105.5 168 RD-115 Russia 357 1726 1250 RD-252 Russia 317 940.5 715 RD-262 Russia 317 941 728 RD-219 Russia 293 883 760 RD-223 Russia 314 1697 1240 RD-221 Russia 318 1118 1070 RD-58MF Russia 353 83.4 230 RD-58 Russia 349 83.4 300 RD-57A-1 Russia 460 395 550 RD-58S Russia 361 86.3 230 RD-58Z Russia 361 71 300 RD-704 Russia 407 1966 2422 RD-859 Russia 312 20.05 57 RD-868 Ukraine 325 23.25 203 RD-866 Ukraine 306 5.2 125 RD-864 Ukraine 309 20.2 199 Vega RD-862 Ukraine 331 142.63 192 RD-861G Italy 325 76.45 185 RD-869 Ukraine 313 8.58 196 RD-861K Ukraine 330 77.63 194 RD-858 Ukraine 315 20.1 53 RD-8 Ukraine 342 78.4 380 RD-852 Ukraine 255 48.25 133 RD-854 Ukraine 312 75.5 100 RD-852 Ukraine 280 54.23 113 RD-857 Ukraine 329 137.3 190 RL-10C USA 450 155.7 317 Centaur RL-10A-4-2 USA 451 99.1 167 RL-10A-3A USA 444 73.4 141 RL-10A-3 USA 444 65.6 131 RL-10 USA 410 66.7 131 RL-10A-1 USA 425 66.7 131 RL-10A-4 USA 449 92.5 168 S1.5400 Russia 340 66.7 153 S1.5400A Russia 342 67.3 148 S5.92 Russia 327 19.6 75 S5.98M Russia 326 19.62 95 Sergeant USA 235 6.66 42 SLV-2 India 267 267 1750 SLV-3 India 277 90.7 440 SLV-4 India 283 26.8 98 SR-19 USA 288 267.7 795 SRM-1 USA 296 181.5 1134 SRM-2 USA 304 78.4 1170 Star 37FM USA 290 47.9 81 Star 37S USA 287 45 53 Star 37XFP USA 290 31.5 71 Star 37F USA 286 55.5 67 Star 37E USA 284 68 83 Star 37D USA 266 45 64 Star 37C USA 286 45 83 Star 37B USA 291 45 64 Star 75 USA 288 242.8 565 Star 5C USA 260 43.5 63 Star 43A USA 298 77.11 144 Star 48B s USA 286 77.11 124 Star 48B USA 286 66 126 Star 31 USA 294 80 98 Star 20 USA 287 27.14 28 Star 17A USA 287 16.01 14 Star 17 USA 286 10.9 9 Star 20B USA 289 24.47 33 Star 24 USA 283 20 18 Star 13B USA 286 7.6 6 Star 13A USA 287 5.87 5 Star 13 USA 273 3.8 5 Star 12A USA 270 7.25 11 Falcon 9 Merlin 1D VacSpaceX 348 801 490 Star 10 USA 251 3.35 6 Star 30E USA 291 35.4 45 Star 30C USA 287 32.6 39 Star 30BP USA 292 27 38 Star 27 USA 288 27 27 Star 26C USA 272 35 32 Star 26B USA 272 34.63 23 Star 26 USA 271 39.1 37 Star 24C USA 282 21.47 19 Topaze France 255 120.1 306 Lunar Module AscentTR-201 Stage USA 301 41.9 113 Vexin A France 277 68.6 175 Viking 4 France 296 721 850 Viking 4B France 296 805 850 Ariane V Vinci France 467 180 280 X-248A USA 255 13.8 181 X-248 USA 256 12.4 30 X-254 USA 256 60.5 294 X-259 USA 293 93.1 300 X-259A USA 295 80.8 352 YF-73 China 425 44 236 Zefiro 9 USA 294 313 1000 Zefiro 23 USA 289 1200 3000 Falcon 9 Merlin 1D VacSpaceX FT 348 934 490 Space Shuttle SSME USA 452.3 2279 3500 N-1, Soyuz NK-33 Russia 331 1680 1240 Falcon 9 Merlin 1D VacSpaceX 348 801 490 Falcon 9 Merlin 1D VacSpaceX 348 934 490 467 180 280 317 30.7 52 Inclusion criteria: must be a real engine which does not fire on launchpad during nominal launch sequence. No ion engines, manuvering thrusters or ullage motors - must be able to circularise a suborbital trajectory (in principle). Must be a real engine which flew at least once (flight is allowed to be a failure). Isp and Mass must be known. Hypergolic Fuel Type Isp Thrust/kN Mass/kg Nitric Acid/UDMH 303 157.5 185 Kerolox Kerolox Nitric Acid/UDMH 306 41.4 95 N2O4/Aerozine-50 311 35.6 110 N2O4/Aerozine-50 321 43.4 98 Nitric acid/UDMH 278 33.7 90 Nitric acid/UDMH 271 33.8 90 Nitric acid/UDMH 278 35.1 90 Nitric acid/UDMH 278 0 90 N2O4/Aerozine-50 310 23.3 68 N2O4/MMH 347 20 58 Nitric acid/UDMH 276 68.9 127 Nitric acid/UDMH 285 71.2 130 Nitric acid/UDMH 293 71.2 132 Solid Solid Solid Solid Solid Solid Solid Solid H2O2/Kerosene Solid Solid Hydrolox Hydrolox Hydrolox Solid Hydrolox Hydrolox Kerolox N2O4/UDMH 313 18.8 42 N2O4/UDMH 315 18.9 70 N2O4/UDMH 326 6.19 310 Nitric acid/UDMH 314 18.92 81 Nitric acid/Amine 287 45.5 48 N2O4/MMH 320 27.4 110 Hydrolox Hydrolox Hydrolox N2O4/Aerozine-50 316 467 589 Kerolox N2O4/Aerozine-50 315 444.8 500 Solid Solid Solid Solid Solid Solid Solid Solid Solid Hydrolox Hydrolox Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid N2O4/UDMH 328.6 19.62 95 N2O4/UDMH 326 582.1 566 Kerolox Kerolox Kerolox Kerolox N2O4/UDMH 322 606.4 552 H2O2/Kerosene lox/udmh lox/udmh lox/udmh N2O4/UDMH 317 940.5 715 N2O4/UDMH 317 941 728 Nitric acid/UDMH 293 883 760 Nitric acid/UDMH 314 1697 1240 Nitric acid/UDMH 318 1118 1070 Kerolox Kerolox Hydrolox Kerolox Kerolox Lox/Kerosene/LH2 N2O4/UDMH 312 20.05 57 N2O4/UDMH 325 23.25 203 N2O4/UDMH 306 5.2 125 N2O4/UDMH 309 20.2 199 N2O4/UDMH 331 142.63 192 N2O4/UDMH 325 76.45 185 N2O4/UDMH 313 8.58 196 N2O4/UDMH 330 77.63 194 N2O4/UDMH 315 20.1 53 Kerolox Nitric acid/UDMH 255 48.25 133 N2O4/UDMH 312 75.5 100 N2O4/UDMH 280 54.23 113 N2O4/UDMH 329 137.3 190 Hydrolox Hydrolox Hydrolox Hydrolox Hydrolox Hydrolox Hydrolox Kerolox Kerolox N2O4/UDMH 327 19.6 75 N2O4/UDMH 326 19.62 95 Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Kerolox Solid Solid Solid Solid Solid Solid Solid Solid Solid N2O4/UDMH 255 120.1 306 N2O4/Aerozine-50 301 41.9 113 N2O4/UDMH 277 68.6 175 N2O4/UDMH 296 721 850 N2O4/UDMH 296 805 850 Hydrolox Solid Solid Solid Solid Solid Hydrolox Solid Solid Kerolox Hydrolox Kerolox Kerolox Kerolox Inclusion criteria: must be a real engine which does not fire on launchpad during nominal launch sequence.
Recommended publications
  • Delta II Icesat-2 Mission Booklet
    A United Launch Alliance (ULA) Delta II 7420-10 photon-counting laser altimeter that advances MISSION rocket will deliver the Ice, Cloud and land Eleva- technology from the first ICESat mission tion Satellite-2 (ICESat-2) spacecraft to a 250 nmi launched on a Delta II in 2003 and operated until (463 km), near-circular polar orbit. Liftoff will 2009. Our planet’s frozen and icy areas, called occur from Space Launch Complex-2 at Vanden- the cryosphere, are a key focus of NASA’s Earth berg Air Force Base, California. science research. ICESat-2 will help scientists MISSION investigate why, and how much, our cryosphere ICESat-2, with its single instrument, the is changing in a warming climate, while also Advanced Topographic Laser Altimeter System measuring heights across Earth’s temperate OVERVIEW (ATLAS), will provide scientists with height and tropical regions and take stock of the vege- measurements to create a global portrait of tation in forests worldwide. The ICESat-2 mission Earth’s third dimension, gathering data that can is implemented by NASA’s Goddard Space Flight precisely track changes of terrain including Center (GSFC). Northrop Grumman built the glaciers, sea ice, forests and more. ATLAS is a spacecraft. NASA’s Launch Services Program at Kennedy Space Center is responsible for launch management. In addition to ICESat-2, this mission includes four CubeSats which will launch from dispens- ers mounted to the Delta II second stage. The CubeSats were designed and built by UCLA, University of Central Florida, and Cal Poly. The miniaturized satellites will conduct research DELTA II For nearly 30 years, the reliable in space weather, changing electric potential Delta II rocket has been an industry and resulting discharge events on spacecraft workhorse, launching critical and damping behavior of tungsten powder in a capabilities for NASA, the Air Force Image Credit NASA’s Goddard Space Flight Center zero-gravity environment.
    [Show full text]
  • Rocket Propulsion Fundamentals 2
    https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force.
    [Show full text]
  • Orion Capsule Launch Abort System Analysis
    Orion Capsule Launch Abort System Analysis Assignment 2 AE 4802 Spring 2016 – Digital Design and Manufacturing Georgia Institute of Technology Authors: Tyler Scogin Michel Lacerda Jordan Marshall Table of Contents 1. Introduction ......................................................................................................................................... 4 1.1 Mission Profile ............................................................................................................................. 7 1.2 Literature Review ........................................................................................................................ 8 2. Conceptual Design ............................................................................................................................. 13 2.1 Design Process ........................................................................................................................... 13 2.2 Vehicle Performance Characteristics ......................................................................................... 15 2.3 Vehicle/Sub-Component Sizing ................................................................................................. 15 3. Vehicle 3D Model in CATIA ................................................................................................................ 22 3.1 3D Modeling Roles and Responsibilities: .................................................................................. 22 3.2 Design Parameters and Relations:............................................................................................
    [Show full text]
  • Materials for Liquid Propulsion Systems
    https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost.
    [Show full text]
  • Design for Demise Analysis for Launch Vehicles
    A first design for demise analysis for launch vehicles Henrik Simon, Stijn Lemmens Space debris: Inactive, manmade objects in space Source: ESA Overview Introduction Fundamentals Modelling approach Results and discussion Summary and outlook What is the motivation and task? INTRODUCTION Motivation . Mitigation: Prevention of creation and limitation of long-term presence . Guidelines: LEO removal within 25 years . LEO removal within 25 years after mission end . Casualty risk limit for re-entry: 1 in 10,000 Rising altitude Decay & re-entry above 2000 km Source: NASA Source: NASA Solution: Design for demise Source: ESA Scope of the thesis . Typical design of upper stages . General Risk assessment . Design for demise solutions to reduce the risk ? ? ? Risk A Risk B Risk C Source: CNES How do we assess the risk and simulate the re-entry? FUNDAMENTALS Fundamentals: Ground risk assessment Ah = + 2 Ai � ℎ = =1 � Source: NASA Source: NASA 3.5 m 5.0 m 2 2 ≈ ≈ Fundamentals: Re-entry simulation tools SCARAB: Spacecraft-oriented approach . CAD-like modelling . 6 DoF flight dynamics . Break-up / fragmentation computed How does a rocket upper stage look like? MODELLING Modelling approach . Research on typical design: . Elongated . Platform . Solid Rocket Motor . Lack of information: . Create common intersection . Deliberately stay top-level and only compare effects Modelling approach Modelling approach 12 Length [m] 9 7 5 3 2 150 300 500 700 800 1500 2200 Mass [kg] How much is the risk and how can we reduce it? SIMULATIONS Example of SCARAB re-entry simulation 6x Casualty risk of all reference cases Typical survivors Smaller Smaller fragments fragments Pressure tanks Pressure tanks Main tank Engine Main structure + tanks Design for Demise .
    [Show full text]
  • Interstellar Probe on Space Launch System (Sls)
    INTERSTELLAR PROBE ON SPACE LAUNCH SYSTEM (SLS) David Alan Smith SLS Spacecraft/Payload Integration & Evolution (SPIE) NASA-MSFC December 13, 2019 0497 SLS EVOLVABILITY FOUNDATION FOR A GENERATION OF DEEP SPACE EXPLORATION 322 ft. Up to 313ft. 365 ft. 325 ft. 365 ft. 355 ft. Universal Universal Launch Abort System Stage Adapter 5m Class Stage Adapter Orion 8.4m Fairing 8.4m Fairing Fairing Long (Up to 90’) (up to 63’) Short (Up to 63’) Interim Cryogenic Exploration Exploration Exploration Propulsion Stage Upper Stage Upper Stage Upper Stage Launch Vehicle Interstage Interstage Interstage Stage Adapter Core Stage Core Stage Core Stage Solid Solid Evolved Rocket Rocket Boosters Boosters Boosters RS-25 RS-25 Engines Engines SLS Block 1 SLS Block 1 Cargo SLS Block 1B Crew SLS Block 1B Cargo SLS Block 2 Crew SLS Block 2 Cargo > 26 t (57k lbs) > 26 t (57k lbs) 38–41 t (84k-90k lbs) 41-44 t (90k–97k lbs) > 45 t (99k lbs) > 45 t (99k lbs) Payload to TLI/Moon Launch in the late 2020s and early 2030s 0497 IS THIS ROCKET REAL? 0497 SLS BLOCK 1 CONFIGURATION Launch Abort System (LAS) Utah, Alabama, Florida Orion Stage Adapter, California, Alabama Orion Multi-Purpose Crew Vehicle RL10 Engine Lockheed Martin, 5 Segment Solid Rocket Aerojet Rocketdyne, Louisiana, KSC Florida Booster (2) Interim Cryogenic Northrop Grumman, Propulsion Stage (ICPS) Utah, KSC Boeing/United Launch Alliance, California, Alabama Launch Vehicle Stage Adapter Teledyne Brown Engineering, California, Alabama Core Stage & Avionics Boeing Louisiana, Alabama RS-25 Engine (4)
    [Show full text]
  • Delta IV Parker Solar Probe Mission Booklet
    A United Launch Alliance (ULA) Delta IV Heavy what is the source of high-energy solar particles. MISSION rocket will deliver NASA’s Parker Solar Probe to Parker Solar Probe will make 24 elliptical orbits an interplanetary trajectory to the sun. Liftoff of the sun and use seven flybys of Venus to will occur from Space Launch Complex-37 at shrink the orbit closer to the sun during the Cape Canaveral Air Force Station, Florida. NASA seven-year mission. selected ULA’s Delta IV Heavy for its unique MISSION ability to deliver the necessary energy to begin The probe will fly seven times closer to the the Parker Solar Probe’s journey to the sun. sun than any spacecraft before, a mere 3.9 million miles above the surface which is about 4 OVERVIEW The Parker percent the distance from the sun to the Earth. Solar Probe will At its closest approach, Parker Solar Probe will make repeated reach a top speed of 430,000 miles per hour journeys into the or 120 miles per second, making it the fastest sun’s corona and spacecraft in history. The incredible velocity trace the flow of is necessary so that the spacecraft does not energy to answer fall into the sun during the close approaches. fundamental Temperatures will climb to 2,500 degrees questions such Fahrenheit, but the science instruments will as why the solar remain at room temperature behind a 4.5-inch- atmosphere is thick carbon composite shield. dramatically Image courtesy of NASA hotter than the The mission was named in honor of Dr.
    [Show full text]
  • Los Motores Aeroespaciales, A-Z
    Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 1/12 Página: 1 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 Los Motores Aeroespaciales, A-Z (The Aerospace En- gines, A-Z) Versión 12 2018 por Ricardo Miguel Vidal * * * -MOTOR: Máquina que transforma en movimiento la energía que recibe. (sea química, eléctrica, vapor...) Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 1/12 Página: 2 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev. 01 Presentación de la edición 2018-V12 (Incluye todas las anteriores versiones y sus Apéndices) La edición 2003 era una publicación en partes que se archiva en Binders por el propio lector (2,3,4 anillas, etc), anchos o estrechos y del color que desease durante el acopio parcial de la edición. Se entregaba por grupos de hojas impresas a una cara (edición 2003), a incluir en los Binders (archivadores). Cada hoja era sustituíble en el futuro si aparecía una nueva misma hoja ampliada o corregida. Este sistema de anillas admitia nuevas páginas con información adicional. Una hoja con adhesivos para portada y lomo identifi caba cada volumen provisional. Las tapas defi nitivas fueron metálicas, y se entregaraban con el 4 º volumen. O con la publicación completa desde el año 2005 en adelante. -Las Publicaciones -parcial y completa- están protegidas legalmente y mediante un sello de tinta especial color VERDE se identifi can los originales.
    [Show full text]
  • Physical & Thermodynamic Properties Of
    PHYSICAL & THERMODYNAMIC PROPERTIES OF HYPERGOLIC PROPELLANTS: A REVIEW AND UPDATE S.L ARNOLD ENSCO, INC. VANDENBERG AFB, CA ABSTRACT Significant errors and omissions were found in some of the reported literature values for nitrogen tetroxide, monomethylhydrazine, and Aerozine-50. The methods used to try and resolve some of these errors included (1) a comparison of various literature values, including an assessment of data quality, to determine whether reported values were measured or estimated, (2) a derivation of temperature dependent correlation coefficients and validation with independent measurements (where sufficient measured data were available), and (3) an estimation of the missing parameters using modern techniques such as the method of corresponding states or group contribution methods. Utilizing these methods resulted in a validated set of properties (many as functions temperature) for hypergolic propellants, which are suitable for environmental modeling applications and more general engineering calculations. The complete parameter set is provided, along with references and examples illustrating the above methods. Also, mixing rules, pseudo-critical properties, and mixture properties are provided for a nominal composition Aerozine-50 mixture. INTRODUCTION The objective of this work was to find and validate existing hypergol parameters for use in environmental modeling applications. However, standard references and chemical engineering journals either do not have all of the required data, such as vapor viscosity as a function of temperature, or they contain crudely estimated values and outright errors. Although they contain some of the more hard to find parameters, the current propellant manuals no longer contain the ancillary information regarding data quality, sources, etc. Also, some of the reported data is mis- represented, i.e., if the original experiment was not specifically designed to measure critical properties, it’s most likely not an appropriate source for those parameters (especially when the original author has so stated).
    [Show full text]
  • Space Almanac 2005
    SpaceAl2005 manac Stratosphere begins 10 miles Limit for turbojet engines 20 miles Limit for ramjet engines 28 miles Astronaut wings awarded 50 miles Low Earth orbit begins 60 miles 0.95G 100 miles Medium Earth orbit begins 300 miles 44 44 AIR FORCEAIR FORCE Magazine Magazine / August / August 2005 2005 SpaceAl manacThe US military space operation in facts and figures. Compiled by Tamar A. Mehuron, Associate Editor, and the staff of Air Force Magazine Hard vacuum 1,000 miles Geosynchronous Earth orbit 22,300 miles 0.05G 60,000 miles NASA photo/staff illustration by Zaur Eylanbekov Illustration not to scale AIR FORCE Magazine / August 2005 AIR FORCE Magazine / /August August 2005 2005 4545 US Military Missions in Space Space Force Support Space Force Enhancement Space Control Space Force Application Launch of satellites and other Provide satellite communica- Assure US access to and freedom Pursue research and devel- high-value payloads into space tions, navigation, weather, mis- of operation in space and deny opment of capabilities for the and operation of those satellites sile warning, and intelligence to enemies the use of space. probable application of combat through a worldwide network of the warfighter. operations in, through, and from ground stations. space to influence the course and outcome of conflict. US Space Funding Millions of constant FY06 dollars $50,000 DOD 45,000 NASA 40,000 Other Total 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0 59 62 66 70 74 78 82 86 90 94 98 02 04 Fiscal Year FY NASA DOD Other Total FY NASA DOD Other
    [Show full text]
  • Instrument Host Overview - Spacecraft ======
    Instrument Host Overview - Spacecraft ===================================== Launch Vehicle Description -------------------------- The launch vehicle used for Mars Pathfinder was the McDonnell Douglas Delta II 7925. An engine section in the Delta first stage housed the Rocketdyne RS-27 main engine and two Rocketdyne LR101-NA-11 vernier engines. The vernier engines provided roll control during main engine burn, and attitude control after main engine cutoff and before second stage separation. The RS-27 main engine was a single start, liquid bi-propellant rocket engine which provided approximately 894,094 N of thrust at lift off. The first stage propellant load (96,000 kg) consisted of RP-1 fuel (thermally stable kerosene) and liquid oxygen as an oxidizer. The RP-1 fuel tank and liquid oxygen tank were separated by a center body section that housed control electronics, ordnance sequencing equipment, a telemetry system, and a rate gyro. First stage thrust augmentation was provided by nine solid-propellant Graphite Epoxy Motors (GEMs), each fueled with 12,000 kg of hydroxyl-terminated polybutadiene solid propellant. Each GEM provided an average thrust of 439,796 N at lift off. The main engine, vernier engines, and six of the GEMs were ignited at lift off. The remaining three GEMs were ignited in flight. The GEMs were jettisoned from the first stage after motor burnout. The interstage assembly extended from the top of the first stage to the second stage mini-skirt. This assembly carried loads to the first stage, and contained an exhaust vent and six spring driven separation rods. The Delta II 7925 second stage propulsion system included a restartable, liquid bi-propellant Aerojet AJ10-118K engine that consumed Aerozine 50 fuel (a 50/50 mix of hydrazine and asymmetric dimethyl hydrazine) and nitrogen tetroxide (N2O4).
    [Show full text]
  • Entityname Filenumber "D" PLATINUM CONTRACTING SERVICES, LLC L00005029984 #Becauseoffutbol L.L.C. L00005424745 #KIDSMA
    EntityName FileNumber "D" PLATINUM CONTRACTING SERVICES, LLC L00005029984 #BecauseOfFutbol L.L.C. L00005424745 #KIDSMATTERTOO, INC N00005532057 #LIVEDOPE Movement N00005462346 (2nd) Second Chance for All N00004919509 (H.E.L.P) Helping Earth Loving People N00005068586 1 800 Water Damage North America, LLC L00005531281 1 city, LLC L00005556347 1 DUPONT CIRCLE, LLC L00005471609 1 HOPE LLC L00005518975 1 Missouri Avenue NW LLC L00005547423 1 P STREET NW LLC L42692 1 S Realty Trust LLC L00005451539 1 SOURCE CONSULTING Inc. 254012 1 Source L.L.C. L00005384793 1 STOP COMMERCIAL KITCHEN EQUIPMENT, LLC L00005531370 1% for the Planet, Inc. N00005463860 1,000 Days N00004983554 1,000 DREAMS FUND N00005415959 10/40 CONNECTIONS, N00005517033 100 EYE STREET ACQUISITION LLC L00004191625 100 Fathers, The Inc. N00005501097 100 Property Partners of DC LLC L00005505861 100 REPORTERS N0000000904 1000 47th Pl NE LLC L00004651772 1000 CONNECTICUT MANAGER LLC L31372 1000 NEW JERSEY AVENUE, SE LLC L30799 1000 VERMONT AVENUE SPE LLC L36900 1001 17th Street NE L.L.C. L00005524805 1001 CONNECTICUT LLC L07124 1001 PENN LLC L38675 1002 3RD STREET, SE LLC L12518 1005 17th Street NE L.L.C. L00005524812 1005 E Street SE LLC L00004979576 1005 FIRST, LLC L00005478159 1005 Rhode Island Ave NE Partners LLC L00004843873 1006 Fairmont LLC L00005343026 1006 W St NW L.L.C. L00005517860 1009 NEW HAMPSHIRE LLC L04102 101 41ST STREET, NE LLC L23216 101 5TH ST, LLC L00005025803 101 GALVESTON PLACE SW LLC L51583 101 Geneva LLC L00005387687 101 P STREET, SW LLC L18921 101 PARK AVENUE PARTNERS, Inc. C00005014890 1010 25TH STREET LLC L52266 1010 IRVING, LLC L00004181875 1010 VERMONT AVENUE SPE LLC L36899 1010 WISCONSIN LLC L00005030877 1011 NEW HAMPSHIRE AVENUE LLC L17883 1012 13th St SE LLC L00005532833 1012 INC.
    [Show full text]