Steroid Pathways Spironolactone84, Dexamethasone85, Adrenal Gland (+) 86 84 87 Ketoconazole29, Bile Acid , St

Total Page:16

File Type:pdf, Size:1020Kb

Steroid Pathways Spironolactone84, Dexamethasone85, Adrenal Gland (+) 86 84 87 Ketoconazole29, Bile Acid , St Primary hormones (in CAPS) are made by organs by taking up cholesterol and converting it locally to, for example, progesterone. Much less is made from circulating DHEAS (Sulfate) precursors like pregnenolone. For example, taking DHEA can create testosterone and estrogen, but far less than is made by the testes or ovaries, respectively. Where is it made? Steroid Pathways Spironolactone84, dexamethasone85, Adrenal gland (+) 86 84 87 Ketoconazole29, bile acid , St. John's Wort , forskolin Find these Hormones on the DUTCH Report 30 spironolactone , Licorice root34, 35, spironolactone37, azole 88 88 89 apigenin, polyphenols31, 32 antifungals38, hyperglycemia27, apegenin31, 38 Low cysteine , inflammation , LPS , www.dutchtest.com (–) ketoconazole88, progestin88, licorice90 (–) (–) 17-hydroxylase 17,20 Lyase 17βHSD Pregnenolone 17-OH-Pregnenolone DHEA Androstenediol Where is it made? 4 Testes in men, from the ovaries (+) Isoflavonoids/phytoestrogens , (+) (–) phthalates, organochlorines, BPA5, (–) and adrenal DHEA in women. Where is it made? 33 5 Hyperglycemia27, PCBs , DHEA ketoconazole , finasteride, dutasteride Ovaries – less from 7 34 28 supplements , obesity 1 2 3βHSD 3βHSD hyperinsulinemia 3βHSD adrenals 3βHSD (+) Fenugreek , high ACTH/hyperadrenalism , Enterolactone, apigenin, genistein, 3 (+) PCOS chrysin and other flavoniods52,white button mushrooms53, grape seed extract, red wine 17-hydroxylase 17,20 Lyase 17βHSD 17-OH-Progesterone 55 56 PROGESTERONE Androstenedione TESTOSTERONE (–) procyanidin dimers , PCOS , antifungal 5β 57 58 59 α medications , metformin glyphosate , Aromatase (CYP19) Aromatase (CYP19) 5β *5 Etiocholanolone 5β aromatase inhibitors (letrozole, anastrozole) *5α *5α CYP21 Epi-Testosterone 5α-DHT 46 a- Pregnanediol β- Pregnanediol 5β-Androstanediol Obesity and inflammation , high (+) insulin47, forskolin48, quercetin, 3αHSD 49 EGCG20, PCOS8, curcumin21, genistein (bioflavonoids) , white Where is it More Cortisone: 17βHSD 50 51 7-keto-DHEA19, progesterone19, coffee22, holy peony and licorice root , atrazine , *5α-Reductase/5β-Reductase made? Androsterone 5α-Androstanediol 39 23 24 19, 26 rutin Adrenal gland basil , bitter melon , hyperthyroidism , 5α-Reductase is best known because it makes 19 19 high estrogens , glucocorticoids 39 41 4, 34, 35 4,38 androgens like testosterone more potent. It is CYP11b1 Rutin , alcohol , abdominal Licorice , apigenin , obesity42, bioflavonoids43 pyhtoestrogens4, 43, atrazine45 also responsible for metabolizing progesterone (–) and cortisol. If up-regulated, it may cause high (+) androgen symptoms in men (thinning hair, CORTISOL 11β-HSD Cortisone Estrone (E1) 17βHSD ESTRADIOL (E2) prostate) and women (as in PCOS, thinning hair, (active) (inactive) Where is it made? Ovaries – lesser acne, facial hair growth). 5β-Metabolites are less St. John's Wort74, pesticides75, caffeine62, smoking62, (+) (+) amounts elsewhere androgenic (weaker). CYP-3A4 PAHs74, moderate alcohol consumption68, obesity68 3A4 More Cortisol: Insulin from DHEA/ 5β 6, 17 * resistance, obesity , 5β Testosterone. CYP-1B1 *5α 18 19, 5α-Reductase is increased in particular by: Insulin inflammation , glucocorticoids * (–) Grapefruit60, resveratrol60, rosemary65, wild yam77, 25 (–) 6 7 hypothyroidism , licorice peppermint oil78, azole antifungals79 resistance and obesity , DHEA supplementation , 19 8 root , phthalates, organotins, PCOS alkylphenols19, mother's 19 CYP-1A1 17βHSD diet during pregnancy , 16-OHE 1 Estriol (E3) 5α-Reductase may be decreased by: Saw palmetto progesterone19 9 10 11 and beta-sitosterol , reishi , nettle root , Pygeum Flavonoids73, resveratrol71 africanum12, PUFA and EGCG13 (–) *CYP3A4 Inflammation70, smoking71, PAHs69 Many common medications induce CYP3A4, 5β-Reductase may be affected by some of the (+) including but not limited to, phenobarbitol, above listed things as well (often to a lesser phenytoin, rifampicin, and glucocorticoids. degree). α-THF THF THE COMT Common medications interfere with or 4-OHE1 4-MeOE1 competitively inhibit CYP3A4 including cimetidine, tamoxifen, quinolones, fluoxetine, 5β-Reductase may be increased by: Insulin Cortisol Metabolism/Clearance Cruciferous vegetables60, DIM/IC361, 14 15 etc... resistance, high triglycerides , PCOS Cortisol is metabolized by 5α/5β-reductase (and 3α-HSD) to α/β-THF & THE caffeine62, soy63, fish oil64, rosemary for excretion. This process is particularly increased in obesity, high insulin (+) 65 66, 67 Estradiol80, phthalate esters81, rhodiola rosea, 16 (–) extract , thyroxine flaxseed 5β-Reductase may be decreased by: Licorice and hyperthyroid. It may be slowed in cases of hypothyroidism, anorexia or quercetin, catechin and epicatechin83 poor liver function. (–) 2-OHE1 COMT 2-MeOE1 (+) 67 The information on this chart is for educational purposes only and is not a suggestion for supplementation with any of the listed items. High sugar diet , moderate alcohol SAM-e, magnesium, B6, B12, folate, consumption68, resveratrol and Please see the DUTCH Test® Treatment Guide for other factors affecting the production of primary reproductive and adrenal hormones. betaine (cofactors) pterostilbene69 References 23. Jothie Richard, E., et al., Anti-stress Activity of Ocimum sanctum: 48. Watanabe, M. and S. Nakajin, Forskolin up-regulates aromatase 71. Li, M.Y., et al., Estrogen receptor alpha promotes smoking-carcin- Possible Effects on Hypothalamic-Pituitary-Adrenal Axis.Phytother (CYP19) activity and gene transcripts in the human adrenocortical ogen-induced lung carcinogenesis via cytochrome P450 1B1. J Mol 1. Hamden, K., et al., Potential protective effect on key steroidogen sis Res, 2016. 30(5): p. 805-14. carcinoma cell line H295R. J Endocrinol, 2004. 180(1): p. 125-33. Med (Berl), 2015. 93(11): p. 1221-33. and metabolic enzymes and sperm abnormalities by fenugreek ste- 24. Blum, A., et al., Momordica charantia extract, a herbal remedy for 49. Sanderson, J.T., et al., Induction and inhibition of aromatase 72. Jaramillo, I.C., et al., Effects of fuel components and combustion roids in testis and epididymis of surviving diabetic rats. Arch Physiol type 2 diabetes, contains a specific 11β-hydroxysteroid dehydroge- (CYP19) activity by natural and synthetic flavonoid compounds in particle physicochemical properties on toxicological responses of Biochem, 2010. 116(3): p. 146-55. nase type 1 inhibitor. J Steroid Biochem Mol Biol, 2012. 128(1-2): p. H295R human adrenocortical carcinoma cells. Toxicol Sci, 2004. lung cells. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2018. 2. Simonian, M.H., ACTH and thyroid hormone regulation of 3 be- 51-5. 82(1): p. 70-9. 53(4): p. 295-309. ta-hydroxysteroid dehydrogenase activity in human fetal adreno- 25. Hoshiro, M., et al., Comprehensive study of urinary cortisol me- 50. Takeuchi, T., et al., Effect of paeoniflorin, glycyrrhizin and glycyr- 73. Doostdar, H., M.D. Burke, and R.T. Mayer, Bioflavonoids: selective cortical cells. J Steroid Biochem, 1986. 25(6): p. 1001-6. tabolites in hyperthyroid and hypothyroid patients. Clin Endocrinol rhetic acid on ovarian androgen production. Am J Chin Med, 1991. substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. 3. Kaaijk, E.M., et al., Distribution of steroidogenic enzymes involved (Oxf), 2006. 64(1): p. 37-45. 19(1): p. 73-8. Toxicology, 2000. 144(1-3): p. 31-8. in androgen synthesis in polycystic ovaries: an immunohistochemi- 26. Taniyama, M., K. Honma, and Y. Ban, Urinary cortisol metabolites in 51. Holloway, A.C., et al., Atrazine-induced changes in aromatase activ- 74. Whitten, D.L., et al., The effect of St John's wort extracts on CYP3A: cal study. Mol Hum Reprod, 2000. 6(5): p. 443-7. the assessment of peripheral thyroid hormone action: application ity in estrogen sensitive target tissues. J Appl Toxicol, 2008. 28(3): p. a systematic review of prospective clinical trials. Br J Clin Pharmacol, 4. Deluca, D., et al., Inhibition of 17beta-hydroxysteroid dehydroge- for diagnosis of resistance to thyroid hormone. Thyroid, 1993. 3(3): 260-70. 2006. 62(5): p. 512-26. nases by phytoestrogens: comparison with other steroid metabo- p. 229-33. 52. Lephart, E.D., Modulation of Aromatase by Phytoestrogens. Enzyme 75. Bradlow, H.L., et al., Effects of pesticides on the ratio of 16 al- lizing enzymes. J Steroid Biochem Mol Biol, 2005. 93(2-5): p. 285-92. 27. Ueshiba, H., et al., Decreased steroidogenic enzyme 17,20-lyase Res, 2015. 2015: p. 594656. pha/2-hydroxyestrone: a biologic marker of breast cancer risk. 5. Zhang, S., et al., Endocrine disruptors of inhibiting testicular and increased 17-hydroxylase activities in type 2 diabetes mellitus. 53. Novaes, M.R., et al., The effects of dietary supplementation with Environ Health Perspect, 1995. 103 Suppl 7: p. 147-50. 3β-hydroxysteroid dehydrogenase. Chem Biol Interact, 2019. 303: Eur J Endocrinol, 2002. 146(3): p. 375-80. Agaricales mushrooms and other medicinal fungi on breast cancer: 76. Luckert, C., et al., Polycyclic aromatic hydrocarbons stimulate p. 90-97. 28. Nestler, J.E. and D.J. Jakubowicz, Decreases in ovarian cytochrome evidence-based medicine. Clinics (Sao Paulo), 2011. 66(12): p. 2133- human CYP3A4 promoter activity via PXR. Toxicol Lett, 2013. 222(2): 6. Tomlinson, J.W., et al., Impaired glucose tolerance and insulin resis- P450c17 alpha activity and serum free testosterone after reduction 9. p. 180-8. tance are associated with increased adipose 11beta-hydroxysteroid of insulin secretion in polycystic ovary syndrome. N Engl J Med, 54. Satoh, K., et al., Inhibition of aromatase activity by
Recommended publications
  • Impaired Hepatic Drug and Steroid Metabolism in Congenital Adrenal
    European Journal of Endocrinology (2010) 163 919–924 ISSN 0804-4643 CLINICAL STUDY Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency Dorota Tomalik-Scharte1, Dominique Maiter2, Julia Kirchheiner3, Hannah E Ivison, Uwe Fuhr1 and Wiebke Arlt School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK, 1Department of Pharmacology, University Hospital, University of Cologne, 50931 Cologne, Germany, 2Department of Endocrinology, University Hospital Saint Luc, 1200 Brussels, Belgium and 3Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, 89019 Ulm, Germany (Correspondence should be addressed to W Arlt; Email: [email protected]) Abstract Objective: Patients with congenital adrenal hyperplasia due to P450 oxidoreductase (POR) deficiency (ORD) present with disordered sex development and glucocorticoid deficiency. This is due to disruption of electron transfer from mutant POR to microsomal cytochrome P450 (CYP) enzymes that play a key role in glucocorticoid and sex steroid synthesis. POR also transfers electrons to all major drug- metabolizing CYP enzymes, including CYP3A4 that inactivates glucocorticoid and oestrogens. However, whether ORD results in impairment of in vivo drug metabolism has never been studied. Design: We studied an adult patient with ORD due to homozygous POR A287P, the most frequent POR mutation in Caucasians, and her clinically unaffected, heterozygous mother. The patient had received standard dose oestrogen replacement from 17 until 37 years of age when it was stopped after she developed breast cancer. Methods: Both subjects underwent in vivo cocktail phenotyping comprising the oral administration of caffeine, tolbutamide, omeprazole, dextromethorphan hydrobromide and midazolam to assess the five major drug-metabolizing CYP enzymes.
    [Show full text]
  • Hormone Testing Summary
    Accession # 00280399 Female Sample Report 123 A Street Sometown , CA 90266 Last Menstrual Period: Ordering Physician: DOB: 1953-10-10 Collection Times: Precision Analytical Age: 63 2016-10-02 06:00AM 2016-10-02 08:00AM Gender: Female 2016-10-01 06:00PM 2016-10-01 10:00PM 2016-10-02 02:00AM Hormone Testing Summary Key (how to read the results): Sex Hormones See Pages 2 and 3 for a thorough breakdown of sex hormone metabolites opausa n l R e a m n e g 1.8 4.5 6.0 2.3 14.0 r 5.1 2.8 1.5 P e patient low limit high limit 20.0 result 0.2-0.7 0.3-2.0 Postmenopausal range Estradiol(E2) Progesterone Testosterone (Serum Equivalent, ng/mL) Progesterone Serum Equivalent is a calculated value based on urine pregnanediol. Adrenal Hormones See pages 4 and 5 for a more complete breakdown of adrenal hormones Total DHEA Production 300 500 3000 Age Range 2516 Daily Free Cortisol Pattern 20-39 1300-3000 240 40-60 750-2000 (ng/mg) >60 500-1200 Total DHEA Production (DHEAS + Etiocholanolone + Androsterone) 180 High Range Limit 120Cortisol 80 52 2750 5930 60 230 6500 Patient Values Low Range Limit 24hr Free Cortisol cortisol Metabolized Cortisol (THF+THE) 0 (A+B+C+D) metabolism (Total Cortisol Production) Waking (A) Morning (B) Afternoon (C) Night (D) Free cortisol best reflects tissue levels. Metabolized cortisol best reflects total cortisol production. The following videos (which can also be found on the website under the listed names along with others) may aid your understanding: DUTCH Complete Overview Estrogen Tutorial Female Androgen Tutorial Cortisol Tutorial PLEASE BE SURE TO READ BELOW FOR A NY SPECIFIC LA B COMMENTS.
    [Show full text]
  • Characterization of a Microsomal Retinol Dehydrogenase Gene from Amphioxus: Retinoid Metabolism Before Vertebrates
    Chemico-Biological Interactions 130–132 (2001) 359–370 www.elsevier.com/locate/chembiont Characterization of a microsomal retinol dehydrogenase gene from amphioxus: retinoid metabolism before vertebrates Diana Dalfo´, Cristian Can˜estro, Ricard Albalat, Roser Gonza`lez-Duarte * Departament de Gene`tica, Facultat de Biologia, Uni6ersitat de Barcelona, A6. Diagonal, 645, E-08028, Barcelona, Spain Abstract Amphioxus, a member of the subphylum Cephalochordata, is thought to be the closest living relative to vertebrates. Although these animals have a vertebrate-like response to retinoic acid, the pathway of retinoid metabolism remains unknown. Two different enzyme systems — the short chain dehydrogenase/reductases and the cytosolic medium-chain alcohol dehydrogenases (ADHs) — have been postulated in vertebrates. Nevertheless, recent data show that the vertebrate-ADH1 and ADH4 retinol-active forms originated after the divergence of cephalochordates and vertebrates. Moreover, no data has been gathered in support of medium-chain retinol active forms in amphioxus. Then, if the cytosolic ADH system is absent and these animals use retinol, the microsomal retinol dehydrogenases could be involved in retinol oxidation. We have identified the genomic region and cDNA of an amphioxus Rdh gene as a preliminary step for functional characterization. Besides, phyloge- netic analysis supports the ancestral position of amphioxus Rdh in relation to the vertebrate forms. © 2001 Elsevier Science Ireland Ltd. All rights reserved. Keywords: Retinol dehydrogenase; Retinoid metabolism; Amphioxus * Corresponding author. Fax: +34-93-4110969. E-mail address: [email protected] (R. Gonza`lez-Duarte). 0009-2797/01/$ - see front matter © 2001 Elsevier Science Ireland Ltd. All rights reserved. PII: S0009-2797(00)00261-1 360 D.
    [Show full text]
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Methionine Sulfoxide Reductase a Is a Stereospecific Methionine Oxidase
    Methionine sulfoxide reductase A is a stereospecific methionine oxidase Jung Chae Lim, Zheng You, Geumsoo Kim, and Rodney L. Levine1 Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892-8012 Edited by Irwin Fridovich, Duke University Medical Center, Durham, NC, and approved May 10, 2011 (received for review February 10, 2011) Methionine sulfoxide reductase A (MsrA) catalyzes the reduction Results of methionine sulfoxide to methionine and is specific for the S epi- Stoichiometry. Branlant and coworkers have studied in careful mer of methionine sulfoxide. The enzyme participates in defense detail the mechanism of the MsrA reaction in bacteria (17, 18). against oxidative stresses by reducing methionine sulfoxide resi- In the absence of reducing agents, each molecule of MsrA dues in proteins back to methionine. Because oxidation of methio- reduces two molecules of MetO. Reduction of the first MetO nine residues is reversible, this covalent modification could also generates a sulfenic acid at the active site cysteine, and it is function as a mechanism for cellular regulation, provided there reduced back to the thiol by a fast reaction, which generates a exists a stereospecific methionine oxidase. We show that MsrA disulfide bond in the resolving domain of the protein. The second itself is a stereospecific methionine oxidase, producing S-methio- MetO is then reduced and again generates a sulfenic acid at the nine sulfoxide as its product. MsrA catalyzes its own autooxidation active site. Because the resolving domain cysteines have already as well as oxidation of free methionine and methionine residues formed a disulfide, no further reaction forms.
    [Show full text]
  • Role of Peroxisomes in Granulosa Cells, Follicular Development and Steroidogenesis
    Role of peroxisomes in granulosa cells, follicular development and steroidogenesis in the mouse ovary Inaugural Dissertation submitted to the Faculty of Medicine in partial fulfillment of the requirements for the PhD-Degree of the Faculties of Veterinary Medicine and Medicine of the Justus Liebig University Giessen by Wang, Shan of ChengDu, China Gießen (2017) From the Institute for Anatomy and Cell Biology, Division of Medical Cell Biology Director/Chairperson: Prof. Dr. Eveline Baumgart-Vogt Faculty of Medicine of Justus Liebig University Giessen First Supervisor: Prof. Dr. Eveline Baumgart-Vogt Second Supervisor: Prof. Dr. Christiane Herden Declaration “I declare that I have completed this dissertation single-handedly without the unauthorized help of a second party and only with the assistance acknowledged therein. I have appropriately acknowledged and referenced all text passages that are derived literally from or are based on the content of published or unpublished work of others, and all information that relates to verbal communications. I have abided by the principles of good scientific conduct laid down in the charter of the Justus Liebig University of Giessen in carrying out the investigations described in the dissertation.” Shan, Wang November 27th 2017 Giessen,Germany Table of Contents 1 Introduction ...................................................................................................................... 3 1.1 Peroxisomal morphology, biogenesis, and metabolic function ...................................... 3 1.1.1
    [Show full text]
  • The Steroid Metabolome in Men with Mood and Anxiety Disorders
    Physiol. Res. 64 (Suppl. 2): S275-S282, 2015 https://doi.org/10.33549/physiolres.933067 The Steroid Metabolome in Men With Mood and Anxiety Disorders M. DUŠKOVÁ1, M. HILL1, M. BIČÍKOVÁ1, M. ŠRÁMKOVÁ1, D. ŘÍPOVÁ2, P. MOHR2, L. STÁRKA1 1Institute of Endocrinology, Prague, Czech Republic, 2National Institute of Mental Health, Klecany, Czech Republic Received May 5, 2015 Accepted May 20, 2015 Summary many other hormones and various factors have been The mood and behavior of individuals result from an orchestra of identified as modulators of mood and behavior in such many factors. Among them steroids play an important role; disorders. Recent studies have described the role of brain- however, only several common hormones have been investigated derived neurotrophic factor (BDNF) (Pluchino et al. in this respect. It has been demonstrated that some steroid 2013, Numakawa et al. 2014), thyroid hormones (Duntas metabolites long considered merely the products of steroid and Mails 2013), inflammation (Halaris 2013), immunity hormone metabolism in fact possess considerable activity in the (Pitychoutis and Papadopoulou-Daifoti 2010), melatonin CNS. For this reason we studied the steroid metabolome (Boyce and Hopwood 2013), oxytocin and vasopressin including 50 analytes in 20 men with depression, 20 men with (Scantamburlo et al. 2009, Matsuzaki et al. 2012), the anxiety and 30 healthy controls. Significant differences were renin-angiotensin-aldosterone system (Franklin et al. found not only between controls and men with either depression 2012, Murck et al. 2012), the cannabinoid system or anxiety, but also between men with depression and anxiety. (Martykánová 2010, Gorzalka and Hill 2011, Smaga et Particularly striking were those steroids until now not generally al.
    [Show full text]
  • Cholesterol Metabolites 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: from Discovery to Clinical Usage
    H OH metabolites OH Review Cholesterol Metabolites 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: From Discovery to Clinical Usage Yaping Wang 1, Xiaobo Li 2 and Shunlin Ren 1,* 1 Department of Internal Medicine, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23249, USA; [email protected] 2 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; [email protected] * Correspondence: [email protected]; Tel.: +1-(804)-675-5000 (ext. 4973) Abstract: Oxysterols have long been believed to be ligands of nuclear receptors such as liver × recep- tor (LXR), and they play an important role in lipid homeostasis and in the immune system, where they are involved in both transcriptional and posttranscriptional mechanisms. However, they are increas- ingly associated with a wide variety of other, sometimes surprising, cell functions. Oxysterols have also been implicated in several diseases such as metabolic syndrome. Oxysterols can be sulfated, and the sulfated oxysterols act in different directions: they decrease lipid biosynthesis, suppress inflammatory responses, and promote cell survival. Our recent reports have shown that oxysterol and oxysterol sulfates are paired epigenetic regulators, agonists, and antagonists of DNA methyl- transferases, indicating that their function of global regulation is through epigenetic modification. In this review, we explore our latest research of 25-hydroxycholesterol and 25-hydroxycholesterol 3-sulfate in a novel regulatory mechanism and evaluate the current evidence for these roles. Citation: Wang, Y.; Li, X.; Ren, S. Keywords: oxysterol sulfates; oxysterol sulfation; epigenetic regulators; 25-hydroxysterol; Cholesterol Metabolites 25-hydroxycholesterol 3-sulfate; 25-hydroxycholesterol 3,25-disulfate 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: From Discovery to Clinical Usage.
    [Show full text]
  • Regulation of Sulfotransferase Enzymes by Prototypical Microsomal Enzyme Inducers in Mice
    JPET Fast Forward. Published on November 9, 2007 as DOI: 10.1124/jpet.107.129650 JPET FastThis Forward.article has not Published been copyedited on and November formatted. The 9, final 2007 version as DOI:10.1124/jpet.107.129650may differ from this version. JPET # 129650 Regulation of Sulfotransferase enzymes by Prototypical Microsomal Enzyme Inducers in Mice Yazen Alnouti and Curtis D Klaassen (YA): Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Downloaded from Medical Center, Kansas City, KS 66160 (CDK): Department of Pharmacology, Toxicology and Therapeutics, University of jpet.aspetjournals.org Kansas Medical Center, Kansas City, KS 66160 at ASPET Journals on October 2, 2021 1 Copyright 2007 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on November 9, 2007 as DOI: 10.1124/jpet.107.129650 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 129650 Short Title: Regulation of Sults Expression in Male and Female Mice Corresponding Author: Curtis Klaassen, Ph.D. Department of Pharmacology, Toxicology, and Therapeutics University of Kansas Medical Center Downloaded from 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA. Phone: (913)588-7714 jpet.aspetjournals.org Fax: (913) 588-7501; E-mail: [email protected] at ASPET Journals on October 2, 2021 Number of text pages: 23 pages Number of tables: 4 tables Number of figures: 10 figures Number of references: 59 Number of words in abstract: 235 Number of words in introduction: 685 (including references in the text) Number of words in discussion: 2671 (including references in the text) Abbreviations: Sult: Sulfotransferase, bDNA: branched DNA signal amplification assay, PAPS: 3'-phosphoadenosine 5'phosphosulfate, RLU: relative light unit(s), AhR: hydrocarbon receptor, CAR: constitutive androstane receptor, PXR: pregnane X receptor, PPARα: peroxisome proliferator activated receptor α, and Nrf2: NF-E2 related factor 2.
    [Show full text]
  • Estroquench™ Hormone Specific Formulation™
    PRODUCT DATA DOUGLAS LABORATORIES® 08/2014 1 EstroQuench™ Hormone Specific Formulation™ DESCRIPTION EstroQuench™ is a Hormone Specific Formulation™ of ingredients that have documented anti-aromatase activity as well as androgenic adaptogens which support the function of endogenous aromatase inhibitors. Collectively these herbs promote minimal production and function of estrogens, while promoting testosterone function, including optimal sexual function in both genders. This formulation is designed to quench excessive production of estrogens and aberrant functions of them while supporting optimal function of androgens by maintaining the health of androgen producing glands.† Hormone Specific Formulation™ provided by Douglas Laboratories® and formulated by Dr. Joseph J Collins is created to support the optimal function of specific hormones through the use of hormone specific adaptogens, hormone specific agonists and hormone specific functional mimetics. This formulation may be used as part of a hormone health program with dietary and nutrient support. In addition, this formulation may be used by clinicians as an adjuvant to support optimal hormone health in patients who have been prescribed bioidentical hormone therapies. FUNCTIONS Aromatase (a cytochrome P450 enzyme {CYP19}) is the enzyme that controls the conversion of androgens to estrogens. More specifically, aromatase is the enzyme responsible for catalyzing the biosynthesis of androstenedione into estrone, and the biosynthesis of testosterone to estradiol. Estrogens include the broad range of aromatized hormones created form androgens. The specific attribute of estrogens that separate them from progestogens, androgens and corticoids is that estrogens are the only aromatized steroid hormones. Estradiol, the most potent endogenous estrogen, is biosynthesized by aromatization from androgens by aromatase (which is also called estrogen synthase).
    [Show full text]
  • Test Report Comprehensive Hormone Insights™
    698814 COMPREHENSIVE HORMONE INSIGHTS™ TEST REPORT Dr. Maximus, N.D. E: [email protected] Date of Collection: P: 403-241-4500 Time of Collection: F: 403-241-4501 Date of Receipt: www.rmalab.com Reported On: CHI Accession: 698814 Healthcare Professional Patient Age: Dr. Maximus, N.D. Date of Birth: Gender: Male F: Relevant Medications Biometrics Curcumin Height (in) : 73 Weight (lb) : 180 BMI : 24 Waist (in) : 35 Hip (in) : 41 CHI Accession: 698814 SUMMARY HMUS01 How to read the graphs LEGEND: 50 66 Sex Steroid Hormones 50 66 Middle third of 33 33 84 reference population Hormone Start of 83 100 80 100 highest 16 Percentile Precursors 16 Percentile third of Sum of Androgens Sum of Estrogens 50 66 reference 0 0 population (T, DHT, α+β androstanediol) Listed in Interp Guide 33 84 End of 100 16 lowest Percentile00 50 66 50 66 third of 33 33 84 reference 0 population Patient’s percentile rank 81 100 95 100 compared to reference 16 Percentile 16 Percentile population (see summary) DHEA + Metabolites Sum of Progesterone Metabolites 0 (DHEA + A + E) 0 α+β Pregnanediol Cortisol Melatonin Oxidative Stress Free Cortisol Profile (ng/mg) 100 50 66 50 66 33 84 33 84 80 64 100 0 100 16 Percentile 16 Percentile 60 6-sulfatoxy 8-Hydroxy-2- 0 Melatonin 0 deoxyguanosine 40 (Overnight) (Overnight) 20 6-sulfatoxymelatonin provides 8-hydroxy-2-deoxyguanosine is Cortisol/Creatinine (ng/mg) insight into melatonin levels. a marker of oxidative stress 0 Morning Dinner Bedtime A B C 50 66 Free cortisol Cortisol Metabolites 33 84 profile is used to provides a general Testosterone Cortisol assess diurnal assessment of 16 100 cortisol rhythm adrenal cortisol 16 Percentile Cortisol production Cortisol Metabolites 0 (α+β THF + THE) Testosterone Cortisol/Testosterone provides insight into relative catabolic (cortisol) and anabolic (testosterone) states.
    [Show full text]
  • Increased and Mistimed Sex Hormone Production in Night Shift Workers
    Published OnlineFirst March 3, 2015; DOI: 10.1158/1055-9965.EPI-14-1271 Research Article Cancer Epidemiology, Biomarkers Increased and Mistimed Sex Hormone Production & Prevention in Night Shift Workers Kyriaki Papantoniou1,2,3,4, Oscar J. Pozo2, Ana Espinosa1,2,3,4, Josep Marcos2,3, Gemma Castano-Vinyals~ 1,2,3,4, Xavier Basagana~ 1,2,3,4, Elena Juanola Pages 5, Joan Mirabent6,7, Jordi Martín8, Patricia Such Faro9, Amparo Gasco Aparici10, Benita Middleton11, Debra J. Skene11, and Manolis Kogevinas1,2,3,4,12 Abstract Background: Night shift work has been associated with Results: Night workers had higher levels of total progestagens an increased risk for breast and prostate cancer. The effect [geometric mean ratio (GMR) 1.65; 95% confidence intervals of circadian disruption on sex steroid production is a pos- (CI), 1.17–2.32] and androgens (GMR: 1.44; 95% CI, 1.03–2.00), sible underlying mechanism, underinvestigated in hum- compared with day workers, after adjusting for potential con- ans. We have assessed daily rhythms of sex hormones founders. The increased sex hormone levels among night and melatonin in night and day shift workers of both shift workers were not related to the observed suppression of sexes. 6-sulfatoxymelatonin. Peak time of androgens was significantly Methods: We recruited 75 night and 42 day workers, ages later among night workers, compared with day workers (testos- 22 to 64 years, in different working settings. Participants terone: 12:14 hours; 10:06-14:48 vs. 08:35 hours; 06:52-10:46). collected urine samples from all voids over 24 hours on a Conclusions: We found increased levels of progestagens and working day.
    [Show full text]