Cascade Reservoirs Optimization in Citarum River Indonesia

Total Page:16

File Type:pdf, Size:1020Kb

Cascade Reservoirs Optimization in Citarum River Indonesia Hydropower15 Stravanger, Norway 15 – 16 June 2015 Cascade Reservoirs Optimization in Citarum River Indonesia Reni Mayasari & Budy Gunady Jasa Tirta II Public Corporation, Indonesia ABSTRACT Hydropower’s located in the three cascade reservoirs are all situated on the Citarum River in West Java, the upper two reservoirs Saguling and Cirata are single purpose dam that operated for hydro- power production, while the downstream reservoir, Ir. H. Djuanda has to meet the water supply requirements as a multipurpose dam, therefore optimize operation of these three reservoirs is necessary for maximizes dependable water to meet several needs with existing limitation. Reservoirs operated by means of rule curve that relates storage and time. Several curves can be applied at the same time depending on the position of the next periods of the release that are taken. The dynamic programming method as a famous and classic method to optimize a reservoir system was chosen to applied. This method is possible to decide under uncertainty with in the most optimal “path” of reservoir level. The rule curves produced had been optimized with respect to power production in the system. At the same time monthly target storage was derived with respect to flood protection and water supply for all purposes. Different purposes and various operators on managing reservoir operation induce conflict of interests. Optimization method cannot always be applied considering the complexity of constraints that must be adopted. To overcome of these limitations the policies are brought about in the form of coordination forum, and optimization is conducted by simulation and sometimes without optimizing the hydropower production. Keywords : Reservoir optimization, hydropower production and simulation INTRODUCTION The three reservoirs are all situated on the Citarum, West Java. The Ir. H. Djuanda reservoir, which already exists since 1967 is the most downstream one. The next upstream reservoir is Cirata which is expected to become operational by 1987. The Saguling reservoir is the most upstream one and will start its operation in the most upstream one and will start its operation in the course of 1985. Downstream of Ir. H. Djuanda reservoir two weirs across the Citarum divert water into three main canals; the west tarum canal, the East tarum canal and the north tarum canal. The Citarum River Basin covers an area of about 11,000 km2. It includes the river basins of the Citarum (area 6,600 km2) and a number of independent basin such as Cilamaya/Ciherang, Cijnegkol, Cigadung, Ciasem, Cipunegara and Cilalanang and a number odf small sub-basins. It extends from the Cibeet in the west to the Cilalangan in the east and is bounded on the north by the Java sea and in the south by the Tangkuban Perahu mountain and the mountain ranges south of Bandung. More than 20 million people are depend on Citarum with three reservoirs for irrigation (240,000 ha), water supply for domestic, municipal and industry (800 million m3/year), Electricity (3,200 MW), flood control and environment water, therefore optimize operation three reservoirs is necessary for maximizes dependable water to meet several needs with existing limitation. Reservoirs can be operated by means of rule curves. These curves relate storage and time, several curves can be applied at the same time. Depending on the position of the release for the next periods are taken. The linier or dynamic programming method is a famous and classic method to optimize a reservoir system, and it was therefore chosen for application here. With this method it is possible to decide under uncertainly with in the most optimal “path” of reservoir level. For the integrated hydro- power optimization from the three reservoirs cannot be special for the power production, caused by the multipurpose dam in downstream which fulfill water requirements and the system as a whole has to be operated such that flood control is maximal. Ad hoc adjustments are made during emergency situations on daily or even shorter basis. The rule curves produced had been optimized with respect to power production in the system. At the same time monthly target storage was derived with respect to flood protection and water supply for all purposes. Different purposes and various operators on managing reservoir operation induce conflict of interests. Optimization method cannot always be applied considering the complexity of constraints that must be adopted. To overcome the limitation of the method, the policies are brought about in the form of coordination forum. Optimization is conducted by simulation and sometimes without optimizing the hydropower production. 1. EXISTING INFRASTRUCTURE DAM IN CITARUM The Jatiluhur project conceived in 1957 to supplement the run-of-river technical irrigation systems on the basin was completed in 1981. It is the largest contiguous irrigation system in Indonesia and is major rice production area. It comprises of the main Ir. H. Djuanda reservoir (estimated net capacity 1,860 M m3 in 1997), the associated Jatiluhur dam, hydro-electric power station (150 MW) and a conveyance system that provides irrigation to about 240,000 ha in West Java through the West Tarum Canal (WTC) system, East Tarum Canal (ETC) system and the North Tarum Canal (NTC) system. In addition, the project provides domestic, municipal and industrial (DMI) raw water supply to DKI Jakarta metropolitan area, to a number of urban center such as Bekasi, Karawang etc., and to industries along the corridor from Jakarta to Cirebon, including the region around Purwakarta. The Project also provides flushing water to Cirebon, including the region around Purwakarta. The project also provides flushing water flush rivers in DKI Jakarta metropolitan area during the dry season. During the 1980’s the State electric Corporation (PLN) constructed two hydro-power projects upstream of the Djuanda reservoir. These are the Saguling Dam (750 MW) completed in 1985 and the Cirata Dam (500 MW) completed in 1988. The capacity of the Ciarata hydro-power station is currently being increased by 500 MW. The Saguling (estimated net capacity 620 M m3) and Cirata (estimated net capacity 800 M m3) reservoirs further regulate the flow in the Citarum and thus enable an increase in the utilization of the water resources of the basin. These reservoirs are operated by the State Electricity Company (PLN) instead of the Jasa Tirta II Public Corporation (PJT-II) with the generation of firm peak power as their main objective. The salient data of the Citarum cascade dams and hydropower plants is shown is Table 1, 2 and 3. Table 1 Data of Citarum Cascade Reservoirs Saguling Cirata Jatiluhur Operational 1985 1988 1967 Dam Data Type Rockfill dam Rockfill dam with Rockfill dam with with clay core concrete face inclined clay core Height 99 m 125 m 105 Crest length 301 m 453.5 m 1220 m Crest elevation 650.20 m 225.0 m 114.5 m Table 2 Data of Citarum Hydropower Plants Saguling Cirata Jatiluhur Tail level (m) 252 103 27.0 Head loss (m) 28.4 4.0 1.0 Spillway characteristics Gated spillway Gated spillway Ungated (ogee) spillway Installed capacity (max. power, MW) 750 1000 187.5 Number of turbines 4 units 8 units 6 units Type of turbines Francis Francis Francis Table 3 Data of Specific Citarum Reservoir Saguling Cirata Jatiluhur Full supply level 643 m 220 m 107 m Dead storage level 623 m 205 m 56 m*) Minimum power level - - 75 m Maximum storage 880 x 106 m3 1,973 x 106 m3 2,970 x 106 m3 Minimum storage 271 x 106 m3 1,177 x 106 m3 599 x 106 m3 **) Surface area at max operating level 49 km2 62 km2 83 km2***) In order to operate the whole cascade reservoir consistently, a special working group committee consisting of representatives from Jasa Tirta II Public Corporation, Jasa Tirta II Public Corporation, Electrical State Company, Research Institute of Water Resources keeps monthly meetings. 2. CITARUM WATER POTENTIAL AND DEMAND The Citarum river originates from mountainous area of Bandung region and flows northward to Java Sea through central portion of West Java Province. Bandung City, the capital of the West Java Province with inhabitants of 6,578,829 is located in the mouth of Saguling Reservoir. Topographically, the Citarum catchment upstream of Jatiluhur is characterized by a ring of high mountain ridges around a slightly undulating plain. Saguling dam is located in the upstream ridge while Cirata and Jatiluhur are in the downstream ridge. The seasonal variation in river runoff closely follows the rainfall distribution, marked by a distinct dry and wet season. The dry season fall in April – September and rainy season fall in October – March. The season not always like this, but depended from condition of season every year. Rainfall in the basin varies from about 4,000 mm/year in the mountainous areas in the upper catchment to about 1,500 mm/year along the coast. Citarum River basin is covering an area of about 12,000 km2 with the average annual flow of 12.95 billion m3, out of which 6.0 billion m3 flows in Citarum River and 6.95 billion m3 flows in the other rivers in the basin. By employing water resources infrastructures in basin the water that could be regulated is about 7.65 billion m3 per annum and the rest is wasted flows to the sea. The utilization of water by far is goes to irrigation of 6.0 billion m3 equal to 88%, and to domestics, municipalities, and industries of 800 million m3 equal to 12%. Downstream of Jatiluhur reservoir two weirs across the Citarum divert water into the three main canals: the West Tarum Canal (WTC), the East Tarum Canal (ETC), and the North Tarum Canal (NTC). The WTC and ETC tap the Citarum at Curug weir, while the NTC gets its water at Walahar weir (Figure 1).
Recommended publications
  • Aquaculture Development for Resettlement in Indonesia
    Wat e r she d a9r0- e co logy pr og ra ms Il1tegrated tropical reservo.ir fisheries management DraY/down -Feed agri-aquaculture t -Equipment industries II :"'Ptocessing 'Rice-fish integrated farming ~......I"'f"~.~~- -- .- I-~ Wservoir Fisheries and Aquaculture Development /' for Resettlement in Indonesia Edited by Barry A. $osta-Pierce Otto Soernarwoto PERUSAHAAN UMUM LlSTRlK NEGARA JAKARTA, INDONESIA INSTITUTE OF ECOLOGY, PADJADJARAN UNIVERSITY BANDUNG, INDONESIA INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES Reservoir Fisheries and APP, ! t 1991 Aquaculture Development for Resettlement in Indonesia Edited by B.A. COSTA-PIERCE 0.SOEMARWOTO 1990 Printed in Manila, Philippines Published by Perusahaan Umum Listrik Negara, Jakarta, Indonesia; Institute of Ecology, Padjadjaran University, JI. Sekeloa Selatan 1, Bandung, Indonesia; and the International Center for Living Aquatic Resources Management, MC P.O. Box 1501, Makati, Metro Manila, Philippines Costa-Pierce, B.A. and 0. Soemanvoto, Editors. 1990. Reservoir fisheries and aquaculture development for resettlement in Indonesia. ICLARM Tech. Rep. 23, 378 p. Cover: Idealized view of component fisheries, agriculture, conservation and cornmunitv industrial systems integrated to accomplish reservoir restoration and social rehabilitation of displaced persons. Artwork by Ovidio F. Espiritu, Jr. ICLARM Contribution No. 612. We dedicate all qf tfk hard work collectivefg put into thk praject, th human, natural; andspiritdenergj evenried, to th mnwry qf Dr. Ian % Smith, Director Geverd ICLWM, 1985 to 1989. We wfw have shred and been touched 6y your vision have been hrwred 6y the chrtce to meet a Brother in tfie StnggIk for D@iq ... om so dedicated to the triumph qf tfu human spirit over immense udversity.
    [Show full text]
  • Minimizing the Social Impacts of Dam Construction by Otto Soemarwoto (1960S)
    Minimizing the social impacts of dam construction by Otto Soemarwoto (1960s). The main purpose of the Dams often have serious ecological and social Jatiluhur dam is to provide irriga- impacts: in the Saguling case they were indeed tion water for the lower northern very large. But the people adapted and developed plains of West Java, but it also produces electricity, provides water fisheries and were able to benefit significantly to Jakarta, and controls floods. from the project. Saguling and Cirata were built al- most exclusively for the generation of electricity. Since the dams were funded INDONESIA DEPENDS very ning process, then the environ- partly by the World Bank, an much on exporting oil for its foreign mental and social costs may well Environmental Impact Assessment currency earnings. When oil prices exceed the benefits of the dam. (EIA) was required for each dam. dropped dramatically in 1986 the The Institute of Ecology (IOE) of country suffered heavily, and so is Padjadjaran University was com- now diversifying its energy produc- The Saguling dam missioned to carry out these EIAs. tion to coal and particularly to The Saguling dam was built across Five options for the resettlement of hydro. It is clear, however, that the Citarum River, creating a reser- the people of Saguling were sug- dams can have very serious negative voir of about 6000 hectares. It is gested, one of which was fisheries social, health, and environmental located in West Java, about 30km development. impacts, and if these impacts are west of Bandung, the capital of the not identified when dams are being West Java Province.
    [Show full text]
  • Water Pollution Control in Indonesia Outline
    WATER POLLUTION CONTROL IN INDONESIA Conference on Watershed Management for Controling Municipal Wastewater in South East Asia 28 – 29 th of July 2016 Nagoya, Japan By: Dr. BUDI KURNIAWAN Head of Sub Directorate of Inventory and Pollution Load Allocation Directorate of Water Pollution Control, Directorate Genderal of Environmental Pollution and Degradation Control Ministry of Environment and Forestry of Indonesia OUTLINE PRESENTATION • WATER POLLUTION CONTROL POLICY IN INDONESIA • WATER QUALITY AND WATER POLLUTION SOURCES • WATER POLLUTION CONTROL STRATEGY AND PROGRAMME • CASE STUDY OF WATER POLLUTION CONTROL IN CITARUM WATERSHED 2 REGULATION BACKGROUND: WATER POLLUTION CONTROL Act No. 23 of 1997 on Environmental Management, Act No. 7 of 2004 on Water Resources, require all parties to involve in water pollution control Government Regulation No. 82 of 2001 on Water Quality Management and Water Pollution Control establishes the framework for implementation of water pollution control, including aspects of prevention, protection and recovery. Act No. 18 of 2003 on Solid Waste Management The most recent Act No. 32 of 2009 on Environmental Protection and Management was enacted on October 3-th, 2009, Article 54 (2): recovery of environmental function shall be done by: (a) discontinuation of source of pollution and cleaning of pollutant; (b) remediation; (c) rehabilitation; (d) restoration; and/or (e) other measures in accordance with scientific and technological developments. In addressing the global warming and climate change issues in
    [Show full text]
  • Indonesia Report
    MIDCOURSE MANOEUVRES: Community strategies and remedies for natural resource conflicts in Indonesia 1 Contents Acknowledgments ......................................................................................................................................................................... 2 Abbreviations .................................................................................................................................................................................... 3 1. Introduction ........................................................................................................................................................................................ 5 2. Land Governance in Indonesia ................................................................................................................................................... 6 3. Land Use Change ..........................................................................................................................................................................15 4. Impacts of Land Use Change ...................................................................................................................................................21 5. Land Conflicts .................................................................................................................................................................................28 6. Strategies for Seeking Remedies ...........................................................................................................................................31
    [Show full text]
  • Water Supply of Jakarta
    WATER SUPPLY OF JAKARTA Prof.Dr. Djoko M. Hartono Environmental Engineering Study Program. Civil Engineering Department, Faculty of Engineering University of Indonesia SMART ENGINEERING TOKYO 2018 UNITED NATION INDUSTRIAL DEVELOPMENT ORGANIZATION INVESTMENT AND TECHNOLOGY PROMOTION OFFICE, TOKYO 1 Outline 1. Introduction 2. Raw Water Resources 3. Regulation 4. Water Availability Condition 5. SDGs Target 6. Conclusion 2 Raw Water Resources ● Raw water supply for drinking water in Jakarta mostly come from surface water. ● 80 % of it comes from the Citarum River, located in the East of Jakarta. ● 15 % of raw water come from Cisadane River, West Java ● Another 5 % come from smaller rivers flowing from West Java Province to the Jakarta area such as Ciliwung, Krukut and Pesanggarahan 3 Raw Water Resources ●The water comes from Citarum river is used and managed through several dams, ie. Saguling Dam, Cirata Dam and Jatiluhur Dam. ●With total catchment area for Jatiluhur Dam is 4500 ● Those dams are also used for electric power generation, river flow management, irrigation, tourism and industrial purposes. (Jatiluhur Dam) 4 West Tarum Canal and Main Rivers in Jakarta ● The average water capacity of the Citarum River distributed in the Jakarta, Bekasi and Karawang that conveys through West Tarum Canal. ●The multifunction West Tarum Canal is 70 km long and flows through several industrial and settlement areas 5 WATER Increasing Protecting Economic Public Health Development NATIONAL Poor management of the water resources has contributed ISSUES to
    [Show full text]
  • Directors: Ir. Widagdo, Dipl.HE Hisaya SAWANO Authors
    Directors: Ir. Widagdo, Dipl.HE Hisaya SAWANO Authors: Ir. Sarwono Sukardi, Dipl.HE Ir. Bambang Warsito, Dipl.HE Ir. Hananto Kisworo, Dipl.HE Sukiyoto, ME Publisher: Directorate General of Water Resources Yayasan Air Adhi Eka i Japan International Cooperation Agency ii River Management in Indonesia English Edition English edition of this book is a translation from the book : “Pengelolaan Sungai di Indonesia” January 2013 ISBN 978-979-25-64-62-4 Director General of Water Resources Foreword Water, as a renewable resource, is a gift from God for all mankind. Water is a necessity of life for creatures in this world. No water, no life. The existence of water, other than according to the hydrological cycle, at a particular place, at a particular time, and in particular quality as well as quantity is greatly influenced by a variety of natural phenomena and also by human behavior. Properly managed water and its resources will provide sustainable benefits for life. However, on the other hand, water can also lead to disasters, when it is not managed wisely. Therefore, it is highly necessary to conduct comprehensive and integrated water resources management efforts, or widely known as “Integrated Water Resources Management”. In the same way, river management efforts as part of the river basin integrated water resources management, include efforts on river utilization, development, protection, conservation and control, in an integrated river basin with cross-jurisdiction, cross-regional and cross- sectoral approach. This book outlines how water resources development and management in several river basins are carried out from time to time according to the existing situations and conditions, Besides, it covers various challenges and obstacles faced by the policy makers and the implementers in the field, The existing sets of laws and regulations and the various uses and benefits are also discused.
    [Show full text]
  • The Use of Water Quality Index System in the Assessment of Water Pollution Control
    Evaluation of the suitability of Citarum river water for different uses Mohamad Ali Fulazzaky1, 2, ∗; Mochammad Basuki Hadimuljono2 1Department of Water Resources and Environmental Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia 86400 Parit Raja, Batu Pahat, Johor, Malaysia 2Ministry of Public Works Jalan Pattimura No. 20, Kebayoran Baru, Jakarta 12110, Indonesia Abstract The Citarum river water is the most important water sources in Indonesia. The river that supports a population of 28 million people, delivers 20% of Indonesia's gross domestic product, and provides 80% of surface water to carry through the West Tarum Canal to the Jakarta’s water supply authority, is one of the most polluted rivers in the world. Water quality degradation of this river increases from the year to year due to the increasing pollutant loads when released particularly from Bandung region of the upstream areas into river without treatment. This will be facing the chronic problems of water pollution for supporting the suitability of water for different uses. This study used the Water Quality Evaluation System to asses the suitability of water in term of the Water Quality Aptitude (WQA) for five different uses and its aquatic ecosystem. The assessment of ten selected stations was found that the WQA ranges from the suitable quality for agriculture and livestock watering uses to unsuitable for biological potential function, drinking water production, and leisure activities and sports upstream the Saguling reservoir, generally. The role of Citarum river water in providing the demands of multipurpose uses particularly for Jakarta’s water supply will still be present in question for the years to come.
    [Show full text]
  • Preparedness Effort Toward Climate Change Adaptation in Upper Citarum River Basin, West Java, Indonesia
    Preparedness Effort toward Climate Change Adaptation in Upper Citarum River Basin, West Java, Indonesia M.Syahril Badri KUSUMA* Arno Adi KUNTORO*, Rasmiaditya SILASARI* Bandung Institute of Technology* ABSTRACT: Citarum River Basin is one of the strategic Basins in West Java. Citarum River flows from the mountainous area in Bandung, through the three cascade dams: Saguling, Cirata, and Jatiluhur, before finally flows to Java Sea. Surface water from Upper Citarum River Basin is a plateau area surrounded by mountain range which forms a basin which flows into Saguling Dam. This geographical condition causes the rainfall runoff on the mountain range tend to flow into the basin area, resulting in high discharge surface flow during wet season. The high discharge unfortunately is not accommodated with adequate channel capacity, which in this case is the Citarum River of Upstream Citarum River Basin. Consequently, during the rainy season, flood disaster often occurs around the Citarum River which flows through Bandung Regency. Heavy flood disaster in particular occurred in Dayeuh Kolot Subdistrict which brought great damages, due to the area is located adjacent to the Bandung City, the capital city where many important activities occur. As the main catchment area of Saguling Dam, this basin also holds an important role for water supply in the downstream area. Lack of water supply from Upper Citarum River Basin during dry season might disturb water supply for irrigation area in Karawang and Indramayu. Climate Change Mitigation which in Indonesia mainly associated with flood in wet season and drought in dry season has to deals with common problems, for example: 1) lack of hydrological data; 2) high discrepancy in hydrology/drainage computation result using the common computation method; 3) unreliable design of drainage facilities, etc., and his study emphasizes the importance of solving those kinds of problems for Climate Change Mitigation in the future, especially in Citarum River Basin KEYWORDS: climate change adaptation, Citarum River Basin 1.
    [Show full text]
  • Quantitative Evaluation of Spatial Distribution of Nitrogen Loading in the Citarum River Basin, Indonesia
    Full Paper Journal of Agricultural Meteorology 73 (1): 31-44, 2017 Quantitative Evaluation of Spatial Distribution of Nitrogen Loading in the Citarum River Basin, Indonesia Koshi YOSHIDA a , † , Kenji TANAKA a , Keigo NODA b , Koki HOMMA c Masayasu MAKI d, Chiharu HONGO e, Hiroaki SHIRAKAWA f and Kazuo OKI b a Faculty of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami-machi, Ibaraki, 300-0393, Japan b Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan c Faculty of Agriculture, Tohoku University, 1-1 Amimiya, Aoba-ku, Sendai, Miyagi, 981-8555, Japan d Faculty of Engineering, Tohoku Institute of Technology, 35-1 Kasumi, Yagiyama, Sendai, Miyagi, 982-8577, Japan e Center for Environmental Remote Sensing, Chiba University, 1-33 Yayoi, Inage-ku, Chiba, 263-8522, Japan f Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, JAPAN Abstract Human population growth has led to increases in energy and food production, use of fertilizers, and wastewater flows. Enhanced availability of nitrogen is a cause of eutrophication of rivers, lakes, and estuaries worldwide. In this study, Cita- rum River Basin, West Java, Indonesia was selected as a target area, supplying 80% of domestic water to Jakarta Metrop- olis. Meteorological and hydrological data from 1996 to 2009, and spatial data such as topography, land use, soil proper- ties were collected for model simulation. Conceptual nitrogen balance model, which has three nitrogen pools, was devel- oped and combined with rainfall runoff model. Proposed model was applied to the Citarum River Basin and simulated river discharge and nitrogen load in 1 km×1 km resolution to check the model applicability.
    [Show full text]
  • Emp) for Jatiluhur Irrigation Management and Improvement (Jimi
    ENVIRONMENTAL MANAGEMENT PLAN (EMP) FOR JATILUHUR IRRIGATION MANAGEMENT AND IMPROVEMENT (JIMI) Public Disclosure Authorized FOR THE REHABILITATION OF SUB- SYSTEMS OF BARUGBUG Cs, PAWELUTAN Cs AND SALAMDARMA KIRI Cs. - Content - 1. Background. ................................................................................................................................ 1 2. Location. ...................................................................................................................................... 2 3. Scope of Works for 3 Sub-Systems in the 1st year Program...................................................... 2 Public Disclosure Authorized 4. Construction Equipment. ............................................................................................................. 2 5. Environmental Assessment. ........................................................................................................ 3 6. Environmental Condition Summary ............................................................................................. 3 6.1. Climate ..................................................................................................................................... 3 6.2. Air Quality and Noise ............................................................................................................... 4 6.3. Topographic Characteristics and Regional Geology ............................................................... 5 6.4. Hydrology and Water Quality ..................................................................................................
    [Show full text]
  • Inter-Linkage Case Study of Citarum River Basin in Indonesia
    Inter-linkage Case Study of Citarum River Basin in Indonesia Kazuo Oki (The University of Tokyo) Background Keyword<Food production> Food demand will increase by increment of population. World Population Population in South-East Asia (2010-2050) (2010-2050) 90.0 79.5 80.0 1.4 times 70.0 9.0 1.3times 56.7 60.0 8.0 7.7 50.0 20102010年 ) 7.0 (100 million) 40.0 2050年 5.9 30.0 2050 6.0 20.0 12.4 12.8 5.0 10.0 1.2times 100,million 4.0 0.0 ( 2.9 3.0 2.3 developed先進国 developing途上国 countries countries 2.0 ・ 1.0 World’s population in 2050 will become 9.1 0.0 年 年 年 年 billion, mainly due to increase in developing 2010 2050 20102010 2050 2050 2010 2050 countries South East Indonesia ・70% increment of agricultural production is Asia needed to meet future food demand. Increment of food production may give negative impacts to environment. Background Keyword<Water・Food・Environment> Prediction of Global Warming Impact in Southeast Asia(IPCC) Global Warming leads significant decrease of crop production, water pollution in the downstream, inequality of water utilization, and increase of our health crisis. How peoples adapt to these problems Big social problems!! 3 We will need to propose the new river basin model in Asia (Indonesia ) that takes into consideration the balance of water, food and health in response to climate change. Objectives To discuss the new inter-linkage of Citarum river basin in Indonesia with various fields players.
    [Show full text]
  • Kochi University of Technology Academic Resource Repository Kochi University of Technology Academic Resource Repository
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kochi University of Technology Academic Resource Repository Kochi University of Technology Academic Resource Repository � Preparedness Effort toward Climate Change Adapti Title on in Upper Citarum River Basin, West Java, Indo nesia KUSUMA, M.Syahril Badri, KUNTORO, Arno Adi, SILA Author(s) SARI, Rasmiaditya Society for Social Management Systems Internet J Citation ournal Date of issue 2011-09 URL http://hdl.handle.net/10173/855 Rights Text version publisher � � Kochi, JAPAN http://kutarr.lib.kochi-tech.ac.jp/dspace/ Preparedness Effort toward Climate Change Adaptation in Upper Citarum River Basin, West Java, Indonesia M.Syahril Badri KUSUMA* Arno Adi KUNTORO*, Rasmiaditya SILASARI* Bandung Institute of Technology* ABSTRACT: Citarum River Basin is one of the strategic Basins in West Java. Citarum River flows from the mountainous area in Bandung, through the three cascade dams: Saguling, Cirata, and Jatiluhur, before finally flows to Java Sea. Surface water from Upper Citarum River Basin is a plateau area surrounded by mountain range which forms a basin which flows into Saguling Dam. This geographical condition causes the rainfall runoff on the mountain range tend to flow into the basin area, resulting in high discharge surface flow during wet season. The high discharge unfortunately is not accommodated with adequate channel capacity, which in this case is the Citarum River of Upstream Citarum River Basin. Consequently, during the rainy season, flood disaster often occurs around the Citarum River which flows through Bandung Regency. Heavy flood disaster in particular occurred in Dayeuh Kolot Subdistrict which brought great damages, due to the area is located adjacent to the Bandung City, the capital city where many important activities occur.
    [Show full text]