Delayed Coking

Total Page:16

File Type:pdf, Size:1020Kb

Delayed Coking Delayed Coking Chapter 5 Updated: July 12, 2018 2 Copyright © 2017 John Jechura ([email protected]) U.S. Refinery Implementation Coking capacity reported in terms of both coke production in tons per day & residual oil feed rate in barrels per day EIA, Jan. 1, 2018 database, published June 2018 http://www.eia.gov/petroleum/refinerycapacity/ Updated: July 12, 2018 3 Copyright © 2017 John Jechura ([email protected]) U.S. Refinery Implementation EIA, Jan. 1, 2018 database, published June 2018 http://www.eia.gov/petroleum/refinerycapacity/ Updated: July 12, 2018 4 Copyright © 2017 John Jechura ([email protected]) Purpose Process heavy residuum to produce distillates (naphtha & gas oils) that may be catalytically upgraded . Hydrotreating, catalytic cracking, and/or hydrocracking Attractive for heavy residuum not suitable for catalytic processes . Large concentrations of resins, asphaltenes, & heteroatom compounds (sulfur, nitrogen, oxygen, metals) Metals, sulfur, & other catalyst poisons generally end up in coke . Sold for fuel & other purposes Carbon rejection process “Improve coker efficiency with reliable valve automation” B. Deters & R. Wolkart, Hydrocarbon Processing, April 2013 Updated: July 12, 2018 5 Copyright © 2017 John Jechura ([email protected]) Characteristics of Petroleum Products Conversion to light products w/o extra hydrogen requires significant coke formation Refining Overview – Petroleum Processes & Products, by Freeman Self, Ed Ekholm, & Keith Bowers, AIChE CD‐ROM, 2000 Updated: July 12, 2018 6 Copyright © 2017 John Jechura ([email protected]) Coking History After World War II railroads shifted from steam to diesel locomotives . Demand for heavy fuel oil sharply declined . Coking increases distillate production & minimizes heavy fuel oil 1950 to 1970 coking capacity increased five fold . More than twice the rate of increase in crude distillation capacity . Increase in heavy high sulfur crude combined decrease in heavy fuel oil Delayed coking . Predominate coking technology . Delayed Coking technology is relatively inexpensive • Open art available • Companies do license technology emphasizing coke furnaces, special processing modes, & operations Updated: July 12, 2018 7 Copyright © 2017 John Jechura ([email protected]) Coking Chemistry “Carbon rejection” process Conditions . Coke has very little hydrogen – contained . High temperatures & low pressures favor in lighter products cracking . Metals (catalyst poisons) concentrate in • More distillate liquids coke • Lower yields of coke & hydrocarbon gas . High residence time favor the combining Cycle of cracking & combining reactions . Side chains cracked off of PNA . Over conversion will reduce distillates & (Polynuclear Aromatic) cores produce coke and hydrocarbon gases • Heteroatoms in side chains end up in light products . PNAs combine (condense) to form asphaltenes & coke • Metals & heteroatoms in PNA cores end up in coke Figure: “Comparison of thermal cracking and hydrocracking yield distributions,” Sayles & Romero http://www.digitalrefining.com/article_1000070.pdf Updated: July 12, 2018 8 Copyright © 2017 John Jechura ([email protected]) Feed for the Delayed Coker Delayed Coker can process a wide variety of feedstocks . Can have considerable metals (nickel & vanadium), sulfur, resins, & asphaltenes . Most non‐volatile contaminants exit with coke Typical feed is vacuum resid . Atmospheric resid occasionally used . Specialty cokes may also use gas oils, FCC cycle oils, … Feed composition dependent on actual crude & crude blend. Some typical values: . 6% sulfur . 1,000 ppm (wt) metals . Conradson Carbon Residue (CCR) of 20 – 25 wt% Feed ultimately depends on type of coke desired . Specialty cokes require careful choice of crude oil feedstocks • Using feedstocks other than vac resid may lessen this requirement Updated: July 12, 2018 9 Copyright © 2017 John Jechura ([email protected]) Solid Products Coke with large amounts of Fuel grade coke metals & sulfur may pose a . Feedstock – resid high in polynuclear aromatics disposal problem & sulfur . Oil sands pile it up . Value similar to coal Product grades High quality products . Needle coke . Needle coke . Anode grade • Feedstock – FCC cycle oils & gas oils . Fuel grade • Used for electrodes in steel manufacturing • 10X or more value of fuel‐grade coke Product Morphology • Hydroprocessing upstream of delayed coker may . Needle coke be used to make high quality coke . Sponge coke . Anode grade coke . Shot coke • Feedstock – resids with small ring aromatics, low metals, & low sulfur • Used for anodes in aluminum production Updated: July 12, 2018 10 Copyright © 2017 John Jechura ([email protected]) Solid Products Morphology . Needle coke • Very dense & crystalline in structure . Sponge coke • Is sponge‐like in structure . Shot coke • Cannot avoid – based on asphaltene content of feed • From size of small ball bearings to basketball • Operational adjustments required in cutting & handling of coke “Managing Shot Coke: Design & Operation,” John D. Elliott http://www.fwc.com/getmedia/5fec2c99‐879e‐4bbc‐a296‐77971b85df89/ManagingShotCoke‐Design‐OperationA‐4Rev1.pdf.aspx?ext=.pdf Updated: July 12, 2018 11 Copyright © 2017 John Jechura ([email protected]) Light Products Low yields of liquids relative as Liquids compared to other refinery processes . Hydrotreated for sulfur removal . Mass conversion of vac resids to . Naphtha fractions liquids ~55% • Light fraction may to isomerization Composition • Heavy fraction to catalytic reformer • Small fraction of gasoline pool . Some of the lowest quality in the refinery . Light Gas Oil • Used in diesel pool after . Reduced aromatics but high olefin hydrotreating content • Hydrocracker—processes aromatic . Vapors & liquids high in sulfur even rings though heteroatoms are . Heavy Gas Oil fed to catalytic cracker concentrated in coke or hydrocracker (preferred) Vapors processed in refinery’s gas . Flash Zone Gas Oil ‐‐ increases liquid plant yield & reduces coke make Updated: July 12, 2018 12 Copyright © 2017 John Jechura ([email protected]) Feedstock Selection Amount of coke related to carbon residue of feed . Correlates to hydrogen/carbon ratio & indicates coking tendency Three main tests . ASTM D 524 — Ramsbottom (RCR) . ASTM D 189 — Conradson (CCR) . ASTM D 4530 – Microcarbon (MCRT) CCR & MCRT essentially give the same results & can be usually be used interchangeably Approximate correlation between RCR & CCR: 2 RCR exp 0.236 0.883ln CCR 0.0657ln CCR Updated: July 12, 2018 13 Copyright © 2017 John Jechura ([email protected]) Yield Estimation Updated: July 12, 2018 14 Copyright © 2017 John Jechura ([email protected]) Reported Coker Yields Actual yields are dependent on operating conditions, process configuration, … Handbook of Petroleum Refining Processes, 3rd ed., Robert Meyers (ed.) “ConocoPHillips Delayed Coking Process,” Hughes, Wohlgenant, & Doerksen McGraw‐Hill, Inc, 2004 Updated: July 12, 2018 15 Copyright © 2017 John Jechura ([email protected]) Boiling Point Ranges for Products 1,000 42-hcgo 900 53+55 40-lcgo 800 37-unstab 33-wetgas lab-vac-resid 700 600 500 400 Incremental YieldIncremental [bpd] 300 200 100 - 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 BPT [°F] Based on example problem in: Refinery Process Modeling, A Practical Guide to Steady State Modeling of Petroleum Processes, 1st ed. Gerald Kaes, Athens Printing Company, 2004 Updated: July 12, 2018 16 Copyright © 2017 John Jechura ([email protected]) Configuration Typical equipment . Heater (furnace) & Preheat train . Coke drum vessels . Fractionator . Downstream vapor processing vessels Coke drums run in two batch modes . Filling . Decoking Both modes of operation concurrently feed to the fractionator Updated: July 12, 2018 17 Copyright © 2017 John Jechura ([email protected]) Delayed Coker Updated: July 12, 2018 18 Copyright © 2017 John Jechura ([email protected]) Typical Delayed Coking Unit Original Source: “An Oil Refinery Walk‐Through”, by Tim Olsen, Chemical Engineering Progress, May 2014 Updated: July 12, 2018 19 Copyright © 2017 John Jechura ([email protected]) Typical Delayed Coking Unit Petroleum Refining Technology & Economics, 5th ed. Gary, Handwerk, & Kaiser, CRC Press, 2007 Updated: July 12, 2018 20 Copyright © 2017 John Jechura ([email protected]) Typical Delayed Coking Unit Fresh Feed & Furnace Coke Drum Configuration . Fresh feed to bottom of fractionator . Flow up from bottom . Total feed (fresh feed + recycle) heated in . Coking reaction are completed in drum furnace . Vapors out top of drum to fractionator Furnace . Even number of coke drums . Outlet temperature about 925oF • Typically two or four o • Operate as pairs, one filling while the other . Cracking starts about 800 F decoked . Endothermic reactions . Superheat allows cracking reactions to Fractionator continue in coke drums– “Delayed . Vapors compressed & sent to gas plant Coking” . Naphtha condensed from fractionator . Steam injected into furnace overhead • Reduce oil partial pressure & increase . Gas oils are side stream draws from vaporization fractionator • Maintains high fluid velocities . Flash Zone Gas internally recycled to coke drums or recovered as additional liquid Updated: July 12, 2018 21 Copyright © 2017 John Jechura ([email protected]) Typical Delayed Coking Unit Coke Drum Cyclic Operation . Fill Coke Drum . Coke Collection Systems • Coking reaction in drums & solid coke • Direct discharge to hopper car deposited • Pad loading • Gas from top of coke drum to fractionator • Pit
Recommended publications
  • Update to the Developments of Hisarna an Ulcos Alternative Ironmaking Process Ir
    Update to the Developments of Hisarna An Ulcos alternative ironmaking process Ir. Jan van der Stel , ir. Koen Meijer, ing. Cornelis Teerhuis, dr. Christiaan Zeijlstra, ir. Guus Keilman and ing. Maarten Ouwehand Tata Steel IJmuiden, The Netherlands Research, Development & Technology IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop Tokyo, Japan 4 – 7 November 2013 Confidential Content 1. HIsarna technology 2. HIsarna and CCS 3. HIsarna pilot plant 4. Campaign results 5. Conclusions 6. Forward plan 2 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential Ulcos IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Comparison with the BF route Blast furnace sinter Iron ore coke Liquid iron coal 4 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Comparison with the BF route Blast furnace sinter Iron ore coke coal Direct use of coal and ore Liquid iron No coking and agglomeration 5 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Top gas Oxygen Ore Oxygen Coal Slag Hot metal 6 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1.1. HIsarna technology Melting cyclone technology Melting and partial reduction of fine iron ores “2 Fe 2O3(s) + 2 CO(g) → 4 FeO(l) + 2 CO 2(g) ” • The cyclone product is a molten mixture of Fe 3O4 and FeO (~ 20 % reduced) • Pure oxygen is injected to generate the required melting temperature • The fines are separated from the gas by centrifugal flow of the gas IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013.
    [Show full text]
  • A Life Cycle Analysis of Deploying Coking Technology to Utilize Low-Rank Coal in China
    sustainability Article A Life Cycle Analysis of Deploying Coking Technology to Utilize Low-Rank Coal in China Yan Li 1, Guoshun Wang 1, Zhaohao Li 2, Jiahai Yuan 3 , Dan Gao 2,* and Heng Zhang 2 1 School of Business, Central South University, Changsha 410083, China; [email protected] (Y.L.); [email protected] (G.W.) 2 School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; [email protected] (Z.L.); [email protected] (H.Z.) 3 School of Economics and Management, North China Electric Power University, Beijing 102206, China; [email protected] * Correspondence: [email protected] Received: 12 May 2020; Accepted: 10 June 2020; Published: 15 June 2020 Abstract: At present, the excess capacity in China’s coke industry can be deployed to utilize some low-rank coal, replacing coking coal with potential economic gains, energy efficiency, and environmental benefits. This study presents a life cycle analysis to model these potential benefits by comparing a metallurgical coke technical pathway with technical pathways of gasification coke integrated with different chemical productions. The results show that producing gasification coke is a feasible technical pathway for the transformation and development of the coke industry. However, its economic feasibility depends on the price of cokes and coals. The gasification coke production has higher energy consumption and CO2 emissions because of its lower coke yield. Generally speaking, using gasification coke to produce F-T oils has higher economic benefits than producing methanol, but has lower energy efficiency and higher carbon emissions. Keywords: coal coking; life cycle analysis; gasification coke; metallurgical coke; low-rank coal 1.
    [Show full text]
  • Hisarna Smelting Reduction
    HISARNA SMELTING REDUCTION A SOLUTION FOR SUSTAINABLE HOT METAL PRODUCTION Jan van der Stel, Koen Meijer, Christiaan Zeilstra, Johan van Boggelen, Tim Peeters and Rod Dry (*) Tata Steel Research & Development, IJmuiden, The Netherlands (*) RIO TINTO Perth, Australia Reducing the carbon footprint of the steel industry, 19-20 April 1 ZaandamAll rights and reserved Petten - Reducing, theThe carbon Netherlands footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands Content 1. HIsarna development 2. Technology background 3. The HIsarna pilot plant 3.1. Milestones of the test campaigns 4. Forward program 4.1. Further experimental work in pilot plant 4.2. Industrial scale demonstration plant 5. Conclusions 6. Challenges 2 All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands 1. HIsarna development • In 2004 several European steelmakers proactively started the ULCOS project with the objective to achieve 50 % reduction of the CO 2 emissions of steelmaking • HIsarna is one of the four process development that originate from the ULCOS project. • Since 2007 Tata Steel, Rio Tinto and ULCOS have been active developing this coal-based smelting reduction process. • To date over 80 mln Euro has been invested in this new technology. • The HIsarna process offers a combination of environmental and economical benefits. 3 All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands 1.1 Comparison BF route - HIsarna Blast Furnace Iron ore Hot metal Coal Coking/Agglomeration Ironmaking HIsarna Iron ore Hot metal Direct use of fine ores and coal Coal (no agglomeration and coking) Ironmaking 4 All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands 1.2.
    [Show full text]
  • Tutorial: Delayed Coking Fundamentals
    Tutorial: Delayed Coking Fundamentals Paul J. Ellis Christopher A. Paul Great Lakes Carbon Corporation Port Arthur, TX Prepared for presentation at the AIChE 1998 Spring National Meeting New Orleans, LA March 8-12, 1998 Topical Conference on Refinery Processing Tutorial Session: Delayed Coking Paper 29a Copyright 1998 Great Lakes Carbon Corporation UNPUBLISHED March 9, 1998 1 ABSTRACT Great Lakes Carbon Corporation has worked closely with refineries producing delayed coke in all forms, fuel grade (shot or sponge), anode grade (sponge), and electrode grade (needle) since start-up of the company's first calcining operation in 1937. With on-going research in the area of delayed coking since 1942, Great Lakes Carbon (GLC) has operated delayed coking pilot units including an excellent large-scale pilot unit with a coke drum 0.3 meter (1 ft) diameter by 2.1 meters (7 ft) long and has developed physical models which explain coke formation in coke drums. Knowledge of commercial delayed coking units as well as that of the GLC Pilot Delayed Coker is used in this tutorial paper to describe the formation and uses of the three types of structures of delayed petroleum coke: needle, sponge, and shot. Troubleshooting tips are included on many aspects of the delayed coking drum cycle including: steam stripping, water quenching, coke cutting, drum warm-up, and drum switching technique. Suggestions and descriptions of delayed coking unit hardware are included. The objective of this tutorial paper is to acquaint the non-refinery technologist and further the knowledge of refinery personnel with the delayed coking operation, delayed coking unit hardware, types of coke that can be produced, coke formation models, and the uses of petroleum coke.
    [Show full text]
  • South Yorkshire
    INDUSTRIAL HISTORY of SOUTH RKSHI E Association for Industrial Archaeology CONTENTS 1 INTRODUCTION 6 STEEL 26 10 TEXTILE 2 FARMING, FOOD AND The cementation process 26 Wool 53 DRINK, WOODLANDS Crucible steel 27 Cotton 54 Land drainage 4 Wire 29 Linen weaving 54 Farm Engine houses 4 The 19thC steel revolution 31 Artificial fibres 55 Corn milling 5 Alloy steels 32 Clothing 55 Water Corn Mills 5 Forging and rolling 33 11 OTHER MANUFACTUR- Windmills 6 Magnets 34 ING INDUSTRIES Steam corn mills 6 Don Valley & Sheffield maps 35 Chemicals 56 Other foods 6 South Yorkshire map 36-7 Upholstery 57 Maltings 7 7 ENGINEERING AND Tanning 57 Breweries 7 VEHICLES 38 Paper 57 Snuff 8 Engineering 38 Printing 58 Woodlands and timber 8 Ships and boats 40 12 GAS, ELECTRICITY, 3 COAL 9 Railway vehicles 40 SEWERAGE Coal settlements 14 Road vehicles 41 Gas 59 4 OTHER MINERALS AND 8 CUTLERY AND Electricity 59 MINERAL PRODUCTS 15 SILVERWARE 42 Water 60 Lime 15 Cutlery 42 Sewerage 61 Ruddle 16 Hand forges 42 13 TRANSPORT Bricks 16 Water power 43 Roads 62 Fireclay 16 Workshops 44 Canals 64 Pottery 17 Silverware 45 Tramroads 65 Glass 17 Other products 48 Railways 66 5 IRON 19 Handles and scales 48 Town Trams 68 Iron mining 19 9 EDGE TOOLS Other road transport 68 Foundries 22 Agricultural tools 49 14 MUSEUMS 69 Wrought iron and water power 23 Other Edge Tools and Files 50 Index 70 Further reading 71 USING THIS BOOK South Yorkshire has a long history of industry including water power, iron, steel, engineering, coal, textiles, and glass.
    [Show full text]
  • Coke Oven Emissions from 1979-1983
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Coke-Oven Emissions to 35% of the initial coal charge is emitted as gases and vapors, most of which are collected in by-product coke production. Coke-oven gas CAS No.: none assigned includes hydrogen, methane, ethane, carbon monoxide, carbon diox- Known to be human carcinogens ide, ethylene, propylene, butylene, acetylene, hydrogen sulfide, am- monia, oxygen, and nitrogen. Coke-oven gas tar includes pyridine, First listed in the Second Annual Report on Carcinogens (1981) tar acids, naphthalene, creosote oil, and coal-tar pitch. Benzene, xy- Carcinogenicity lene, toluene, and solvent naphthas may be extracted from the light- oil fraction (IARC 1984). Coke-oven emissions are known to be human carcinogens based on Use sufficient evidence of carcinogenicity from studies in humans. The primary use of coke is as a fuel reductant and support for other Cancer Studies in Humans raw materials in iron-making blast furnaces. Coke is also used to Before 1950, numerous case reports linked employment in coke pro- synthesize calcium carbide and to manufacture graphite and elec- duction with cancer of the skin, urinary bladder, and respiratory tract. trodes, and coke-oven gas is used as a fuel. By-products of coke pro- Since then, several cohort studies conducted in the United States, the duction may be refined into commodity chemicals (such as benzene, United Kingdom, Japan, and Sweden have reported an increased risk toluene, naphthalene, sulfur, and ammonium sulfate) (IARC 1984, of lung cancer in humans exposed to coke-oven emissions.
    [Show full text]
  • Coking-Coal Deposits the Western United States
    GEOLOGICAL SURVEY CIRCULAR 90 March 1951 COKING-COAL DEPOSITS OF THE WESTERN UNITED STATES By Louise R. Berryhill and Paul Averitt UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director Washington, D. C. Free on application to the Geological Survey, Washington 25, D. C. CONTENTS Page Page Introduction . • . • • . 1 Colorado--Continued. Origin, classification, and distribution Delta, Gunnison, and Pitkin ·of coal. • . • . ••. 1 Counties, Colo. 13 Properties of coking coal. 4 Norwood ·field, Montrose and Coking-coal deposits . • . 5 San Miguel Counties, Colo. 14 Washington. • . • 6 Durango field, La Plata County, Wilkeson -Ca,rbonado-Fairfax field, Colo............... 14 Pierce and King Counties, Wash. 6 Raton Mesa field, Huerfano and Roslyn field, Kittitas County, Wash.. 6 Las Animas Comities, Colo., Montana .....•..•.......... 7 and Colfax County, N. Mex. 14 Great Falls field, Cascade, Fergus, New Mexico .............. 15 and Chouteau Counties, Mont. • . 7 Monero field, Rio Arriba County, Livingston-Trail Creek field, N.Mex..•......•.. 15 Gallatin and Park Counties, Mont.•• 8 Cerrillos field, Santa Fe County, Electric field, Park County, Mont. 8 N.Mex............ 15 Wyoming .......•.•...... 9 Carthage field, Socorro County, Kemmerer -Willow Creek field, N.Mex............ 16 Lincoln County, Wyo. 9 Oklahoma- Arkansas ...... 16 Rock Springs field, Sweetwater Henryetta district, Okmulgee County, Wyo. 10 County, Okla. • . 16 Cambria field, Weston Cou:hty, Wyo. 10 Southern part of the 01:1~ 1oma field, Utah .................. 11 Coal, Pittsburg, Atoka, Latimer, Sunnyside-Castlegate field, Carbon and Le Flore Counties . • • . • 17 County, Utah . 11 Western Arkansas field, Sebastian, Mount Pleasant field, Sanpete Crawford, Franklin, Logan, County, Utah . 12 Scott, Johnson, Pope, and Yell Kanab field, Iron County, Utah • 12 Counties.
    [Show full text]
  • Heterogeneous Catalyst Deactivation and Regeneration: a Review
    Catalysts 2015, 5, 145-269; doi:10.3390/catal5010145 OPEN ACCESS catalysts ISSN 2073-4344 www.mdpi.com/journal/catalysts Review Heterogeneous Catalyst Deactivation and Regeneration: A Review Morris D. Argyle and Calvin H. Bartholomew * Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +1-801-422-4162, Fax: +1-801-422-0151. Academic Editor: Keith Hohn Received: 30 December 2013 / Accepted: 12 September 2014 / Published: 26 February 2015 Abstract: Deactivation of heterogeneous catalysts is a ubiquitous problem that causes loss of catalytic rate with time. This review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical) and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing). The key features and considerations for each of these deactivation types is reviewed in detail with reference to the latest literature reports in these areas. Two case studies on the deactivation mechanisms of catalysts used for cobalt Fischer-Tropsch and selective catalytic reduction are considered to provide additional depth in the topics of sintering, coking, poisoning, and fouling. Regeneration considerations and options are also briefly discussed for each deactivation mechanism. Keywords: heterogeneous catalysis; deactivation; regeneration 1. Introduction Catalyst deactivation, the loss over time of catalytic activity and/or selectivity, is a problem of great and continuing concern in the practice of industrial catalytic processes. Costs to industry for catalyst replacement and process shutdown total billions of dollars per year. Time scales for catalyst deactivation vary considerably; for example, in the case of cracking catalysts, catalyst mortality may be on the order of seconds, while in ammonia synthesis the iron catalyst may last for 5–10 years.
    [Show full text]
  • AP 42 12.2 Coke Production
    12.2 Coke Production 12.2.1 General Metallurgical coke is produced by destructive distillation of coal in coke ovens. Prepared coal is "coked", or heated in an oxygen-free atmosphere until all volatile components in the coal evaporate. The material remaining is called coke. Most metallurgical coke is used in iron and steel industry processes such as blast furnaces, sinter plants, and foundries to reduce iron ore to iron. Over 90 percent of the total metallurgical coke production is dedicated to blast furnace operations. Most coke plants are co-located with iron and steel production facilities. Coke demand is dependent on the iron and steel industry. This represents a continuing decline from the about 40 plants that were operating in 1987. 12.2.2 Process Description1,2 All metallurgical coke is produced using the "byproduct" method. Destructive distillation ("coking") of coal occurs in coke ovens without contact with air. Most U. S. coke plants use the Kopper- Becker byproduct oven. These ovens must remain airtight under the cyclic stress of expansion and contraction. Each oven has 3 main parts: coking chambers, heating chambers, and regenerative chambers. All of the chambers are lined with refractory (silica) brick. The coking chamber has ports in the top for charging of the coal. A coke oven battery is a series of 10 to 100 coke ovens operated together. Figure 12.2-1 illustrates a byproduct coke oven battery. Each oven holds between 9 to 32 megagrams (Mg) (10 to 35 tons) of coal. Offtake flues on either end remove gases produced. Process heat comes from the combustion of gases between the coke chambers.
    [Show full text]
  • Coke Manufacturing
    Pollution Prevention and Abatement Handbook WORLD BANK GROUP Effective July 1998 Coke Manufacturing Industry Description and Practices distillation unit. The Claus process is normally used to recover sulfur from coke oven gas. Coke and coke by-products, including coke oven During the coke quenching, handling, and gas, are produced by the pyrolysis (heating in the screening operation, coke breeze is produced. It absence of air) of suitable grades of coal. The pro- is either reused on site (e.g., in the sinter plant) cess also includes the processing of coke oven gas or sold off site as a by-product. to remove tar, ammonia (usually recovered as ammonium sulfate), phenol, naphthalene, light Waste Characteristics oil, and sulfur before the gas is used as fuel for heating the ovens. This document covers the pro- The coke oven is a major source of fugitive air duction of metallurgical coke and the associated emissions. The coking process emits particulate by-products using intermittent horizontal retorts. matter (PM); volatile organic compounds In the coke-making process, bituminous coal (VOCs); polynuclear aromatic hydrocarbons is fed (usually after processing operations to con- (PAHs); methane, at approximately 100 grams trol the size and quality of the feed) into a series per metric ton (g/t) of coke; ammonia; carbon of ovens, which are sealed and heated at high monoxide; hydrogen sulfide (50–80 g/t of coke temperatures in the absence of oxygen, typically from pushing operations); hydrogen cyanide; and in cycles lasting 14 to 36 hours. Volatile com- sulfur oxides, SOx (releasing 30% of sulfur in the pounds that are driven off the coal are collected feed).
    [Show full text]
  • Coal a Chronology for Britain
    BRITISH MINING No.94 COAL A CHRONOLOGY FOR BRITAIN by ALAN HILL MONOGRAPH OF THE NORTHERN MINE RESEARCH SOCIETY NOVEMBER 2012 CONTENTS Page List of illustrations 4 Acknowledgements 5 Introduction 6 Coal and the Industrial Revolution 6 The Properties of Coal 7 The constituents of coal 7 Types of Coal 8 Calorific Value 10 Proximate and ultimate analysis 10 Classification of Coal 11 By-products of Coal 12 Weights and Measures used for Coal 15 The Geology of Coal 17 The Coalfields of Great Britain 20 Scotland 20 North East England 25 Cumbria 29 Yorkshire, Lancashire and Westmorland 31 Yorkshire, Derbyshire and Nottinghamshire 33 Lancashire and Cheshire 36 East Midlands 39 West Midlands 40 Shropshire 47 Somerset and Gloucester 50 Wales 53 Devonshire coalfield 57 Kent coalfield 57 A coal mining chronology 59 Appendix - Coal Output of Great Britain 24 8 Bibliography 25 3 Index 25 6 3 LIST OF ILLUSTRATIONS Figure Page 1. Simplified Seyler coal chart for bituminous and anthracite coals. 12 2. The coalfields of England, Scotland and Wales. 19 3. The Scottish Coalfield between Ayr and Fife. 22 4. The Northumberland and Durham Coalfield. 27 5. The West Cumberland Coalfield showing coastal collieries. 30 6. Minor coalfields of the Askrigg Block and the Lancaster Basin. 32 7. The Yorkshire and Nottinghamshire Coalfield 34 8. The Lancashire and Cheshire Coalfield. 37 9. The Leicestershire and South Derbyshire Coalfields. 39 10. The Potteries Coalfield. 41 11. The Cannock Chase and South Staffordshire Coalfields. 43 12. The Warwickshire Coalfield. 46 13. The Shrewsbury, Coalbrookdale, Wyre Forest and Clee Hills Coalfields.
    [Show full text]
  • Delayed Coking APPLICATION NOTE
    Delayed Coking APPLICATION NOTE Process Overview Page 1 of 6 History of the Delayed Simplified Coker Schematic Coking Process Petroleum coke was first made by the GAS pioneer oil refineries in Northwestern COOLER Pennsylvania in the 1860’s. Primitive ACCUMULATOR distillation techniques were used to NAPTHA coke the oil, mainly by boiling oil in stills heated from the bottom by wood COKE COKE or coal fires. By the 1920’s the tube DRUM DRUM furnace with distillation columns were being built, paving the way to the first STEAM STRIPPER STEAM FRACTIONATOR delayed coker built by Standard Oil in 1929. Delayed coking combined LCGO a number of the features and improvements from the development STEAM STRIPPER STEAM of the thermal cracking process. The HCGO use of high temperature for cracking, FURNACE delaying the coking until the cracked FEED product entered the drum, and the use of two drums enabled the delayed coker to operate on a continuous CONDENSATE DRUM basis. COKE SOUR WATER The Modern Delayed Coking Process The delayed coker is the only main process in a modern petroleum refinery that is a batch-continuous Delayed Coker Features process. The flow through the furnace Delayed coking is a thermal cracking process used in petroleum refineries to is continuous. The feed stream is upgrade and convert petroleum residuum (bottoms from vacuum distillation of switched between two drums. One crude oil) into liquid and gas product streams leaving behind a solid concentrated drum is on-line filling with coke, carbon material—petroleum coke. A fired heater with horizontal tubes is used while the other drum is being steam- in the process to reach thermal cracking temperatures of 905° to 941° F (485° stripped, cooled, decoked, pressure to 505° C).
    [Show full text]