Molecular Elucidating of an Unusual Growth Mechanism for Polycyclic Aromatic Hydrocarbons in Confined Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SAFETY DATA SHEET Adamantane According to Regulation (EC) No 1907/2006, Annex II, As Amended
Revision date: 21/11/2017 Revision: 1 SAFETY DATA SHEET Adamantane According to Regulation (EC) No 1907/2006, Annex II, as amended. Commission Regulation (EU) No 2015/830 of 28 May 2015. SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product name Adamantane Product number FA01417 CAS number 281-23-2 EC number 206-001-4 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses Laboratory reagent. Manufacture of substances. Research and development. 1.3. Details of the supplier of the safety data sheet Supplier Carbosynth Ltd 8&9 Old Station Business Park Compton Berkshire RG20 6NE UK +44 1635 578444 +44 1635 579444 [email protected] 1.4. Emergency telephone number Emergency telephone +44 7887 998634 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (EC 1272/2008) Physical hazards Not Classified Health hazards Skin Irrit. 2 - H315 Eye Irrit. 2 - H319 Environmental hazards Aquatic Acute 1 - H400 Aquatic Chronic 1 - H410 2.2. Label elements EC number 206-001-4 Pictogram Signal word Warning 1/9 Revision date: 21/11/2017 Revision: 1 Adamantane Hazard statements H315 Causes skin irritation. H319 Causes serious eye irritation. H410 Very toxic to aquatic life with long lasting effects. Precautionary statements P264 Wash contaminated skin thoroughly after handling. P280 Wear protective gloves/ protective clothing/ eye protection/ face protection. P302+P352 IF ON SKIN: Wash with plenty of water. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. -
Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002
Minutes of the IUPAC Chemical Nomenclature and Structure Representation Division (VIII) Committee Meeting Boston, MA, USA, August 18, 2002 Members Present: Dr Stephen Heller, Prof Herbert Kaesz, Prof Dr Alexander Lawson, Prof G. Jeffrey Leigh, Dr Alan McNaught (President), Dr. Gerard Moss, Prof Bruce Novak, Dr Warren Powell (Secretary), Dr William Town, Dr Antony Williams Members Absent: Dr. Michael Dennis, Prof Michael Hess National representatives Present: Prof Roberto de Barros Faria (Brazil) The second meeting of the Division Committee of the IUPAC Division of Chemical Nomenclature and Structure Representation held in the Great Republic Room of the Westin Hotel in Boston, Massachusetts, USA was convened by President Alan McNaught at 9:00 a.m. on Sunday, August 18, 2002. 1.0 President McNaught welcomed the members to this meeting in Boston and offered a special welcome to the National Representative from Brazil, Prof Roberto de Barros Faria. He also noted that Dr Michael Dennis and Prof Michael Hess were unable to be with us. Each of the attendees introduced himself and provided a brief bit of background information. Housekeeping details regarding breaks and lunch were announced and an invitation to a reception from the U. S. National Committee for IUPAC on Tuesday, August 20 was noted. 2.0 The agenda as circulated was approved with the addition of a report from Dr Moss on the activity on his website. 3.0 The minutes of the Division Committee Meeting in Cambridge, UK, January 25, 2002 as posted on the Webboard (http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.rtf and http://www.rsc.org/IUPAC8/attachments/MinutesDivCommJan2002.pdf) were approved with the following corrections: 3.1 The name Dr Gerard Moss should be added to the members present listing. -
Kinetic Modeling for PAH Formation in a Counterflow Diffusion Flame of Isobutane
27th ICDERS July 28th – August 2nd, 2019 Beijing, China Kinetic modeling for PAH formation in a counterflow diffusion flame of isobutane Wei-Kai Chiua, Hairong Taob, Kuang C. Linc,* aDepartment of Mechanical and Electro-Mechanical Engineering,Kaohsiung 80424, National Sun Yat-Sen University, Taiwan bCollege of Chemistry, Beijing Normal University, Beijing 100875, China cEngineering and System Science,Hsinchu 30013, National Tsing Hua University, Taiwan 1 Abstract In the purpose of understanding the complex chemistry of aromatic hydrocarbon formation in diffusion flames of isobutane oxidation, mechanism that consists of 300 species and 11790 reactions is employed for verifying experimental measurements. The kinetic mechanism is incorporated into a 1-D axisymmetric laminar finite-rate model of a counterflow flame to compute the species profiles. Furthermore, the reaction pathway diagram produced by rate of production analysis illustrates the correlation between the decomposition of isobutane and formation of the target species. Keywords: isobutane, counterflow diffusion flame, paromatic hydrocarbon, chemical kinetic modeling 2 Introduction Isobutane (iC4H10) is an isomer of butane and flammable gas. Although it is not ideal fuel on its own, this species plays a role in the oxidation of large hydrocarbon fuels and is used in liquified natural gas (LNG) [1]. The detailed kinetic mechanism of isobutane combustion contains dozens of species and hundreds of reactions. When a kinetic mechanism is applied to a reaction source term of species transport equations, the computational solutions can be used to describe reactive flows and species distribution in multidimensional reactors. This kind of numerical modeling permits designers and analysts to evaluate emissions and performance of fuels in reactors or combustors. -
Update to the Developments of Hisarna an Ulcos Alternative Ironmaking Process Ir
Update to the Developments of Hisarna An Ulcos alternative ironmaking process Ir. Jan van der Stel , ir. Koen Meijer, ing. Cornelis Teerhuis, dr. Christiaan Zeijlstra, ir. Guus Keilman and ing. Maarten Ouwehand Tata Steel IJmuiden, The Netherlands Research, Development & Technology IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop Tokyo, Japan 4 – 7 November 2013 Confidential Content 1. HIsarna technology 2. HIsarna and CCS 3. HIsarna pilot plant 4. Campaign results 5. Conclusions 6. Forward plan 2 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential Ulcos IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Comparison with the BF route Blast furnace sinter Iron ore coke Liquid iron coal 4 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Comparison with the BF route Blast furnace sinter Iron ore coke coal Direct use of coal and ore Liquid iron No coking and agglomeration 5 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Top gas Oxygen Ore Oxygen Coal Slag Hot metal 6 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1.1. HIsarna technology Melting cyclone technology Melting and partial reduction of fine iron ores “2 Fe 2O3(s) + 2 CO(g) → 4 FeO(l) + 2 CO 2(g) ” • The cyclone product is a molten mixture of Fe 3O4 and FeO (~ 20 % reduced) • Pure oxygen is injected to generate the required melting temperature • The fines are separated from the gas by centrifugal flow of the gas IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. -
One-Stage Catalytic Oxidation of Adamantane to Tri-, Tetra-, and Penta-Ols
catalysts Article One-Stage Catalytic Oxidation of Adamantane to Tri-, Tetra-, and Penta-Ols Igor Yu. Shchapin 1,2,3,*, Dzhamalutdin N. Ramazanov 4, Andrey I. Nekhaev 4, Roman S. Borisov 4, Evgeny A. Buravlev 5 and Anton L. Maximov 4 1 Department of Chemistry, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia 2 Department of High Energy Chemistry and Radioecology, D.I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia 3 Branch of Joint-Stock Company “United Rocket and Space Corporation”—“Scientific Research Institute of Space Device Engineering”, 111024 Moscow, Russia 4 A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia; [email protected] (D.N.R.); [email protected] (A.I.N.); [email protected] (R.S.B.); [email protected] (A.L.M.) 5 Department of Physics and Mathematics, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; [email protected] * Correspondence: [email protected] Abstract: Tertiary tetraols of adamantane (C10H16, Tricyclo[3.3.1.1(3,7)]decan) have been widely used for the synthesis of highly symmetric compounds with unique physical and chemical properties. The methods for one-stage simultaneously selective, deep, and cheap oxidation of adamantane to tetraols of different structures have not yet been developed. In this research, chemically simple, cheap, and environmentally friendly reagents are used and that is the first step in this direction. The conditions, under which the impact of a hydrogen peroxide water solution on adamantane Citation: Shchapin, I.Yu.; dissolved in acetonitrile results in full conversion of adamantane and formation of a total 72% Ramazanov, D.N.; Nekhaev, A.I.; mixture of its tri-, tetra-, and penta-oxygenated products, predominantly poliols, have been found. -
Direct Diamondoid-To-Diamond Phase Transitions Sulgiye Park1, Jin Liu1, Jeremy E
Direct diamondoid-to-diamond phase transitions Sulgiye Park1, Jin Liu1, Jeremy E. P. Dahl2, Rodney C. Ewing1, Wendy L. Mao1, Yu Lin2* 1Department of Geological Sciences, Stanford University, Stanford, CA, 94305, USA 2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA Pressure-temperature-phase space of carbon-hydrogen systems has been a topic of intense investigation due to their importance in a wide range of fields, ranging from planetary sciences to condensed matter physics. Here, we explore how diamondoids, a unique class of hydrogen- terminated carbon nanomaterials, undergo phase and chemical transformations, and dissociate into various carbon forms under static compression and high temperature. Entirely constituted by sp3 bonded carbon atoms superimposed on the cubic diamond lattice and terminated by hydrogen atoms, diamondoid molecules are stiff, dense, and contain exceptional properties of both bulk diamond and small hydrocarbon molecules [1]. This makes diamondoids attractive for a wide range of applications, ranging from polymer synthesis, nanotechnology, drug delivery, drug targeting to molecular electronics. At high pressure and ambient temperature, bulk moduli of diamondoid crystals are dependent on their molecular geometry, wherein a higher dimensionality of a diamondoid molecule (as opposed to the simple packing schemes within the unit cell) yields a lower compressibility [2]. At high pressure and high temperature, all diamondoids studied exhibit direct diamondoid-to-graphite and diamondoid-to-diamond phase transitions. The pressure and temperature needed for the diamondoid-to-diamond conversion is significantly lower than those for graphite [3] and other hydrocarbons (e.g., polycyclic aromatic hydrocarbons [4]). For instance, triamantane transforms into diamond at 15 GPa with a temperature onset of 1200 K. -
The Synthesis of Diamond Films on Adamantane-Coated Si Substrate At
Chemical Engineering Journal 158 (2010) 641–645 Contents lists available at ScienceDirect Chemical Engineering Journal journal homepage: www.elsevier.com/locate/cej Short communication The synthesis of diamond films on adamantane-coated Si substrate at low temperature Rajanish N. Tiwari ∗, Jitendra N. Tiwari, Li Chang ∗ Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC article info abstract Article history: Diamond films have been synthesized on the adamantane-coated Si (1 0 0) substrate by microwave Received 13 November 2009 plasma chemical vapor deposition from a gaseous mixture of methane and hydrogen gases with a Received in revised form 8 January 2010 growth rate of ∼6.7 nm/min. The substrate temperature was ∼475 ◦C during diamond deposition. The Accepted 11 January 2010 films obtained have good crystallinity that is characterized by scanning electron microscopy and Raman spectrometry. X-ray photoelectron spectroscopy analysis has confirmed that diamond nucleation and Keywords: growth are on SiC rather than clean Si. The possible mechanism of high rate growth diamond films has Diamond been demonstrated. Adamantane MPCVD © 2010 Elsevier B.V. All rights reserved. 1. Introduction hedral and C–C single bond has a length of 1.54 Å. Partial collapse of adamantane molecules is known to yield carbon clusters (CnHx) Recently, the synthesis of diamond at low temperature has where n = 3, 5, 6, 7, 8 and 9 of significant abundance [16].Tothe attracted much attention of materials scientists, owing to its best of our knowledge, this is the first report showing the synthesis wide range of applications in optics, microelectronics, tribological, of diamond films on the adamantane-coated Si (1 0 0) substrate at thermal management, biomedical, DNA-based sensor, and manu- low temperature. -
Diamondoid Molecules: with Applications in Biomedicine
b1325 Diamondoid Molecules Chapter 1 of the book on Diamondoid Molecules with Applications in Biomedicine, Materials Science, Nanotechnology & Petroleum Science GA Mansoori, PLB de Araujo and E.S de Araujo (Authors) World Sci Pub Co, Hackensack, NJ, 2012 www.worldscientific.com/worldscibooks/10.1142/7559#t=aboutBook Chapter 1 Molecular Structure and Chemistry of Diamondoids 1.1. Introduction Diamondoid molecules are cage-like, ultra stable and saturated hydrocar-bons. The basic repetitive unit of the diamondoids is a ten- carbon tetracy-clic cage system called “adamantane” (Fig. 1.1). They are called “diamondoid” because they have at least one adamantane unit and their carbon–carbon framework is completely or largely superimposable on the diamond lattice (Balaban and Schleyer, 1978; Mansoori, 2007). The dia-mond lattices structure was first determined in 1913 by Bragg and Bragg using X-ray diffraction analysis (Bragg and Brag, 1913). Diamondoids show unique properties due to their exceptional atomic arrangements. Adamantane consists of cyclohexane rings in “chair” conformation. The name adamantane is derived from the Greek language word for diamond since its chemical structure is like the three- dimensional diamond subunit as it is shown in Fig. 1.2. 1.2. Classification and Crystalline Structure of Diamondoids The first and simplest member of the diamondoids group, adamantane, is a tricyclic saturated hydrocarbon (tricyclo[3.3.1.1(3.7)]decane, according to the von Bayer systematic nomenclature). Adamantane is followed by its 1 b1325_Ch-01.indd 1 7/23/2012 6:17:29 PM b1325 Diamondoid Molecules Diamondoid Molecules www.worldscientific.com/worldscibooks/10.1142/7559#t=aboutBook 2 Fig. -
Safety Data Sheets
SAFETY DATA SHEETS According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition Version: 1.0 Creation Date: Feb. 6, 2018 Revision Date: Feb. 6, 2018 1. Identification 1.1 GHS Product identifier Product name Adamantane 1.2 Other means of identification Product number A506396 Other names Adamantane 1.3 Recommended use of the chemical and restrictions on use Identified uses Used for research and development only. Uses advised against no data available 1.4 Supplier's details Company Sangon Biotech (Shanghai) Co., Ltd. Address 698 Xiangmin Road, Songjiang, Shanghai 201611, China Telephone +86-400-821-0268 / +86-800-820-1016 Fax +86-400-821-0268 to 9 1.5 Emergency phone number Emergency phone +86-21-57072055 number Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours). 2. Hazard identification 2.1 Classification of the substance or mixture Acute toxicity - Oral, Category 4 2.2 GHS label elements, including precautionary statements Pictogram(s) Signal word Warning Hazard statement(s) H302 Harmful if swallowed Adamantane Page 1 of 8 Precautionary statement(s) Prevention P264 Wash ... thoroughly after handling. P270 Do not eat, drink or smoke when using this product. Response P301+P312 IF SWALLOWED: Call a POISON CENTER/doctor/…if you feel unwell. P330 Rinse mouth. Storage none Disposal P501 Dispose of contents/container to ... 2.3 Other hazards which do not result in classification no data available 3. Composition/information on ingredients 3.1 Substances Common names and CAS EC Chemical name Concentration synonyms number number 206-001- Tricyclo[3.3.1.13,7]decane Adamantane 281-23-2 ≥99% 4 4. -
Emissions from Small-Scale Combustion of Biomass Fuels - Extensive Quantification and Characterization
Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization Christoffer Boman Anders Nordin Marcus Öhman Dan Boström Energy Technology and Thermal Process Chemistry Umeå University Roger Westerholm Analytical Chemistry, Arrhenius Laboratory Stockholm University _______________________________________________________________ Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization Christoffer Boman1, Anders Nordin1, Roger Westerholm2, Marcus Öhman1, Dan Boström1 1Energy Technology and Thermal Process Chemistry, Umeå University, SE-901 87 Umeå, Sweden 2Analytical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden STEM-BHM (P12648-1 and P21906-1) Umeå, February 2005 SUMMARY This work was a part of the Swedish national research program concerning emissions and air quality ("Utsläpp och Luftkvalitet") with the sub-programme concerning biomass, health and environment ("Biobränlen, Hälsa, Miljö" - BHM). The main objective of the work was to systematically determine the quantities and characteristics of gaseous and particulate emissions from combustion in residential wood log and biomass fuel pellet appliances and report emission factors for the most important emission components. The specific focus was on present commercial wood and pellet stoves as well as to illustrate the potentials for future technology development. The work was divided in different sub- projects; 1) a literature review of health effects of ambient wood -
Inorganic Chemistry for Dummies® Published by John Wiley & Sons, Inc
Inorganic Chemistry Inorganic Chemistry by Michael L. Matson and Alvin W. Orbaek Inorganic Chemistry For Dummies® Published by John Wiley & Sons, Inc. 111 River St. Hoboken, NJ 07030-5774 www.wiley.com Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis- sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley. com/go/permissions. Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trade- marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book. -
Hybrid Metal–Organic Chalcogenide Nanowires with Electrically Conductive Inorganic Core Through Diamondoid-Directed Assembly Hao Yan1,2†, J
Lawrence Berkeley National Laboratory Recent Work Title Hybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly. Permalink https://escholarship.org/uc/item/1xt3j30k Journal Nature materials, 16(3) ISSN 1476-1122 Authors Yan, Hao Hohman, J Nathan Li, Fei Hua et al. Publication Date 2017-03-01 DOI 10.1038/nmat4823 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLES PUBLISHED ONLINE: 26 DECEMBER 2016 | DOI: 10.1038/NMAT4823 Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly Hao Yan1,2†, J. Nathan Hohman3†, Fei Hua Li1,2†, Chunjing Jia1, Diego Solis-Ibarra4, Bin Wu1,2, Jeremy E. P. Dahl1, Robert M. K. Carlson1, Boryslav A. Tkachenko5, Andrey A. Fokin5, Peter R. Schreiner5, Arturas Vailionis6, Taeho Roy Kim1,2, Thomas P. Devereaux1, Zhi-Xun Shen1 and Nicholas A. Melosh1,2* Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal–organic frameworks and coordination polymers. However, the lack of ‘solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal–organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on addition of precursors for nanowire elongation. These nanowires have band-like electronic properties, low eective carrier masses and three orders-of-magnitude conductivity modulation by hole doping.