Tutorial: Delayed Coking Fundamentals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Update to the Developments of Hisarna an Ulcos Alternative Ironmaking Process Ir
Update to the Developments of Hisarna An Ulcos alternative ironmaking process Ir. Jan van der Stel , ir. Koen Meijer, ing. Cornelis Teerhuis, dr. Christiaan Zeijlstra, ir. Guus Keilman and ing. Maarten Ouwehand Tata Steel IJmuiden, The Netherlands Research, Development & Technology IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop Tokyo, Japan 4 – 7 November 2013 Confidential Content 1. HIsarna technology 2. HIsarna and CCS 3. HIsarna pilot plant 4. Campaign results 5. Conclusions 6. Forward plan 2 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential Ulcos IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Comparison with the BF route Blast furnace sinter Iron ore coke Liquid iron coal 4 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Comparison with the BF route Blast furnace sinter Iron ore coke coal Direct use of coal and ore Liquid iron No coking and agglomeration 5 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Top gas Oxygen Ore Oxygen Coal Slag Hot metal 6 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1.1. HIsarna technology Melting cyclone technology Melting and partial reduction of fine iron ores “2 Fe 2O3(s) + 2 CO(g) → 4 FeO(l) + 2 CO 2(g) ” • The cyclone product is a molten mixture of Fe 3O4 and FeO (~ 20 % reduced) • Pure oxygen is injected to generate the required melting temperature • The fines are separated from the gas by centrifugal flow of the gas IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. -
Petroleum Coke
Report No. 72 PETROLEUM COKE by SAMUEL C. SPENCER October 1971 A private report by the 0 PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA I * CONTENTS 1 INTRODUCTION, . 1 2 SUMMARY . * . , . Economic Aspects ...................... 6 Technical Aspects ..................... 10 3 INDUSTRY STATUS . , . , , . 17 Trends . .................... 17 Applications . , . .................... 29 Fuel . .................... 31 Aluminum (anodes) .................... 32 MetallurgicalCoke .................... 36 Chemicals . .................... 37 Formed Shapes . .................... 38 Other Uses . , .................... 39 4 DEVELOPMENTOF COKING PROCESSES . , , , , . , . 41 5 CHEMISTRY ......................... 47 Composition ........................ 47 Basic Chemistry ...................... 52 6 DELAYED COKING. ...................... 59 Review of Process ..................... 59 Process Description .................... 68 Materials of COnStrUctiOn ................. 83 Process Discussion ..................... 84 Process Variations and Innovations ............. 93 Cost Estimates ....................... 95 Capital Costs ...................... 96 Production Costs ..................... 100 Needle Coke Economics ................... 112 V CONTENTS 7 FLUID COKING ........................ 119 Review of Process ..................... 119 Process Description .................... 129 Materials of Construction ................. 133 Process Discussion ..................... 140 Process Variations and Innovations ............. 144 Cost Estimates -
Screening-Level Hazard Characterization of Petroleum Coke
U.S. Environmental Protection Agency June 2011 Hazard Characterization Document SCREENING-LEVEL HAZARD CHARACTERIZATION Petroleum Coke Category SPONSORED CHEMICALS Petroleum coke, green CASRN 64741-79-3 Petroleum coke, calcined CASRN 64743-05-1 The High Production Volume (HPV) Challenge Program1was conceived as a voluntary initiative aimed at developing and making publicly available screening-level health and environmental effects information on chemicals manufactured in or imported into the United States in quantities greater than one million pounds per year. In the Challenge Program, producers and importers of HPV chemicals voluntarily sponsored chemicals; sponsorship entailed the identification and initial assessment of the adequacy of existing toxicity data/information, conducting new testing if adequate data did not exist, and making both new and existing data and information available to the public. Each complete data submission contains data on 18 internationally agreed to “SIDS” (Screening Information Data Set1,2) endpoints that are screening-level indicators of potential hazards (toxicity) for humans or the environment. The Environmental Protection Agency’s Office of Pollution Prevention and Toxics (OPPT) is evaluating the data submitted in the HPV Challenge Program on approximately 1400 sponsored chemicals by developing hazard characterizations (HCs). These HCs consist of an evaluation of the quality and completeness of the data set provided in the Challenge Program submissions. They are not intended to be definitive statements regarding the possibility of unreasonable risk of injury to health or the environment. The evaluation is performed according to established EPA guidance2,3 and is based primarily on hazard data provided by sponsors; however, in preparing the hazard characterization, EPA considered its own comments and public comments on the original submission as well as the sponsor’s responses to comments and revisions made to the submission. -
Converting Visbreakers to Delayed Cokers - an Opportunity for European Refiners
Converting Visbreakers to Delayed Cokers - An Opportunity for European Refiners European Coking.com Conference Sept. 30 - Oct. 2, 2008 Alex Broerse Lummus Technology a CB&I company © Lummus Technology Overview Introduction Delayed Coking Delayed Coking vs. Visbreaking Case Study Conclusions © Lummus Technology Converting Visbreakers to Delayed Cokers - 2 Fuel Oil Market General trend: reduction of sulfur content in fuel oil Typically 1.0-1.5 wt% S International Maritime Organization introduced SOx Emission Control Areas: . Sulfur content of fuel oil on board ships < 1.5 wt% . 1st SECA: Baltic Sea (effective 2006) . North Sea end of 2007 . More to follow Similar trend in other fuel oil application areas End of bunker fuel oil as sulfur sink? © Lummus Technology Converting Visbreakers to Delayed Cokers - 3 European Fuels Market Increased demand for ULS diesel Gradually decreasing fuel oil market Price gap between low sulfur crudes and opportunity crudes Re-evaluation of bottom-of-the-barrel strategy maximize diesel and minimize/eliminate fuel oil production What are the options? © Lummus Technology Converting Visbreakers to Delayed Cokers - 4 Bottom-of-the-Barrel Conversion Technologies Non Catalytic Catalytic Delayed coking Atm. / vac. resid hydrotreating Fluid / flexicoking Ebullated bed hydrocracking Gasification Resid FCC © Lummus Technology Converting Visbreakers to Delayed Cokers - 5 Lummus Capabilities for Bottom-of-the-Barrel Lummus Technology – Houston Delayed coking Resid FCC Chevron Lummus Global JV – Bloomfield Atmospheric/vacuum residue hydrotreating LC-FINING ebullated bed hydrocracking Lummus Technology – Bloomfield / The Hague Refinery planning studies (e.g., grassroots, revamps, processing of opportunity crudes) © Lummus TechnologyExtensive experience in heavy crude upgrade Converting Visbreakers to Delayed Cokers - 6 scenarios Overview Introduction Delayed Coking Delayed Coking vs. -
Why the Bay Area Should Say “No” to Coal and Petroleum Coke Exports
Why the Bay Area should say “No” to Coal and Petroleum Coke Exports Big coal and oil companies are looking for ways to ship their dirty commodities abroad from U.S. ports. As Northwest communities push back against proposed export terminals in Washington and Oregon, the companies have turned to their next target: the Bay Area. If coal and petroleum coke-carrying trains come to our area, coal dust from open rail cars will threaten community health by polluting our air, land and water. Thousands of people on the West Coast are leading a grassroots movement against coal exports. It’s time to let big coal and oil know that their exports aren’t welcome in California. Where is the coal coming from? To reach Bay Area ports, coal trains from mines in the Powder River Basin (PRB) or the Utah and Colorado region travel through many communities including Sacramento, Richmond, Stockton, Pittsburg, Bakersfield, Fresno, Merced and Modesto. And these trains are already on the move.1 Where is petcoke coming from, and what is it? • Petroleum coke, or petcoke, is a solid carbon byproduct that results from oil refining processes. When petcoke is burnt, it emits 5 to 10 percent more carbon dioxide 2) per (C0 unit of energy than coal. On average, one ton of petcoke yields 53.6 percent more CO2 than a ton of coal.2 Petcoke also emits toxic residues, from heavy metals to sulfur. • Petcoke is so dirty that the U.S. Environmental Protection Agency bans it from being burned in our country. Yet, the EPA still allows it to be exported abroad, pushing the pollution offshore. -
A Life Cycle Analysis of Deploying Coking Technology to Utilize Low-Rank Coal in China
sustainability Article A Life Cycle Analysis of Deploying Coking Technology to Utilize Low-Rank Coal in China Yan Li 1, Guoshun Wang 1, Zhaohao Li 2, Jiahai Yuan 3 , Dan Gao 2,* and Heng Zhang 2 1 School of Business, Central South University, Changsha 410083, China; [email protected] (Y.L.); [email protected] (G.W.) 2 School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; [email protected] (Z.L.); [email protected] (H.Z.) 3 School of Economics and Management, North China Electric Power University, Beijing 102206, China; [email protected] * Correspondence: [email protected] Received: 12 May 2020; Accepted: 10 June 2020; Published: 15 June 2020 Abstract: At present, the excess capacity in China’s coke industry can be deployed to utilize some low-rank coal, replacing coking coal with potential economic gains, energy efficiency, and environmental benefits. This study presents a life cycle analysis to model these potential benefits by comparing a metallurgical coke technical pathway with technical pathways of gasification coke integrated with different chemical productions. The results show that producing gasification coke is a feasible technical pathway for the transformation and development of the coke industry. However, its economic feasibility depends on the price of cokes and coals. The gasification coke production has higher energy consumption and CO2 emissions because of its lower coke yield. Generally speaking, using gasification coke to produce F-T oils has higher economic benefits than producing methanol, but has lower energy efficiency and higher carbon emissions. Keywords: coal coking; life cycle analysis; gasification coke; metallurgical coke; low-rank coal 1. -
Hisarna Smelting Reduction
HISARNA SMELTING REDUCTION A SOLUTION FOR SUSTAINABLE HOT METAL PRODUCTION Jan van der Stel, Koen Meijer, Christiaan Zeilstra, Johan van Boggelen, Tim Peeters and Rod Dry (*) Tata Steel Research & Development, IJmuiden, The Netherlands (*) RIO TINTO Perth, Australia Reducing the carbon footprint of the steel industry, 19-20 April 1 ZaandamAll rights and reserved Petten - Reducing, theThe carbon Netherlands footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands Content 1. HIsarna development 2. Technology background 3. The HIsarna pilot plant 3.1. Milestones of the test campaigns 4. Forward program 4.1. Further experimental work in pilot plant 4.2. Industrial scale demonstration plant 5. Conclusions 6. Challenges 2 All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands 1. HIsarna development • In 2004 several European steelmakers proactively started the ULCOS project with the objective to achieve 50 % reduction of the CO 2 emissions of steelmaking • HIsarna is one of the four process development that originate from the ULCOS project. • Since 2007 Tata Steel, Rio Tinto and ULCOS have been active developing this coal-based smelting reduction process. • To date over 80 mln Euro has been invested in this new technology. • The HIsarna process offers a combination of environmental and economical benefits. 3 All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands 1.1 Comparison BF route - HIsarna Blast Furnace Iron ore Hot metal Coal Coking/Agglomeration Ironmaking HIsarna Iron ore Hot metal Direct use of fine ores and coal Coal (no agglomeration and coking) Ironmaking 4 All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands 1.2. -
Residuum Processing
CHAPTER SIX Residuum Processing DELAYED COKING Delayed coking is a thermal process in which the vacuum residue from crude distillation is heated in a furnace then confined in a reaction zone or coke drum under proper operating conditions of temperature and pressure until the unvaporized portion of the furnace effluent is converted to vapor and coke. Delayed coking is an endothermic reaction, with the furnace supplying the necessary heat for the coking reactions. The reactions in the delayed coking are complex. In the initial phase, the feed is partially vaporized and cracked as it passes through the furnace. In the next step, cracking of the vapor occurs as it passes through the drum. In the final step, succes- sive cracking and polymerization of the liquid confined in the drum takes place at high temperatures, until the liquid is converted into vapor and coke. The coke produced in the delayed coker is almost pure carbon contain- ing some of the impurities of the feed, such as sulfur and metals. THE DELAYED COKING PROCESS The reduced crude or vacuum resid enters the coke fractionator bottom surge zone (see Figure 6-1). The feed is mixed with recycle condensed in the bottom section of the fractionator and pumped by heater charge pump P-04 through coke heater H-Ol, where the charge is rapidly heated to the desired temperature for coke formation in the coke drums. Steam is injected in each heater coil to maintain the required minimum velocity and residence time and suppress the formation of coke in the heater coils. BLOWDOWN CONDENSER BLOWDOWN SETTLING DRUM V-05 E-02 TO FLARE BLOWDOWN DECOKING WATER BLOWDOWN WATER SLOP OIL STORAGETANK CIRCULATION PUMP PUMP T-01 P-08 OIL COOLER P-09 SLOP OIL E-01 COKER RAW WATER BLOWDOW^ DRUM V-04 COKER GAS FRACTIONATOR N. -
South Yorkshire
INDUSTRIAL HISTORY of SOUTH RKSHI E Association for Industrial Archaeology CONTENTS 1 INTRODUCTION 6 STEEL 26 10 TEXTILE 2 FARMING, FOOD AND The cementation process 26 Wool 53 DRINK, WOODLANDS Crucible steel 27 Cotton 54 Land drainage 4 Wire 29 Linen weaving 54 Farm Engine houses 4 The 19thC steel revolution 31 Artificial fibres 55 Corn milling 5 Alloy steels 32 Clothing 55 Water Corn Mills 5 Forging and rolling 33 11 OTHER MANUFACTUR- Windmills 6 Magnets 34 ING INDUSTRIES Steam corn mills 6 Don Valley & Sheffield maps 35 Chemicals 56 Other foods 6 South Yorkshire map 36-7 Upholstery 57 Maltings 7 7 ENGINEERING AND Tanning 57 Breweries 7 VEHICLES 38 Paper 57 Snuff 8 Engineering 38 Printing 58 Woodlands and timber 8 Ships and boats 40 12 GAS, ELECTRICITY, 3 COAL 9 Railway vehicles 40 SEWERAGE Coal settlements 14 Road vehicles 41 Gas 59 4 OTHER MINERALS AND 8 CUTLERY AND Electricity 59 MINERAL PRODUCTS 15 SILVERWARE 42 Water 60 Lime 15 Cutlery 42 Sewerage 61 Ruddle 16 Hand forges 42 13 TRANSPORT Bricks 16 Water power 43 Roads 62 Fireclay 16 Workshops 44 Canals 64 Pottery 17 Silverware 45 Tramroads 65 Glass 17 Other products 48 Railways 66 5 IRON 19 Handles and scales 48 Town Trams 68 Iron mining 19 9 EDGE TOOLS Other road transport 68 Foundries 22 Agricultural tools 49 14 MUSEUMS 69 Wrought iron and water power 23 Other Edge Tools and Files 50 Index 70 Further reading 71 USING THIS BOOK South Yorkshire has a long history of industry including water power, iron, steel, engineering, coal, textiles, and glass. -
Impact of Feed Properties and Operating Parameters on Delayed Coker Petcoke Quality
Impact of Feed Properties and Operating Parameters on Delayed Coker Petcoke Quality Robert (Bob) Clarke Process Manager, Refining Canada Coking Conference October 22 – 26, 2012 Fort McMurray, Alberta, Canada Categorizing Petroleum Coke Usage: Appearance: • Fuel Grade Shot Coke – Power Generation − Small spherical – Cement balls manufacturing − “Beebees” • Anode Grade Sponge Coke – Aluminum Grade − Amorphous – “Calcinable” − May contain shot beebees • Electrode Grade Needle Coke – Steel Electric Arc − Crystalline Furnace − Clusters of aligned – “Calcinable” needles Coke Formation • Thermal cracking of paraffins & Paraffinic side chains. • Polymerization & aromatic formation. • Heavy aromatics condense to a mesophase. • Mesophase converts to coke. • Asphaltenes & very high MW aromatics rapidly convert to coke skipping mesophase. • Thermal Cracking is endothermic • Condensation & coke formation is exothermic Petroleum Coke General Properties • Volatile Combustible Matter (VCM) • Hardgrove grindablity index (HGI) • Contaminants –Sulfur – Nitrogen – Metals •Ash • Granulometry (fines) Petroleum Coke General Properties: Volatile Combustible Matter (VCM) • VCM is unconverted pitch – Target 12% Max, fuel coke 9% to 10% – 14% VCM is very high; Coke will be soft • Increases green coke hydrogen content • Rules of thumb for control in fuel coke – Increase heater outlet 5-7 °F for 1% decrease in VCM – Increase heater outlet 1-2 °F for each hour reduction in coking cycle time • Best practice: Increase heater outlet 5-7 °F in final hours of coking cycle -
Delayed Coking of South African Petroleum Heavy Residues for the Production of Anode Grade Coke and Automotive Fuels
DELAYED COKING OF SOUTH AFRICAN PETROLEUM HEAVY RESIDUES FOR THE PRODUCTION OF ANODE GRADE COKE AND AUTOMOTIVE FUELS John Graham Clark A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, 2008 2 DECLARATION I declare that this dissertation is my own unaided work. It is being submitted to the Degree of Master of Science in Engineering to the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination to any other University ……………………………………………… (Signature of Candidate) ………………. day of …………………… year…………… (day) (month) (year) 3 ABSTRACT A laboratory scale delayed coking process was used to produce petrol precursors, diesel precursors, methane rich gas, green and calcined coke from five previously untested South African heavy petroleum residues. The ash content of the heavy petroleum residues was found to be detrimental to the microstructure of the green coke and Coefficient of Thermal Expansion (CTE) of the calcined coke. The sulphur content of the calcined cokes produced was found to be in-line with typical global anode grade cokes. De-ashing of the feedstock would be necessary to produce anode grade fillers for the aluminium industry. The local production of anode grade coke would serve to reduce imports and supply the aluminium smelters on the east coast of South Africa. The heavy petroleum residues (also known as heavy fuel oil) are currently used as bunker fuel in the shipping industry and are responsible for substantial air pollution. Delayed coking of these residues could extend the production of petrol and diesel per barrel of imported crude oil and reduce the effect on South Africa’s balance of payments deficit and impact the environment in a beneficial manner with respect to carbon dioxide and sulphur emissions. -
Petroleum Coke Category Analysis and Hazard Characterization
Contents 1. DESCRIPTION OF PETROLEUM COKE .......................................................................... 1 1.1. Composition and Structure............................................................................................. 1 1.2. Coking Processes and Terminology .............................................................................. 2 1.3. Analytical Characterization............................................................................................. 3 2. CATEGORY DEFINITION AND JUSTIFICATION ............................................................. 4 3. TEST MATERIALS ............................................................................................................. 4 3.1. Previous Studies ............................................................................................................ 4 3.2. New Studies ................................................................................................................... 4 4. PHYSICAL-CHEMICAL PROPERTIES.............................................................................. 5 4.1. Physical-Chemical Screening Information Data Set (SIDS) .......................................... 5 4.2. Assessment Summary for Physical-Chemical Endpoints .............................................. 6 5. ENVIRONMENTAL FATE .................................................................................................. 6 5.1. Environmental Fate Endpoints......................................................................................